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This paper investigates how the introduction of user fees and defensive expenditures changes the
complex dynamics of a discrete-time model, which represents the interaction between visitors and
environmental quality in an open-access protected-area (OAPA). To investigate this issue more
deeply, we begin by studying in great detail the OAPA model, and then we introduce the user
fee (β) and the defensive expenditures (ρβ) specifically directed towards at the protection of the
environmental resource. We observed that some values of β can generate a chaotic regime from a
stable dynamic of the OAPAmodel. Finally, to eliminate the chaotic regime, we design a controller
by OGY method, assuming the user fee as a controller parameter.

1. Introduction

Empirical analysis has shown that tourists are willing to pay more for environmental
management, if they believe that the money they pay will be allocated for biodiversity
conservation and protected area management (see [1, 2]). Consequently, the funds for
maintaining public goods can be increased by fees payed by visitors of the protected areas
(PAs).

Several works in economic literature analyze the effects of ecological dynamics
generated by economic activity and environmental defensive expenditures. In particular,
[3, 4] analyze the stabilizing effect of ecological equilibria in an optimal control context in
which ecological dynamics are represented by predator-prey equations.

More recently, economists, social and political scientists have started to develop and
adapt chaos theory as a way of understanding human systems. Specifically, [5–10] have
considered chaos theory as a way of understanding the complexity of phenomena associated
with tourism.
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In [11] a three-dimensional environmental defensive expenditures model with delay
is considered. The model is based on the interactions among visitors V , quality of ecosystem
goods E, and capital K, intended as accommodation and entertainment facilities, in PA. The
visitors’ fees are used partly as a defensive expenditure and partly to increase the capital
stock.

Based on the continuous environmental model of [11], in this paper we analyze a
discrete-time model with no capital stock and with no time delay. We aim at analyzing
how the dynamics change when switching from an open-access protected area (OAPA)
regime, where there are no services or facilities, to a PA regime with visitor fees used for
environmental protection.

This paper is organized as follows. In Section 2, we present the discrete-time model
that embodies the user fees and defensive expenditures. In Section 3, the dynamics of an
open-access protected area, that is, without the user fee and defensive expenditures, is
studied, including stable fixed points, periodic motions, bifurcations (flip-flop and Neimark-
Sacker bifurcations), and chaos. Section 4 deals with the control of chaotic motion and the
process of control is achieved an appropriate determination of user fees and defensive
expenditures.

2. The Mathematical Model with User Fee and Defensive Expenditures

The model refers to a generic protected area and describes the interplay between two state
variables: the size V (t) of the population of visitors of the protected area at time t and an index
E(t) measuring the quality of environmental resources of the protected area. The dynamic of
V (t) is assumed to be described by the differential equation:

dV

dt
= −b − cV (t) + dE(t). (2.1)

According to such equation, the time evolution of V (t) depends on three factors: (i) −b
represents the negative effect of the fee (b) that visitors have to pay to enter the protected
area; (ii) −cV is the negative effect due to congestion; (iii) dE (d is the parameter that
presents attractiveness associated with high environmental quality) is the positive effect of
environmental quality on visitors’ dynamics. b, c, and d are strictly positive parameters.

The dynamic of the environmental quality index E(t) is assumed to be given by:

dE

dt
= r0(1 − E(t))E(t) − aV 2(t) + qbV (t), (2.2)

where the time evolution of environmental quality is described by a logistic equation (see
[12]). According to (2.2), visitors generate a negative impact on environmental quality (this
effect is represented by −aV 2); however, visitors also generate a positive effect, in that, a
share q of the revenues bV deriving from the fees is used for environmental protection (this
effect is represented by qbV ). r0 and a are strictly positive parameters, while q is a parameter
satisfying 0 ≤ q ≤ 1.
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Euler’s difference scheme for the continuous system (2.1)-(2.2) takes the form (see
[13]):

V (t + Δt) − V (t)
Δt

= −b − cV (t) + dE(t),

E(t + Δt) − E(t)
Δt

= r0(1 − E(t))E(t) − aV 2(t) + bqV (t),

(2.3)

where Δt denotes the time step. As Δt → 0, the discrete system converges to the continuous
system. Roughly speaking, a discrete system can give rise to the same dynamics as a
continuous system if theΔt is small enough. However, it may generate qualitatively different
dynamics if Δt is large. In this sense, the discrete system with Δt > 0 generalizes the
corresponding continuous system. In the following, we first simplify the discretized system
(2.3). Notice that a variable w(t) in continuous time can be written as w(tn) in discrete
time. Set tn = Δt · n (n = 1, 2, . . .); then, given Δt > 0, the variable can be expressed as
follows; w(tn) = w(Δt · n) = wn and w(tn +Δt) = w(Δt · (n+ 1)) = wn+1. Thus the discretized
dynamic system (2.3) can be written as:

xn+1 = xn − bΔt − cΔtxn + dΔtyn,

yn+1 = yn + r0Δt
(
1 − yn

)
yn − aΔtx2

n + bΔtqxn.
(2.4)

