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This paper deals with the robust filtering problem for linear discrete-time constrained systems.
The purpose is the design of a linear filter such that the resulting error system is bounded.
An orthogonal factorization is used to decompose the original robust filtering problem into
stochastic and deterministic parts, which are then solved separately. Finally, a numerical example
is presented to demonstrate the applicability of the proposed method.

1. Introduction

Kalman filtering is one of the well-known H2 filtering methods that is widely used in the
fields of signal processing and automatic control [1]. It is noted that the Kalman filtering
method is based on the assumption that the system has known model and its disturbances
are Gaussian white noises with known statistics. In some applications, however, the statistics
of the noises are not exactly known, and the standard Kalman filtering algorithms will
generally not guarantee satisfactory performance and only can obtain the estimate value
with great error. Also, the strict assumptions limit the application scope of this filtering
especially when there are uncertainties in either the state model or the measurement model.
To handle the above problem, an alternative regularized estimate method based on least
square design technique has been proposed recently. The objective is to find a filter such
that the resulting estimate error is bounded and the main idea of this method is to reduce the
vector optimization problem to an equivalent scalar minimization problem [2, 3]. Compared
with earlier studies, such as H∞ method and guaranteed-cost method, the new method
simultaneously uses regularization and weighting to deal with a class of uncertainties [3–5].
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On the other hand, constrained filtering and control problem has drawn considerable
attention over the past decades due to extensive application backgrounds. Actually,
constraint formulation arises naturally in many fields such as target tracking, manufacturing
production, engine health estimation, and vehicle motion [6, 7]. One of the features of these
systems is that some components of the state are affected by some equations without noises.
In conventional linear stochastic models with additive white process noise, filtering method
for constrained systems has been investigated by many scholars. For example, Wen and
Durrant-Whyte have considered the constrained problem by treating the set of constraint
equations as additional accurate observations without noises [8]. Simon and Chia have
shown that the solution of constrained problem can be obtained by treating the constraint
equation as a constrained condition and solving a Lagrangian equation [9]. Moreover, Hewett
et al. have presented a reduced null space method based on the null space decomposition to
solve such problems [10].

Among the previous works on constrained estimation, the most popular approach
is the projection method. This method enforces linear equality constraints on state space
estimation, and the constrained estimate is merely a correction that forces the unconstrained
estimate onto the constraint space [9]. In actual estimate and in value of objective function, the
null space method often produces similar results as that of the project method. For the prob-
lem of robust filtering for constrained systems, however, there are still no results available in
the literature. This motivates the present study. The regularized robust filtering is originally
developed by Sayed to deal with the regularized dynamic system [2, 3] and Ishihara et al. use
this method to present the robust filtering for uncertain singular system [11]. In this paper,
we will give the regularized robust design method for uncertain constrained system.

In this paper, we deal with the robust filtering problem for uncertain constrained
systems. Attention is focused on solving the least square problem, and the robust Kalman
type recursion is developed. The remainder of this paper is organized as follows. Section 2
formulates the constrained systems and the problems to be solved. We review the filtering
method for accurate constrained model in Section 3. In Section 4, the QR factorization is used
to gain a new reduced system and the robust filtering is presented. We show numerical
example that illustrates the new method performance in Section 5 and offer conclusion in
Section 6.

The notation used in this paper is standard. AT and A† are the transpose and the
pseudoinverse of the matrix A, respectively. P > 0 (P ≥ 0) denotes a positive-definite
(semidefinite) matrix. For a column vector x and a positive matrix W , ‖x‖2 is the Euclidean
norm of x, and ‖x‖W is the weighted form. diag{x, y} denotes a block diagonal matrix with
entries x and y.

2. Problem Formulation and Analysis

2.1. Problem Formation

Consider a uncertain linear constrained system described by following model:

xk = (Ak + δAk)xk−1 +wk−1, (2.1)

yk = (Hk + δHk)xk + vk, (2.2)

Dkxk = dk, (2.3)
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where xk ∈ Rn is the state vector satisfying equality constraints and yk ∈ Rm is the
measurement output. Ak is a n × n state update matrix, Hk is an m × n observation matrix,
Dk is a s × n constraint matrix, and dk is a known vector. δAk and δHk are time-varying
uncertainties to the nominal system matrices. The initial state x0, process noises sequence wk,
and measurement noises sequence vk are uncorrelated zero mean white noises with variance

