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It has been approved that the scale-free feature exists in various complex networks, such as
the internet, the cell or the biological networks. In order to analyze the influence of the self-
growth phenomenon during the growth on the structure of traffic and transportation network,
we formulated an evolving model. Based on the evolving model, we prove in mathematics that,
even that the self-growth situation happened, the traffic and transportation network owns the
scale-free feature due to that the node degree follows a power-law distribution. A real traffic and
transportation network, China domestic airline network is tested to consolidate our conclusions.
We find that the airline network has a node degree distribution equivalent to the power-law of
which the estimated scaling parameter is about 3.0. Moreover the standard error of the estimated
scaling parameter changes according to the self-growth probability. Our findings could provide
useful information for determining the optimal structure or status of the traffic and transportation
network.

1. Introduction

The study of the coevolution of the dynamics and the topology of transportation networks is a
promising research topic, especially for the potential implications in infrastructures planning.
Triggered by two invaluable papers [1, 2], relevant problems of the complex network have
attracted a great deal of attention in the latest decade. Commonly cited examples cover
various types of networks such as the information network [3], the social network [4], the
communication network [5] and the traffic and transportation network [6–8]. Within the
framework of the reference of [1], the scale-free network follows the power-law degree
distribution. Several researchers discussed the scale-free characteristic of the traffic and
transportation network, including the urban street network [3], the logistics network [9],
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the transit network [10], and the airline network [6]. Using the static model, it was reported
that the load distribution over traffic and transportation follows a power law [11, 12].
However, the previous works have done lots of assumptions and simplifications on the
structure of traffic and transportation networks, such that there should be only one link
between two nodes on the network [1, 13]. As it is known to all, the situation not only
does exist, but also can be seen commonly that two nodes are connected by more than one
link on the traffic and transportation network. For the street network of a city, we could
easily imagine that there are many links connecting between one pair of nodes. If we use
the adjacent matrix [6] to demonstrate the connecting degree between the two cities, the
cell number in the matrix would apparently larger than one. However, these situations were
not permitted in the previous researches of the complex network theory for the traffic and
transportation network [1, 4, 13]. Furthermore, the evolution of the traffic and transportation
network always has the “self-growth” characteristic. For example, the growth of the airline
network always undergoes two ways. One way is to connect the exiting airport to the
new constructed airport (the new added node) with new airlines. The other one is to open
new airlines between the existing airports without any new airport constructed. The latter
way of the evolution of the air network expresses the “self-growth” feature. Generally, the
relevant decision makers of the traffic and the transportation departments frequently face the
problems of opening new lines to service the exiting stations (or the airport, depots and, etc.)
or constructing a new station or intersection when the network is expanded. The self-growth
characteristic of the traffic and transportation network has not been elaborately described or
dealt with in the existing literatures about the scale-free network.

It is true that the dynamics in the network adapts to the topology, but, on the other
side, topology of the network just grows independently of the dynamics. It would be quite
important to adding an adaptive mechanism for the growth of the network, where, for
instance, new links are constructed to support congested routes. The idea of having each pair
of nodes connected by more than one link is not just equivalent to having just one link with
a higher capacity (this has been studied in many publications). The reason is that add more
than one link between each pair of nodes could enrich the chance of route choice between
a given origin-destination (OD) pair. Moreover, adding the link to connect two nodes could
increase the structure complexity of the traffic and transportation network, which means the
degree distribution of network, should be different from that of the networks of the previous
researches.

In this paper, a network evolving model for the traffic and transportation network
is designed. In this evolving model, we consider the self-growth phenomenon during the
evolving of the network. Based on the new network evolving mechanism, the node degree
distribution of the generated network is deduced. From the power-law fitting results of the
cumulative distribution functions (CDF) of the node degree distribution, we conclude that
the traffic and transportation network owns the scale-free feature. However, the scale-free
characteristic depends much on the parameters of self-growth during the evolution of the
network.