The length of each period is equal toΔt. For notational convenience, replacing nwith t
and posing r = r0Δt, α = aΔt, β = bΔt, γ = cΔt, ρ = qΔt, and σ = dΔt, we obtain the following
discrete-time system:

xt+1 = xt − β − γxt + σyt,

yt+1 = yt + r
(
1 − yt

)
yt − αx2

t + βρxt,
(2.5)

where xt and yt represent, respectively, the size V of the population of visitors and the value
of the quality index E at time t; the parameters α, β, γ , σ, ρ, and r have the same meaning of
the corresponding parameters a, b, c, d, q, and r0, in the system (2.3).

3. The Dynamic Behavior of an Open-Access PA Model

In this section, we analyze the dynamics of our model under the assumption of free-access
in the protected area; in this context, visitors do not have to pay a fee to visit the area, and
system (2.5) becomes

xt+1 = xt − γxt + σyt,

yt+1 = yt + r
(
1 − yt

)
yt − αx2

t .
(3.1)
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To compute the fixed points of (3.1), we have to solve the nonlinear system of
equations:

x = x − γx + σy,

y = y + r
(
1 − y

)
y − αx2.

(3.2)

Proposition 3.1. The system (3.1) always present two fixed points:

(a) P1 = (x∗
1, y

∗
1) = (0, 0);

(b) P2 = (x∗
2, y

∗
2) = (rγ/σ/(α + r(γ/σ)2), (γ/σ)x∗).

Now we study the stability of these fixed points. The local stability of a fixed point
(x∗, y∗) (it denotes (x∗

1, y
∗
1) or (x

∗
2, y

∗
2)) is determined by the modules of the eigenvalues of the

characteristic equation evaluated at the fixed point.
The Jacobian matrix of the system (3.1) evaluated at (x∗, y∗) is given by

J =

(−γ + 1 σ

−θ1 1 + θ2

)

, (3.3)

where θ1(σ) = 2αx∗ and θ2(σ) = r(1− 2y∗). The characteristic equation of the Jacobian matrix
J can be written as

λ2 + p(σ)λ + q(σ) = 0, (3.4)

where p(σ) = γ−θ2(σ)−2 and q(σ) = (1+θ2(σ))(1−γ)+σθ1(σ). In order to study themoduli of
the eigenvalues of the characteristic equation (3.4), we first give the following lemma, which
can be easily proved.

Lemma 3.2. Let F(λ) = λ2 + pλ + q. Suppose that F(1) > 0, λ1 and λ2 are two roots of F(λ) = 0.
Then:

(i) |λ1| < 1 and |λ2| < 1(sink) if and only if F(−1) > 0 and q < 1;

(ii) |λ1| < 1 and |λ2| > 1(or |λ1| > 1 and (|λ2| < 1)(saddle) if and only if F(−1) < 0;

(iii) |λ1| > 1 and |λ2| > 1(source) if and only if F(−1) > 0 and q > 1;

(iv) λ1 = −1 and |λ2|/= 1(flip-flop bifurcation) if and only if F(−1) = 0 and p /= 0, 2;

(v) λ1 and λ2 are complex and |λ1| = |λ2| = 1(Neimark-Sacker bifurcation) if and only if
p2 − 4q < 0 and q = 1.

From Lemma 3.2, it follows the following.

Proposition 3.3. The fixed point P1 = (0, 0) is always unstable, while the fixed point P2, varying σ,
can be a sink, a source, or a saddle (see Figure 1).

Figure 1 shows the values of F(−1), q − 1, p2 − q, defined in Lemma 3.2, as functions of
the parameter σ.
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Figure 1: The parameter values are α = 0.12, β = 0, γ = 0.375, ρ = 0, and r = 2.8.
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Figure 2: Bifurcation diagrams for the state variable x (a) and for the state variable y (b), varying σ. The
parameter values are α = 0.12, β = 0, γ = 0.375, ρ = 0, and r = 2.8.