E

⎛
⎜⎝

⎡
⎣
x0

wk

vk

⎤
⎦
⎡
⎣
x0

wl

vl

⎤
⎦

T⎞
⎟⎠ =

⎡
⎣
Π0 0 0
0 Ωkδkl 0
0 0 Vkδkl

⎤
⎦, (2.4)

where δkl is the Kronecker function, Π0 > 0, Ωk > 0, and Vk > 0. The uncertainties are assumed
with the following structure:

[
δAk

δHk

]
=
[
Mak

Mhk

]
ΔkNk, Δk ≤ 1, (2.5)

where Mak, Mhk, and Nk are known matrices, and Δk is a bounded matrix but otherwise
arbitrary. We allow Mak, Mhk, and Nk to vary with time.

The purpose of this paper is to find a recursive robust state estimate algorithm for
this constrained system with modeling uncertainties. With the constrained condition (2.3),
the system (2.1)–(2.3) is not a standard form and the robust filtering presented in [2] is not
applicable, so we cannot directly use them to present the analysis. The key to solving this
problem is to transfer the constrained system into some new systems without constraint.

On the other hand, the final estimate result of the state xk should satisfy the additional
constraint (2.3), which means that the estimate belongs to the space, denoted as Θk, composed
by the solutions of (2.3). The constraint matrix Dk and vector dk are assumed to satisfy
Rank[Dk dk] = Rank[Dk] to make Θk /=∅. We assume that the constraint matrix Dk has
full column row rank and s < n.

3. Standard Constrained Filter

The constrained filter algorithm has some advantages compared with the standard Kalman
filter, which are given in [9, 10]. In this section, we will review the constrained filtering
method for accurate state-space model.

The accurate constrained system is

xk = Akxk−1 +wk−1,

yk = Hkxk + vk,

Dkxk = dk.

(3.1)
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In [10], it uses orthogonal factorization to decompose the original state into stochastic
and deterministic parts. The QR factorization of DT

k

DT
k =

[
Q1,k Q2,k

][R11,k

0

]
(3.2)

and the initial state can be rewritten as

xk = xd,k +Q2,kzs,k, (3.3)

where

xd,k = Q1,kR
−T
11,kdk. (3.4)

It also gives a new reduced constrained system

zs,k = QT
2,kAkxd,k−1 +QT

2,kAkQ2,k−1zs,k−1 +QT
2,kwk−1,

yk −Hkxd,k = HkQ2,kzs,k + vk.
(3.5)

The recursive estimate algorithm for accurate constrained system can be summarized
as

Step 0. Initialization
QR decomposition:

[
Q1,0 Q2,0

][R11,0

0

]
= QR

(
DT

0

)
. (3.6)

The deterministic part is

xd,0 = Q1,0R
−T
11,0d0. (3.7)

Set

ẑs,0|−1 = −QT
2,0xd,0,

Ps,0|−1 = QT
2,0Π0Q2,0.

(3.8)

Step 1. Prediction
QR decomposition:

[
Q1,k Q2,k

][R11,k

0

]
= QR

(
DT

k

)
. (3.9)
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The deterministic part is

xd,k = Q1,kR
−T
11,kdk. (3.10)

According to (3.5), it gives

ẑs,k|k−1 = QT
2,k

[
AkQ2,k−1ẑs,k−1|k−1 +Akxd,k

]
,

Ps,k|k−1 = QT
2,k

[
AkQ2,k−1Ps,k−1|k−1Q

T
2,k−1A

T
k + Ωk−1

]
Q2,k.

(3.11)

Step 2. Measurement Update
One has

Kz,k = Ps,k|k−1(HkQ2,k)T
[
HkQ2,kPs,k|k−1(HkQ2,k)T + Vk

]−1
,

ẑs,k|k = ẑs,k|k−1 +Kz,k

[
yk −Hkxd,k −HkQ2,kẑs,k|k−1

]
,

Ps,k|k = Ps,k|k−1 −Kz,kHkQ2,kPs,k|k−1.

(3.12)

Step 3. Reconstruction
Prediction reconstruction:

x̂k|k−1 = xd,k +Q2,kẑs,k|k−1,

Pk|k−1 = Q2,kPs,k|k−1Q
T
2,k.

(3.13)

Estimate reconstruction:

x̂k|k = xd,k +Q2,kẑs,k|k,

Pk|k = Q2,kPs,k|kQT
2,k.

