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This paper presents a theoretical analysis of evolutionary process that involves organisms distri-
bution and their interaction of spatial distribution of the species with self- and cross-diffusion in
a Holling-III ratio-dependent predator-prey model. The diffusion instability of the positive equi-
librium of the model with Neumann boundary conditions is discussed. Furthermore, we present
novel numerical evidence of time evolution of patterns controlled by self- and cross-diffusion in
themodel and find that themodel dynamics exhibits a cross-diffusion controlled formation growth
to spots, stripes, and spiral wave pattern replication, which show that reaction-diffusion model is
useful to reveal the spatial predation dynamics in the real world.

1. Introduction

Pattern formation is a topic in mathematical biology that studies how structures and patterns
in nature evolve over time [1–12]. One of the mainstream topics in pattern formation involves
the reaction-diffusion mechanisms of two chemicals, originally proposed by Turing [13] in
1952. In 1972, Segel and Jackson [14] called attention to the Turing’s ideas that would be
also applicable in population dynamics. At the same time, Gierer and Meinhardt [15] gave a
biologically justified formulation of a Turing model and studied its properties by numerical
simulations. Levin and Segel [11] suggested that the scenario of spatial pattern formation is
a possible origin of planktonic patchiness. A significant amount of work has been done using
this idea in the field of mathematical biology by Cantrell and Cosner [2], Hoyle [5], Murray
[8], Okubo and Levin [16], and others [17–19].

In recent years, many scientists have paid considerable attention to diffusive
ratio-dependent predator-prey models, especially those with Holling III functional response
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[20–23]. In [23], the author studied the spatial pattern formation of the following ratio-
dependent predator-prey model:

∂u

∂t
= ru

(
1 − u

K

)
− au2v

u2 +m2v2
+D11∇2u,

∂v

∂t
=

bvu2

u2 +m2v2
− dv +D22∇2v,

(1.1)

where u and v are prey and predator density, respectively. r represents the intrinsic growth
rate of the prey, K is the carrying capacity of the prey in the absence of predator, a is the
maximum consumption, b is the conversion efficiency of food into offspring,m is the predator
interference parameter, and d is the per capita predator death rate. ∇2 = ∂2/∂x2 + ∂2/∂y2 is
the usual Laplacian operator in two-dimensional space. D11 and D22 are the self-diffusion
coefficients that imply the movement of individuals from a higher to lower concentration
region. In addition, the author showed that spots and stripes-spots patterns could be
observed in pure Turing instability, and spiral pattern emerged in Hopf and Turing instability
[23].

On the other hand, the predator-prey system models such a phenomenon: pursuit-
evasion-predators pursuing prey and prey escaping the predators [18, 19, 24, 25]. In other
words, in nature, there is a tendency that the preys would keep away from predators and
the escape velocity of the preys may be taken as proportional to the dispersive velocity of
the predators. In the same manner, there is a tendency that the predators would get closer
to the preys, and the chase velocity of predators may be considered to be proportional to
the dispersive velocity of the preys. Keeping these in view, cross-diffusion arises, which
was proposed first by Kerner [26] and first applied in competitive population system by
Shigesada et al. [27].

There has been a considerable interest in investigating the stability behavior of a
predator-prey system by taking into account the effect of self- and cross-diffusion [17, 18, 28–
35]. Cross-diffusion expresses the population fluxes of one species due to the presence of the
other species. However, in the studies on spatiotemporal dynamics of the ratio-dependent
predator-prey system with functional response, little attention has been paid to study on the
effect of cross-diffusion.

In this paper, we mainly focus on the spatiotemporal dynamics of a cross-diffusion
ratio-dependent predator-prey model with Holling III functional response. In the next sec-
tion, we establish the cross-diffusion model and derive the sufficient conditions for Turing
instability. Then, we present and discuss the results of pattern formation via numerical simu-
lation in Section 3. Finally, some conclusions are drawn.

2. The Model and Analysis

2.1. The Model

We firstly pay attention to the spatially extended ratio-dependent predator-prey model with
self- and cross-diffusion, which is as follows:

∂u

∂t
= ru

(
1 − u

K

)
− au2v

u2 +m2v2
+D11∇2u +D12∇2v,

∂v

∂t
=

bvu2

u2 +m2v2
− dv +D21∇2u +D22∇2v,

(2.1)
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whereD12 andD21 are cross-diffusion coefficients that express population fluxes of the preys
and predators resulting from the presence of the other species, respectively.

We consider the model on a square domain Ω. We also add to the reaction-diffusion
equation model positive initial conditions:

u
(
x, y, 0

)
> 0, v

(
x, y, 0

)
> 0

(
x, y
) ∈ Ω = (0, L) × (0, L). (2.2)

It is natural to assume that nothing enters this model and nothing exits this model. Thus, we
will take zero-flux boundary conditions for the flat domain:

∂u

∂ν

∣∣∣∣
∂Ω

=
∂v

∂ν

∣∣∣∣
∂Ω

= 0. (2.3)

In the above, L denotes the size of the system in square domain, and ν is the outward unit
normal vector of the boundary ∂Ω.