2. Evolving Model for the Traffic and Transportation Network

Absenting from the classical random network models [1], two mechanisms are responsible
for the emergence of the scaling in the exiting literatures: (1) the network evolves by adding
a new node with m(m ≤ m0) edges which links the new node to m different nodes in
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the primary small network (with m0 numbers of nodes); (2) the preferential attachment
which specifies the probability that a new node will be connected to node i depends on the
degree of node i, that is, πi(ki) = ki/

∑
j kj . As has been stated in the first section, for the

traffic and transportation network, they are commonly exited more than one link between
two nodes. Furthermore, the evolution of traffic and transportation network always has the
“self-growth” characteristic. Consequently, we design a new evolving model adaptive to the
traffic and transportation network as follows.

Starting with a small number (m0) of nodes, at each time step t = 1, 2, . . . , T , repeat the
following operations m(≤ m0) times.

(1) Randomly select a node in the current network as the ending point of the new link,
and whether node i is selected as the ending point of the new link depends on its
degree ki with the preferential probability πi(ki) = ki/(

∑
j kj).

(2) Generate a random number r(0 ≤ r ≤ 1), if r ≤ ρ (ρ denotes the self-growth probability
for the evolution of the network), select randomly a node j(j /= i) in the system as
the starting point of the new added link (j, i); otherwise if r > ρ: check if a new node
k has been added into the system, if not, add a new node k to the system as the
starting point and connect the ending point i to the new link (k, i), if yes, connect
the new node k to the ending point i to add the new link (k, i).

Apparently, at each time step t,m new links can be added to the system regardless of
that whether a new node is added. In order to demonstrate the growth mechanism for the
traffic and transportation network, we use Figure 1 as illustration.

The primary network is shown in Figure 1(a), in which the number of links m0 = 4
and the degree of each node in the system is respectively 1, 4, 2 and 1. Assume m = 4 and
ρ = 0.5, at time t = 1, we should run m(m = 4) times of the following operations to add four
links into the system.

Step 1. Based on preferential probability πi = ki/
∑

j kj , select randomly a node (assume node
#2) as the ending point of new link.

Generate a random number r (assume r = 0.2). Since r(= 0.2) ≤ ρ(= 0.5), select
randomly a node (assume node #3) in the system as the starting point to add the new link
(3, 2).

Step 2. Like Step 1, select randomly a node (assume node #2) as the ending point of new link.
Generate a random number r (assume r = 0.7). Since r(= 0.7) > ρ(= 0.5), and there

has not been a new node added into the system, add a new node (node 5) to the system and
connect it to the ending point (node 2) to add a new link (5, 2).

Step 3. Select randomly a node (assume node 4) as the ending point of new link. Generate a
random number r(assume r = 0.6). Since r(= 0.6) > ρ(= 0.5), and there has been a new node
(number 5) in the system, connect node 5 and node 4 to add the new link (5, 4).

Step 4. Select randomly a node (assume node #2) as the ending point of new link. Generate
a random number r (assume r = 0.65). Since r(= 0.65) > ρ(= 0.5), and there has been a new
node (number 5) in the system, connect node 5 and node 2 to add the new link (5, 2).

As illustrated in Figure 1(b), we are clear about that during the evolving of the traffic
and transportation network, the network could grow by adding new links between the
existing nodes or adding a new node and connect it to the existing nodes. Furthermore, each
pair of nodes could be connected with more than one link. Given the time period t = 1, . . . , T ,
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Figure 1: An illustration of the network evolving mechanism for the traffic and transportation network:
Assumem0 = 4,m = 4, and ρ = 0.5.

as well as the self-growth probability ρ, we could generate the traffic and transportation
network which owns the self-growth feature.

3. Degree Distribution Model of the Traffic and
Transportation Network

According to the continuum theory, we assume that the degree of node i changes
continuously versus the time step t, denoted by ki(t). Let N(t) represent the total number
of nodes and let L(t) be the total number of links in the system at time t. Start with
t = 0,N(t = 0) = m0 nodes, and L(t = 0) = l0 links. ki(t) satisfies the following dynamical
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equation:

∂ki
∂t

=
(
1 − ρm

)
mπi(ki) + ρmm

[

πi(ki) + (1 − πi(ki))
1

N(t) − 1

]

= mπi(ki) + ρmm

[

(1 − πi(ki))
1

N(t) − 1

]

= m
ki

∑
j kj

+ ρmm

[(

1 − ki
∑

j kj

)
1

N(t) − 1

]

.