(3.14)

The key for the above recursive estimation algorithm is finding the optimal estimation
of ẑs,k|k. With (3.5), the optimal estimate of ẑs,k|k can be derived by solving the following
regularized least-square problem:

min
zs,k−1,zs,k

[∥∥zs,k−1 − ẑs,k−1|k−1
∥∥2
P−1
s,k−1|k−1

+
∥∥∥zs,k −QT

2,kAkQ2,k−1zs,k−1 −QT
2,kAkxd,k

∥∥∥
2

Ω−1
k−1

+
∥∥yk −Hkxd,k −HkQ2,kzs,k

∥∥2
V −1
k

]
.

(3.15)

Next, we will present the robust filter for the uncertain constrained system also by
solving a uncertain least-square problem.
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4. Robust Filtering

Referring again to the state-space model (2.1)–(2.3), the optimum robust filtering method will
be presented in this section. Firstly, we will decompose the original uncertain constrained
system into two parts, and then solve them separately.

4.1. New Dimension Reduced Uncertain Model

With the state evolution equation (2.1) and measurement equation (2.3), we will give the
optimal estimate x̂k|k for state xk. Similar to the approach described in Section 3, we will use
the null space method to deal with the uncertain model.

According to the uncertain model (2.1)–(2.3), we define the QR factorization of DT
k

and rewrite the initial state equation as

xk = xd,k + xs,k = Q1,kξk +Q2,kηk, (4.1)

where QT
1,k is an s×n matrix whose columns form a basis for Span(A), and QT

2,k is an (n−s)×n
matrix whose columns form a orthogonal basis for Span(A)⊥ = Null(A).

Substituting (4.1) into (2.3) gives

[
RT

11,k 0
][QT

1,k
QT

2,k

](
Q1,kξk +Q2,kηk

)
= dk, (4.2)

then we have

ξk = R−T
11,kdk. (4.3)

Also substituting (4.1) into (2.1), we have

Q1,kξk +Q2,kηk = (Ak + δAk)
(
Q1,k−1ξk−1 +Q2,k−1ηk−1

)
+wk−1. (4.4)

Both sides of above equation multiplying QT
2,k gives

QT
2,kQ1,kξk +QT

2,kQ2,kηk = QT
2,k(Ak + δAk)

(
Q1,k−1ξk−1 +Q2,k−1ηk−1

)
+QT

2,kwk−1. (4.5)

Since

QT
2,kQ1,k = 0,

QT
2,kQ2,k = I.

(4.6)
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We have

ηk = QT
2,k(Ak + δAk)Q1,k−1ξk−1

+QT
2,k(Ak + δAk)Q2,k−1ηk−1 +QT

2,kwk−1

= QT
2,k(Ak + δAk)Q1,k−1R

−T
11,k−1dk−1

+QT
2,k(Ak + δAk)Q2,k−1ηk−1 +QT

2,kwk−1.

(4.7)

Similarly, substituting (4.1) into (2.2) gives

yk = (Hk + δHk)xk + vk

= (Hk + δHk)
(
Q1,kξk +Q2,kηk

)
+ vk

= (Hk + δHk)Q1,kR
−T
11,kdk + (Hk + δHk)Q2,kηk + vk,

(4.8)

that is,

yk −HkQ1,kR
−T
11,kdk = δHkQ1,kR

−T
11,kdk + (Hk + δHk)Q2,kηk + vk. (4.9)

The uncertain constrained state space model in xk is converted into an unconstrained
uncertain state space model in ηk. Written together, (4.7) and (4.9) yield a new uncertain
unconstrained state space model.

ηk = QT
2,k(Ak + δAk)Q1,k−1R

−T
11,k−1dk−1 +QT

2,k(Ak + δAk)Q2,k−1ηk−1 +QT
2,kwk−1,

yk −HkQ1,kR
−T
11,kdk = δHkQ1,kR

−T
11,kdk + (Hk + δHk)Q2,kηk + vk.

(4.10)

4.2. Robust Filtering for the Uncertain Model

Reference [2] develops the framework for state estimation when the parameters of the state
equations are subject to uncertainties. However, both the system matrix and measurement
matrix in the system (4.7) and (4.9) have uncertainties, and the matrix defined in [2] cannot
directly be used. In order to present the robust filtering for this system, some new matrices
will be defined in next subsection.

Let us first introduce a lemma.