We fix α = 0.12, γ = 0.375, and r = 02.8, and assume that σ can vary. Smaller values
of σ (see Figure 1) give rise to real eigenvalues, while higher values of it give rise to complex
eigenvalues.

According to Lemma 3.2, when the parameter σ belongs to the interval (0, σff) (dash-
dot line)we are in the situation described in point (ii) of Lemma 3.2; when σ = σff = 0.656407,
a flip-flop bifurcation occurs; when σ ∈ (σff, σNS), we are in the context described in (i) (solid
line); at the value σNS = 1.416516, a Neimark-Saker bifurcation takes place; finally, for σ > σNS,
the fixed point becomes unstable.

Such results are illustrated in Figures 2 and 3, which show that some remarkable
phenomena occur.

Figure 3(a) shows a strange attractor appearance posing σ = 0.165. If the value of
σ increases, we obtain the attractive fixed point showed in Figure 3(b): both variables of the
dynamic system approach a unique fixed point independently from the initial state. The fixed
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Figure 3: Phase plot with the parameters of Figure 1. (a) chaotic trajectory; (b) the stable fixed point before
the Neimark-Sacker bifurcation occurs; (c) the Neimark-Sacker bifurcation; (d) the stable invariant closed
curve around the fixed point created after bifurcation; (e) chaotic trajectory.

point is characterized by the coordinates x∗
2 = 2.223 and y∗

2 = 0.6949. The eigenvalues of the
Jacobian matrix evaluated at such point are λ = 0.226651 ± i0.7155 with |λ| = 0.7635.

Continuing to increase the value of σ, a Neimark-Sacker bifurcation takes place. For
the parameter value σ = 1.4165, the fixed point has coordinates x∗

2 = 2.3432 and y∗
2 = 0.6205,

and the associated pair of complex conjugate eigenvalues are λ = 0.47498 ± i0.8799 with |λ| =
1.000; this shows that the eigenvalues belong to the unit circle, and the stability properties
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Figure 4: Bifurcation diagrams for the state variable x (a) and for the state variable y (b), varying β. The
parameter values are α = 0.12, σ = 1.2, γ = 0.375, ρ = 0.2, and r = 2.8.

of the equilibrium change through a Neimark-Sacker bifurcation. Figure 3(c) illustrates the
phase plot corresponding to the bifurcation value of σ.

Continuing to increase the value of σ, we see what happens for σ = 1.42. The
coordinates of the fixed point are x∗

2 = 2.3456 and y∗
2 = 0.61937, and the associated eigenvalues

are λ = 0.4782 ± i0.8819. The modulus of the complex conjugate eigenvalues is |λ| = 1.0032,
and so we can conclude that the fixed point becomes unstable, and an invariant closed curve
arises around such point, which is shown in Figure 3(d).

As σ is further increased, a strange attractor is generated by successive stretching and
folding. The fixed point has coordinates x∗

2 = 2.3657 and y∗
2 = 0.6006, and the corresponding

eigenvalues are λ = 0.53066± i0.88656, with |λ| = 1.0332. The strange attractor is generated by
the breaking of the invariant circles and the appearance of twelve chaotic (not shown in this
figure) regions changes as they are linked into a single-chaotic attractor.

4. Controlling through β by OGY Method

In the preceding section we showed that, according to other works in the literature (see [14,
15]) environmental defensive expenditures may generate chaotic behavior which, in turn,
may jeopardize environmental sustainability of economic activity. In this section, we show
how chaos can be ruled out from the dynamics of our model by an appropriate choice of the
visitors fee β and of the defensive expenditure ρβ. We are interested inmodifying the dynamic
behavior of the OAPA model by introducing the visitors fee β and the defensive expenditure
ρβ. As it was shown in Figure 2, at the value σ = 1.2, the OAPA model presents a stable
fixed point. Figure 4 shows the bifurcation diagram of the system (2.5), where parameter
β varies in the interval [0, 0.8] and parameter ρ is posed equal to 0.2. We can obtain both
stable dynamics and chaotic dynamics. In fact, starting from a stable fixed point of the OAPA
system, for values of β ∈ [0, 0.42), the system (2.5) admits a stable fixed point, while for
β > 0.42 chaotic dynamic occurs.