(3.1)

In (3.1), the first term mki/(
∑

j kj)represents the probability that node i is selected as
the ending point of the new added link at time step t in the standard BA model [1, 4]. As
stated in the above section, at each time step of the evolving of traffic and transportation
network, we would run m times of judging whether a new node would be added into the
system. The probability that no node is added into the existing system is ρm (ρ denoted as
self-growth probability). So, the event that at least one node is added into the system happens
with a probability of (1−ρm), whichmultipliesmki/(

∑
j kj) to obtain the probability that node

i is selected as the ending point and linked to a new added node at time t. Similarly, the second
term ρmm[(1 − ki/(

∑
j kj))(1/(N(t) − 1))] represents the probability that node i is selected as

the starting point of the new added link in case that no node is added into the system (that
is, the network undergoes a self-growth process).

According to [4], the sum of the degrees of all nodes is
∑

j kj = 2mt. Accordingly,
expected total number of the nodes in the system depends on the self-growth probability ρ,
that is N(t) = m0 + (1 − ρm)mt. Consequently, (3.1) could be written as

∂ki
∂t

=
ki
2t

+ ρmm

[(

1 − ki
2mt

)
1

m0 +
(
1 − ρm

)
mt − 1

]

≈ ki
2t

+ ρmm

[(

1 − ki
2mt

)
1

(
1 − ρm

)
mt

]

, for large t,

(3.2)

∂ki
∂t

=
ki
2t

+
ρm(2mt − ki)
2
(
1 − ρm

)
mt2

(3.3)

=
ki
2t

+
ρm

(
1 − ρm

)
t
+

ρmki

2
(
1 − ρm

)
mt2

∂ki
∂t

≈ ki
2t

+
ρm

(
1 − ρm

)
t
, for large t.

(3.4)

The solution of (3.4), with the initial condition that node i was added to the system
at time ti with the degree ki(ti) = m(1 − ρm) (on the condition that no self-growth event has
happened), is

ki(t) = A

(
t

ti

)1/2

− 2ρm
(
1 − ρm

) , with A =

(
m − 2mρm + 2ρm +mρ2m

)

1 − ρm
. (3.5)
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Using (3.5), the probability that a node at equal time has a degree ki smaller than k,
P(ki(t) < k), could be expressed as:

P(ki(t) < k) = P(ti > c(k)t) (3.6)

Based on (3.5) and (3.6), we have

c(k) =

(
A
(
1 − ρm

)

k
(
1 − ρm

)
+ 2ρm

)2

. (3.7)

Simply, ti follows a constant probability density as:

P(ti) =
1

m0 + ti
(3.8)

Substituting this into (3.6), we could obtain

P(ti > c(k)t) = 1 − c(k)t
m0 + t

= 1 − t

m0 + t

(
A
(
1 − ρm

)

k
(
1 − ρm

)
+ 2ρm

)2

. (3.9)

P(k) could be obtained using:

∂P(ki(t) < k)
∂k

=
∂P(ti > c(k)t)

∂k
=

2t
m0 + t

(
A2(1 − ρm

)3

(
k
(
1 − ρm

)
+ 2ρm

)3

)

(3.10)

So that, we have:

P(k) =
∂P(ki(t) < k)

∂k
∼
[(

m − 2mρm + 2ρm +mρ2m
)

1 − ρm

]2
2
(
1 − ρm

)3

[(
1 − ρm

)
k + 2ρm

]3 , t → ∞

=
2
(
1 − ρm

)(
m − 2mρm + 2ρm +mρ2m

)2

[(
1 − ρm

)
k + 2ρm

]3 .