Lemma 4.1 (see [2]). Consider the following optimization problem:

min
x

max
δA,δb

[
‖x‖2

Q + ‖(A + δA)x − (b − δb)‖2
W

]
, (4.11)
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whereA denotes the data matrix, δA denotes a perturbation matrix, b denotes the measurement vector,
and δb denotes a perturbation vector. x is the unknown vector, Q = QT > 0 and W = WT > 0 is a
weighting matrix. δA and δb are assumed to satisfy a model

[
δA δb

]
= HΔ

[
Ea Eb

]
, (4.12)

where Δ is an arbitrary contraction satisfying ‖Δ‖ ≤ 1. H, Ea, and Eb are known quantities of
appropriate dimensions.

The problem (4.11) has a unique solution, which is given by

x̂ =
[
Q̂ +AT ŴA

]−1[
AT Ŵb + λ̂E T

a Eb

]
, (4.13)

where the modified weighting matrix {Q̂, Ŵ} is defined by

Q̂ := Q + λ̂E T
a Ea,

Ŵ := W +WH
(
λ̂I −HT WH

)†
HT W,

(4.14)

and λ̂ is a nonnegative scalar parameter obtained by following optimization problem:

λ̂ = arg min
λ≥‖HT WH‖

G(λ), (4.15)

where

G(λ) := ‖x(λ)‖2
Q + λ‖Eax(λ) − Eb‖2 + ‖Ax(λ) − b‖2

W(λ). (4.16)

The auxiliary function are defined by

W(λ) := W +WH
(
λI −HT WH

)†
HT W,

Q(λ) := Q + λE T
a Ea,

x(λ) :=
[
Q(λ) +AT W(λ)A

]−1[
AT W(λ)b + λE T

a Eb

]
.

(4.17)
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As mentioned in Section 3, the optimal estimate problem can be solved by minimizing
the cost function (3.15). Similarly, the robust filtering problem for the dimension reduced
model (4.7) and (4.9) can be turn to solve following least-square problem:

min
ηk−1,ηk

max
δAk

∥∥ηk−1 − η̂k−1|k−1
∥∥2
P−1
η,k−1|k−1

+
∥∥∥ηk −QT

2,k(Ak + δAk)Q1,k−1R
−T
11,k−1dk−1 −QT

2,k(Ak + δAk)Q2,k−1ηk−1

∥∥∥
2

Ω
−1
k−1

+
∥∥∥yk −HkQ1,kR

−T
11,kdk − δHkQ1,kR

−T
11,kdk − (Hk + δHk)Q2,kηk

∥∥∥
2

V −1
k

,

(4.18)

where

Ωk−1 = QT
2,kΩk−1Q2,k. (4.19)

In (4.18), the parameters Ak and Hk contain uncertainties. With appropriate definition,
the lest-square problem can be rewritten more compactly. Let us define

x ←−
[
ηk−1 − η̂k−1|k−1

ηk

]
,

A←−
[
QT

2,kAkQ2,k−1 −I
0 HkQ2,k

]
,

δA←−
[
QT

2,kδAkQ2,k−1 0
0 δHkQ2,k

]
,

b ←−
[
QT

2,kAkQ1,k−1R
−T
11,k−1dk−1 +QT

2,kAkQ2,k−1η̂k−1|k−1

HkQ1,kR
−T
11,kdk − yk

]
,

δb ←−
[
QT

2,kδAkQ1,k−1R
−T
11,k−1dk−1 +QT

2,kδAkQ2,k−1η̂k−1|k−1

δHkQ1,kR
−T
11,kdk

]
,

Q ←−
[
P−1
η,k−1|k−1 0

0 0

]
,

W ←−
⎡
⎣
(
QT

2,kΩk−1Q2,k

)−1
0

0 V −1
k

⎤
⎦,

H ←−
[
QT

2,kMhk 0
0 Q2,k

]
,
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Ea ←−
[
NkQ2,k−1 0

0 Q2,k

]
,

Eb ←−
[
Nk

(
Q1,k−1R

−T
11,k−1dk−1 +Q2,k−1η̂k−1|k−1

)

NkQ1,kR
−T
11,kdk

]
.

(4.20)

Let ηk|k and Pη,k|k k = 1, 2, 3, . . . be the estimate result and estimate error covariance of
the stochastic vector ηk, respectively. With Lemma 4.1 and above definition, the robust filter
for ηk can be summarized as in the following theorem.