In this section, we describe a method that allows to stabilize this chaotic dynamic. In
order to achieve this goal, the so-called OGY method (see [16]) is used.
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The OGY method was successfully used in several studies, both in economics and
physics (see e.g., [17, 18]). As it is summarized in [18–20], the OGY method is based on the
following assumptions:

(a1) a chaotic solution of a nonlinear dynamic systemmay have even an infinite number
of unstable periodic orbits;

(a2) in a neighborhood of a periodic solution; the evolution of the system can be
approximated by an appropriate local linearization of the equation of motion;

(a3) small perturbations of the parameter p of the system can shift the chaotic orbit
toward the so-called stable manifold of the chosen periodic orbit;

(a4) The points belonging to the stable manifold approach the periodic solution in the
course of time;

our goal is to find a “good” way to approach the periodic unstable orbit by proper
changes of the parameter if the starting point is in a neighbourhood of the periodic
unstable orbit.

Let us assume that the model can be described as

zn+1 = f
(
zn, p

)
, (4.1)

where n = 1, 2, . . ., p is real parameter, zn = (xn, yn) ∈ �2, f = (f1, f2);

(a5) Suppose that we have a fixed point z0 = (x0, y0) corresponding to a fixed parameter
value p0 such that

z0 = f
(
z0, p0

)
, (4.2)

and such fixed point is unstable;

(a6) assume that the Jacobian matrix has two eigenvalues λ1, λ1 satisfying |λ1| < 1 <
|λ2|.

Then it follows from (a2) that, starting sufficiently close to z0 and p0, we can
approximate the right-hand side of (2.5) by the first-degree terms of its Taylor expansion
around z0 and p0 Then, by (a3), modifying p we try to shift the chaotic orbit toward a stable
manifold.

Thanks to the OGY method, the goal of approaching a stable manifold may be
achieved as follows. Let zn and pn be close enough to z0 and p0 as required in (a2). Then,
the next point of the orbit is determined by (4.1):

zn+1 = f
(
zn, pn

)
. (4.3)

Our aim is to determine pn, that is, how to control the system that orbit approaches the unstable
fixed point.

From the above results we get the following theorem.

Theorem 4.1. Under the assumptions (a1)–(a6), there is a value for pn such that trajectory of the
recurrence map (4.1) is shifted towards the stable manifold.
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We fix the parameters α = 0.12, γ = 0.375, σ = 1.2, ρ = 0.2,r = 2.8, and β = 0.745; in
such context the system exhibits a chaotic attractor. We take β as the control parameter which
allows for external adjustment but is restricted to lie in a small interval |β − β0| < δ, δ > 0,
around the nominal value β0 = 0.745. The system becomes

xt+1 = xt − β − 0.375xt + 1.2yt,

yt+1 = yt + 2.8
(
1 − yt

)
yt − 0.12x2

t + 0.2βxt.
(4.4)

Following [21], we consider the stabilization of the unstable period one orbit P2 =
(x∗, y∗) = (1.21738, 1.00126). The map (4.4) can be approximated in the neighborhood of the
fixed point by the following linear map:

(
xt+1 − x∗

yt+1 − y∗

)
∼= A

(
xt − x∗

yt − y∗

)

+ B
(
β − β0

)
, (4.5)

where

A =

⎛

⎜⎜⎜
⎝

∂f
(
x∗, y∗)

∂xt

∂f
(
x∗, y∗)

∂yt

∂g
(
x∗, y∗)

∂xt

∂g
(
x∗, y∗)

∂yt

⎞

⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎝

∂f
(
x∗, y∗)

∂β

∂g
(
x∗, y∗)

∂β

⎞

⎟⎟⎟
⎠

. (4.6)

are the Jacobian matrixes with respect to the control state variable (xt, yt) and to the control
parameter β. The partial derivatives are evaluated at the nominal value β0 and at (x∗, y∗). In
our case we get

(
xt+1 − 1.21738

yt+1 − 1.00126

)
∼=
(

0.625 1.2

−0.14317 −1.80708

)(
xt − 1.21738

yt − 1.00126

)

+

( −1
0.24347

)
(
β − 0.75

)
. (4.7)

Next, we check whether the system is controllable. A controllable system is one for which
a matrix H can be found such that J − BH has any desired eigenvalues. This is possible if
rank(C) = n, where n is the dimension of the state space, and

C =
(
B : JB : J2B : · · · : Jn−1B

)
. (4.8)

In our case it follows that

C = (B : JB) =

( −1 −0.3328
0.24347 −0.29681

)

, (4.9)
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which obviously has rank 2, and so we are dealing with a controllable system. If we assume
a linear feedback rule (control) for the parameter of the form:

(
β − β0

)
= −H

(
x(t) − x∗

y(t) − y∗

)

, (4.10)

where H := [h1 h2], then the linearized map becomes

(
xt+1 − x∗

yt+1 − y∗

)
∼= (J − BH)

(
xt − x∗

yt − y∗

)