(3.11)

From (3.11), we know that the degree distribution of the traffic and transportation
network depends on the self-growth probability ρ. Clearly, (3.11) demonstrates that P(k)
follows a power-law distribution with scaling parameter (exponent gamma) near 3. Consider
the following two cases:

(1) in case that ρ → 0, we have P(k) → 2m2k−3. The evolving model is equivalent to
the standard BA model [13], which has the scale-free feature according to [1, 2].

(2) in case that ρ → 1, P(k) → 0, which implies that the network is not growing in the
way of adding new nodes at all. However, even in this case using the static model
in [12], one can still yield scale-free P(k).
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4. Simulation Results

To provide numerical support for the degree distribution function of (3.11), we generate
different networks of N = 104 nodes with initial configurations shown in Figure 1(a). We set
m= 4 versus different self-growth probabilities ρ= 0.0, 0.1, 0.3, 0.5, 0.7, and 0.9, respectively.
After performing the network evolving model in Section 2 (set T = N = 104), the node degree
distribution result of each network is shown in Figure 2.

In Figure 2, we plot the histograms of event frequency versus size, event rank versus
size, and event rank versus frequency of the node degree of the generated networks in
panel (a) to (c) to panel (c). We also examine the log-normal behavior of the node degree
distribution using the method in [11, 14], and. The result is shown in panel (d).

We could see that these curves on panel (a) to panel (c) display the situations of “long
tails,” which is the reprehensive nature of power-law distributing data set. On the other hand,
as shown in panel (d) of Figure 2, it could observed that the node degree data sets own
lognormal distribution behaviors in the fact that distance from means of log degree values
versus square roots of logs of counts of binned values have leaner relationships according to
the regression (the method used for the leaner regression could be referred in [4, 11, 14]).
Accordingly, we could say again that our data set of node degree does have power-law
distribution nature.

5. Applications to Real-World Data

To consolidate our result, we investigate the evolving characteristics of real traffic and trans-
portation networks. We investigate the evolution of China domestic airline network (CDAN)
from the year 1950 to 2010 and 2000 to 2010 for detailed network topology information. The
node degree datasets of the networks were collected in May, 2010 from the database of the
Civil Aviation Bureau of China [15].

We summarized average node degrees, number of airlines and airports (nodes) of
these networks of CDAN from 1950 to 2010, which are shown in Figure 3. As described in
Figure 3, we found that the average degree of networks of CDAN increased drastically from
year 1950 to 2000. However, the increase of the average node degree is relatively stationary
from 2000 to 2010. The change trend of the number of airports in the network was the same
as that of the average node degree. However, there was somewhat difference in change trend
of the number airline of CDAN.

As shown from the green diamond line in Figure 3, we can see that the increase rate of
the number of airlines is more sharply than those of the rest two items from the year 2000 to
2010. With this evidence, we could conclude that the evolution of CDAN from 2000 to 2010
obviously undergo the process of self-growth. Indeed, the number of connections between
any two cities of China with the airline has increased more than 50 lines per year since 2000.
On the other hand, there were only 42 new airports opened in the recent decade [15].

For a better and more complete picture of the self-growth evolution of CDAN, we plot
the cumulative distribution function (CDF) of the node degree of the network of 2000, 2005,
and 2010 in Figure 4. In Figure 4, we also display straight line of the fitting of power-laws
of the CDF of each the node degree datasets using the MLE using in [11]. Apparently, in
the three panels, the node degree data set fit the logarithmic power-law line so close that
we also could know that CDAN owns the scale-free feature. From Figure 4, it could be
clearly recognized that the data sequence of node degree of the network does not arrange on
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Figure 2: Histograms of event frequency versus size, event rank versus size, event rank versus frequency
and the log-normal behavior test of the node degree of networks generated with the proposed evolving
model withm = 4 versus different self-probabilities.

a straight line as the discrete power-law distributing data (which is as shown in [11]). This
situation tells that the previous reports (which reported the node degree follows the pure
power-law distribution, e.g., [16]) could not perfectly unfold the scaling-free feature of the
airline network. As evident in Figure 4, it could be seen that, for CDAN the number of nodes
with a degree more than 10 is larger and larger from year 2000 to 2010. This situation implies
that the network has evolved mainly in the way of connecting the existing airports with the
newly opened airlines from year 2000 to 2010, rather than opening the new airport.