Theorem 4.2. Assume that the estimate η̂k−1|k−1 and the estimate error covariance Pη,k−1|k−1 of ηk−1

have been known. At time index k, the robust filter of x can be given by solving the following equation:

(
Q̂ +AT ŴA

)
x̂ = AT Ŵb + λ̂kE

T
a Eb, (4.21)

where

Q̂ =

[
P−1
η,k−1|k−1 + λ̂k(NkQ2,k−1)T NkQ2,k−1 0

0 QT
2,kQ2,k

]
,

Ŵ =

[
Ω̂k−1 0

0 V̂ −1
k

]−1

,

Ω̂k−1 = QT
2,k

(
Ωk−1 − λ̂−1

k−1Mak−1M
T
ak−1

)
Q2,k,

V̂k = Vk − λ̂−1
k−1HkQ2,kMhkM

T
hk(HkQ2,k)T ,

(4.22)

and λ̂k is determined by minimizing the function G(λ) of (4.16) in the interval (λl,k,∞), where

λl,k :=
∥∥∥HT WH

∥∥∥ =
∥∥∥∥diag

{
MT

akQ2,k

(
QT

2,kΩk−1Q2,k

)−1
QT

2,kMak,Q
T
2,kV

−1
k Q2,k

}∥∥∥∥. (4.23)

Proof. Analogous to [2, 3, 11], using Lemma 4.1 yields (4.21).

Theorem 4.2 gives the robust filter of ηk, then, the robust constrained estimate of the
full state xk can be constructed by using the relationship

x̂k|k = Q1,kξk +Q2,kη̂k|k. (4.24)
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It is easily verified that x̂k|k satisfies the constraint equation

Dkx̂k|k = Dk

[
Q1,kξk +Q2,kη̂k|k

]

= DkQ1,kξk +DkQ2,kη̂k|k

= dk.

(4.25)

Similarly, the constrained error covariance Pk|k can be computed by using

Pk|k = Q2,kPη,k|kQT
2,k, (4.26)

where Pη,k|k of (4.35) is the estimate error covariance of ηk.

4.3. Recursive Form of Constrained Robust Filter

After some considerable algebra, similar to [2], the recursive robust estimate x̂k|k can be
summarized as follows.

Step 0. Initialization
QR decomposition:

[
RT

11,0 0
]
⎡
⎣
QT

1,0

QT
2,0

⎤
⎦ = QR(D0). (4.27)

The deterministic part is

ξ0 = RT
11,0d0. (4.28)

Set

η̂0|0 = Pη,0|0(H0Q2,0)TV −1
0 y0,

Pη,0|0 =
[(

QT
2,0Π0Q2,0

)−1
+ (H0Q2,0)TV −1

0 H0Q2,0

]−1

.
(4.29)

Step 1. Determining λ̂k
QR decomposition:

[
RT

11,k 0
][QT

1,k
QT

2,k

]
= QR(Dk). (4.30)
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It gives the deterministic part at time index k

ξk = RT
11,kdk (4.31)

and the new dimension reduced robust system (4.7) and (4.9).
If Mak /= 0, then set λ̂k = 0. Otherwise, with the definitions of (4.20), determine the

scalar parameter λ̂k by minimizing G(λ) over the interval (λl,k,∞).

Step 2. Replace Parameters
If λ̂k /= 0, the original parameters {Ωk−1, Vk, Pη,k−1|k−1, Ak} are replaced by

Ω̂k−1 = QT
2,k

(
Ωk−1 − λ̂−1

k−1Mak−1M
T
ak−1

)
Q2,k,

V̂k = Vk − λ̂−1
k−1HkQ2,kMhkM

T
hk(HkQ2,k)T,

P̂η,k−1|k−1 = Pη,k−1|k−1 − Pη,k−1|k−1(NkQ2,k−1)T

×
[
λ̂−1
k−1I +NkQ2,k−1Pη,k−1|k−1(NkQ2,k−1)T

]−1

×NkQ2,k−1Pη,k−1|k−1,

Âk = Ak

[
I − λ̂k−1P̂k−1|k−1(NkQ2,k−1)TNkQ2,k−1

]
.

(4.32)

Step 3. Prediction and Update
Prediction:

η̂k|k−1 = Âkη̂k−1|k−1 +QT
2,kAkQ1,k−1R

−T
11,k−1dk−1,

Pη,k|k−1 = ÂkP̂η,k|k−1Â
T
k.