, (4.11)

that is,

(
xt+1 − 1.21738

yt+1 − 1.00126

)
∼=
(

0.625 − h1 1.2 − h2

−0.14317 + 0.2437h1 −1.80708 + 0.2347h2

)(
xt − 1.21738

yt − 1.00126

)

, (4.12)

which shows that the fixed point will be stable provided thatA−BH is that all its eigenvalues
havemodulus smaller than one. The eigenvalues μ1 and μ2 of the matrixA−BH are called the
“regulator poles,” and the problem of placing these poles at the desired location by choosing
H withA, B given is called the “pole-placement problem”. If the controllability matrix’ from
(4.8) is of rankn, n = 2 in our case, then the pole-placement problem has a unique solution.
This solution is given by

H =
(
α2 − a2 α1 − a1

)
T−1, (4.13)

where T = CW , and

W =

(
a1 1

1 0

)

=

(
1.1820 1

1 0

)

. (4.14)

Here, a1 and a2 are the coefficients of the characteristic polynomial of J , that is

|J − λI| = λ2 + a1λ + a2 = λ2 + 1.1820λ − 0.9576; (4.15)

α1, and α2 are the coefficients of the desired characteristic polynomial of J − BH, that is

(
(J − BH) − μI

)
= μ2 − α1μ + α2

=⇒ α1 = −(μ1 + μ2
)

=⇒ α2 = μ1μ2.

(4.16)
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Figure 5: Comparison between the original and the controlled orbit.

From (4.13); we get that

H =
(
μ1μ2 + 0.9576

(
μ1 + μ2

) − 1.1820
)
(−0.64437 −2.64657
−0.02382 4.00933

)

=
(−0.6444μ1μ2 − 0.5889 + 0.02382μ1 + 0.02382μ2 −2.647μ1μ2 − 7.274 − 4.009μ1 − 4.009μ2

)
.

(4.17)

Since the 2 − D map is nonlinear, the application of linear control theory will succeed only
in a sufficiently small neighborhood U around (x∗, y∗). Taking into account the maximum
allowed deviation from the nominal control parameter β0 and (4.10), we obtain that we are
restricted to the following domain:

DH =

{
(
x(t), y(t)

) ∈ �2 :

∣∣∣∣∣
H

(
x(t) − x∗

y(t) − y∗

)∣∣∣∣∣
< δ

}

. (4.18)
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This defines a slab of width 2δ/|H| and thus we activate the control (4.10) only for values of
(xt, yt) inside this slab, and choose to leave the control parameter at its nominal value when
(xt, yt) is outside the slab.

Any choice of regular poles inside the unit circle serves our purpose. There are many
possible choices of the matrix H. In particular, it is very reasonable to choose all the desired
eigenvalues to be equal to zero, and in this way the target would be reached at least after n
periods, and therefore, a stable orbit is obtained out of the chaotic evolution of the dynamics.

In Figures 5(a) and 5(b), we show the time series of the chaotic trajectory starting from
the point (x0, y0) = (0.9, 0.8) which we have chosen to control. In contrast, Figures 5(c) and
5(d) present the controlled orbit converging to the stabilized fixed point when the feedback
matrix H is chosen such that the eigenvalues of (J − BH) are μ1 = μ2 = 0. This implies that
μ1 + μ2 = 0, μ1μ2 = 0 and so H = (−0.5889,−7.274). For this control strategy, we have also
chosen δ = 0.1.

5. Conclusion

In this paper we studied a discrete-time model that describes the interaction between visitors
and the environment resource, in an open-access protected area (OAPA). It was shown that
by varying the parameter that indicates the preferences of visitors with reference to the
environmental quality, complex dynamics may occur (flip-flop bifurcation, Neimark-Sacker
bifurcation, and chaotic dynamics). Furthermore, we analyzed the impact that user fees
and environmental defensive choices can have on the OAPA dynamics when it presents an
attractive fixed point. Finally, we have applied the OGY control technique (with user fee β as
control parameter) and we have shown that the aperiodic and complicated motion arising
from the dynamics of the model can be easily controlled by small perturbations in their
parameters and turned into a stable steady state.
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[20] M. Muresan, B. Vizvàri, and Z. Bacsi, “Method to stabilize the hungarian potato market,” Working

Paper 13–97 Rutcor Research Report RRR, 1997.
[21] V. M. Mendes and A. D. Mendes, “Controlling endogenous cycles in an OLG economy by the OGY

method,” Working Paper, UNIDE Economics Research Centre, ercwp0808, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