Since the data node degrees of CDAN from 2000 to 2010 has been approved following
the power-law distribution. For measuring the qualities of these distributions, we test
the power-law hypothesis using the methods described in [11]. The relevant results are
summarized in Table 1, in which: α̂ denotes the estimated value of the scaling parameters
of power-law distribution; σα̂ is the standard error on α̂; 〈k〉 is the average node degree as
mentioned before; kmin is the smallest node degree.

As shown in Table 1, we could see in the second column that the estimated scaling
parameters α̂ of power-law distribution of the node degree of CDAN decreases gradually
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Figure 3: Average node degree and the number of airports/airlines of the China domestic airline network
from year 1950 to 2010.

Table 1: Basic parameters of power-law distribution tests of China domestic airline networks, from year
2000 to 2010.

Year 〈k〉 α̂ σα̂ kmin

2000 7.26 3.09 3.12 1.00
2001 7.32 3.15 4.45 1.00
2002 7.76 3.21 6.51 1.00
2003 7.81 2.45 6.75 1.00
2004 7.84 2.35 7.18 1.00
2005 7.84 2.46 8.52 1.00
2006 7.86 2.33 8.19 1.00
2007 7.88 2.22 9.62 1.00
2008 8.02 2.11 11.25 1.00
2009 8.09 2.15 17.01 1.00
2010 8.26 2.12 19.15 1.00

from 2000 to 2010. Instead, the standard error on α̂ increases bit by bit from 2000 to 2010. This
phenomenon could be explained by the self-growth nature of the airline network. From year
2000 to 2010, the self-growth probability of the network might be relevantly small initially.
Consequently, the estimated scaling parameter of the power-law distribution is closed to 3.0
with a small standard error. However, as the self-growth probability increases, the estimated
scaling parameter of power-law distribution as well as its standard error is heavily influenced
by the self-growth situation. This situation could also be interpreted using (3.11). If the self-
growth probability ρ is large enough and closed to 1.0, the node degree distribution of the
network might not follow the pure power-law distribution. That is the estimated scaling
parameter of power-law distribution would be smaller than 3.0 and have the larger standard
error.

Comparing with the published works, it was reported in [10, 17, 18] that traffic and
transportation networks followed power-law distributions and hold a scaling parameter
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Figure 4: The cumulative distribution function Pr(K) and their straight line power-law fits of the node
degree of China Domestic airline network at year 2000, 2005, 2010.

range from 1.0 to 2.4. Here, we approve that CDAN is scale-free but follows a power-law
distribution with a scaling parameter between 3.0 with the varied standard error, which is
constrained by the self-growth parameters during the evolution of the airline network.

6. Conclusions

The study of the structure of the traffic the transportation network from the perspective of
complex network has drawn considerable researching attention. Unfortunately, the opinions
of the previous researchers are identical that they take account of the evolution of the
traffic and transportation network without considering the situation of self-growth. In this
paper we proposed an evolving model which is relevantly adaptive for the traffic and
transportation network. According to the analytic results for node degree distributions of the
tested networks generated via the proposed model, we find that the networks are scale-free
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due to that their node degree distributions follow the power-law distributions. We also test
the distribution of the node degree of the real traffic and transportation network and conclude
that our evolving model is more appropriate to explain the scale-free feature as well as the
self-growth situation of the traffic and transportation network.

We hope that the methods given in this paper could provide useful evidences for
determining the optimal structure of the traffic and transportation network, which also
is crucial to our future research. Geographic or spatial networks, such as an urban street
network or railway network, have strong constraints during their growth due to the fact that
their nodes and edges are embedded in time and space. This fact should also be explicitly
investigated in the future research.
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