(4.33)

Update:

η̂k|k = η̂k|k−1 + Pη,k|k−1(HkQ2,k)TV̂ −1
k ek, (4.34)

Pη,k|k = Pη,k|k−1 − Pη,k|k−1(HkQ2,k)TV −1
e,kHkQ2,kPη,k|k−1, (4.35)

where

ek = yk −HkQ1,kR
−T
11,k−1dk−1 −HkQ2,kη̂k|k−1,

Ve,k = V̂k + (HkQ2,k)TPη,k|k−1HkQ2,k.
(4.36)
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Step 4. Reconstruction
Prediction reconstruction:

x̂k|k−1 = Q1,kξk +Q2,kη̂k|k−1,

Pk|k−1 = Q2,kPη,k|k−1Q
T
2,k.

(4.37)

Estimate reconstruction:

x̂k|k = Q1,kξk +Q2,kη̂k|k,

Pk|k = Q2,kPη,k|kQT
2,k.

(4.38)

Steps 1–4 give the robust estimate of the full state xk.

Remark 4.3. From the definition of {Ω̂k−1, V̂k, P̂η,k−1|k−1, Âk} and the prediction and update
process in Step 3, it is easy to verify that for the constrained system without uncertainties, the
robust filtering algorithm reduces to the filtering result introduced in [10].

Remark 4.4. If Dk ∈ Rn×n and Rank{Dk} = n, the matrix Q2,k and the dimensional reduced
model (4.7) will disappear, then we have x̂k|k = D−1

k dk.

5. Numerical Example

In this section, simulations are presented to verify the performance of the new algorithm.
We consider an example described by (2.1)–(2.3), with xk = [x1

k
, x2

k
, x3

k
]T. The parameters are

given as follows:

Ak =

⎡
⎣

1 1 0
0 1 1
0 0 1

⎤
⎦, Hk =

[
0.8 1 0
0 0 0.9

]
, Ωk =

⎡
⎣

1 0 0
0 3 0
0 0 1

⎤
⎦,

Vk =
[

1.2 0
0 1

]
, Dk = [1, 0.3, 0.2], d(k) = 1,

Mak =

⎡
⎣

2
0
0

⎤
⎦, Mhk =

[
0
1

]
, Nk =

[
1 0 1

]
.

(5.1)

The initial state is x0 =
[ 0

0
1

]
, P0 =

[ 0.1 0 0
0 0.1 0
0 0 0.1

]
, and we will take L = 1000 sampling points.

Figures 1 and 2 display the estimate error variance of x1
k

and x2
k
, respectively. The variance

curves are computed via the ensemble-average

ε‖xk − x̂k‖ ≈ 1
T

T∑
i=1

∥∥∥xi
k − x̂i

k

∥∥∥. (5.2)
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Figure 1: Comparison of the estimate variance x1
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with different methods.
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Figure 2: Comparison of the estimate variance x2
k

with different methods.

Each point at instant k in each variance curve is the ensemble-average calculated over
T = 500 experiments. For each experiment i, Δi

k with norm less or equal than one is selected
randomly.

To demonstrate the performance of the new robust filter more clearly, we also present
the variance curves of the Kalman filter for uncertain model and the system without
uncertainties. The variances of these two filters are also shown in Figures 1 and 2.

From Figures 1 and 2, we see that the performance of new filter is better than that of
Kalman filter when they are used to deal with the uncertain model, this is because Kalman
filter does not consider the uncertain parameters. The variance of Kalman filter dealing with
accurate model is smaller than that of new filter dealing with uncertain model.
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Table 1: Variation of error variance with different measurement noises variance.

Precision Measurement noises variance
V (k) = 0.7 ∗ I2 V (k) = 1.2 ∗ I2 V (k) = 2.5 ∗ I2

Error variance of x̃1,100 0.9429 1.3377 2.7273
Error variance of x̃2,100 1.3217 1.8631 3.6547
Error variance of x̃3,100 1.6217 2.2641 3.9199

Furthermore, the performance of an algorithm is often affected by the measurement
noises, and larger noises variance always bring larger estimate error variance. Table 1 lists the
error variance for x100 with three different measurement noises variance to show the variation
of performance.

From Table 1, we see that, for x1
k

and x2
k
, the larger is the noise variance, the larger is

estimation error variance.

6. Conclusions

This paper has studied the robust constrained filtering problem for linear discrete uncertain
systems. The original constrained system is transformed into a new uncertain unconstrained
system. The state of the new system is derived by the least square method and then the
optimal estimate is obtained similar to the update process of the robust Kalman filter. A
numerical example is presented to show the effectiveness of the new filter. Next, we will
consider the regularized filtering method for the case when network-induced phenomena
are taken into account [12–15].
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