For simplicity, we nondimensionalize model (2.1) with the following scaling:

u −→ u

K
, v −→ mv

K
, t −→ rt. (2.4)

Then model (2.1) can be rewritten as

∂u

∂t
= u(1 − u) − αu2v

u2 + P 2
+ d11∇2u + d12∇2v,

∂v

∂t
=

βu2v

u2 + v2
− γv + d21∇2u + d22∇2v,

(2.5)

where α = a/rm, β = b/r, γ = d/r, d11 = D11/r, d12 = D12/rm, d21 = D21m/r, d22 = D22/r. In
addition, we call

D =

(
d11 d12

d21 d22

)
(2.6)

the diffusive matrix.

2.2. Summary of the Noncross Diffusion Model

We first consider the case of spatially homogeneous solutions. In this case spatial model (2.5)
is equivalent to the ordinary differential equation model

du

dt
= u(1 − u) − αu2v

u2 + v2
� f(u, v),

dv

dt
=

βu2v

u2 + v2
− γv � g(u, v).

(2.7)
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It can be seen that model (2.7) has two nonnegative real equilibria as follows.

(i) The equilibrium point E = (1, 0) corresponding to extinction of the predator is a
saddle point.

(ii) The equilibrium point E∗ = (u∗, v∗) which is corresponding to a nontrivial station-
ary state coexistence of prey and predator, where

u∗ =
β −
√
α2βγ − α2γ2

β
, v∗ =

√
α2βγ − α2γ2N∗

αγ
. (2.8)

It is easy to see that u∗ > 0 and v∗ > 0 when β − γ > 0 and β −
√
α2βγ − α2γ2 > 0 hold.

Besides, Turing instability at the coexistence equilibrium E∗ of the model (2.5) has
been analysis without cross-diffusion. Here, we only give a summary [23]. The characteristic
equation at the steady state E∗ of model (2.5)without cross-diffusion is

|Jk − λI| = 0, (2.9)

where, Jk = J − diag(d1, d2)k2, and J is given by

J =

⎛
⎜⎜⎝

∂f

∂u

∂f

∂v

∂g

∂u

∂g

∂v

⎞
⎟⎟⎠

E∗

�
(
fu fv
gu gv

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

−β2 + 2
√
−α2γ2

(
γ − β

)

β2
−αγ

(
2γ − β

)

β2

−2
(
γ − β

)√−α2γ
(
γ − β

)

αβ
2
γ
(
γ − β

)

β

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.10)

and the trace and determinant of matrix J is as follows:

tr(J) = fu + fv,

det(J) = fugv − fvgu.
(2.11)

Now (2.9) can be solved, yielding the so-called characteristic polynomial of the original
model (2.5)without cross-diffusion:

λ2 − tr(Jk)λ + det(Jk) = 0, (2.12)

where

tr(Jk) = tr(J) − (d1 + d2)k2,

det(Jk) = d1d2k
4 − (d2fu + d1gv

)
k2 + det(J).

(2.13)
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The roots of (2.12) yield the dispersion relation:

λ1,2(Jk) =
1
2

(
tr(Jk) ±

√
tr (Jk)2 − 4det(Jk)

)
. (2.14)

And an equilibrium is Turing instability means that it is an asymptotically stable
equilibrium of nonspatial model (e.g., model (2.7)) but is unstable with respect to solutions
of spatial model (e.g., model (2.5)). One can know that the stability of nonspatial model is
guaranteed if the following conditions hold

tr(J) = fu + gv < 0, (2.15)

det(J) = fugv − fvgu > 0. (2.16)

Then, the Turing instability sets in when at least one of (2.15) or (2.16) the following condi-
tions is violated. However, it is evident that the first condition tr(Jk) < 0 is not violated when
the condition fu + gv < 0 is met. Hence, only the violation of condition det(Jk) > 0 gives rise
to diffusion-driven instability. Thus, the condition for Turing instability is given by

det(Jk) = d1d2k
4 − fud2k

2 − d1gvk
2 + fugv − fvgu < 0. (2.17)

In summary, a general linear analysis shows that the necessary conditions for yielding
Turing patterns are given by

fu + gv < 0,

fugv − fvgu > 0,
(2.18)

d2fu + d1gv > 0,

(
d2fu + d1gv

)2
> 4d1d2

(
fugv − fvgu

)
.

(2.19)

In fact, condition (2.18) enssured, by the definition that the equilibrium (u∗, v∗) is stable for
model (2.5) without diffusion model (2.7). (u∗, v∗) becomes unstable for model (2.5) with
diffusion if Re(λ1,2(Jk)) bifurcate from negative value to positif one. From (2.17), simple
algebraic computations lead to (2.19).

2.3. Dynamic Analysis of the Spatial Model

To study the effect of cross-diffusion on the model system, set u = u∗ + ũ, v = v∗ + ṽ(|ũ|,
|ṽ| � 1), we consider the linearized (ũ, ṽ) form of system as follows:

∂ũ

∂t
= fuũ + fvṽ + d11∇2ũ + d12∇2ṽ,

∂ṽ

∂t
= guũ + gvṽ + d21∇2ũ + d22∇2ṽ.

(2.20)
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Following [18], the characteristic equation of the linearized system is given by

λ2 − tr
(
J̃k
)
λ + det

(
J̃k
)
= 0, (2.21)

where J̃k = J −Dk2, and

tr
(
J̃k
)
= tr(J) − k2 tr(D),

det
(
J̃k
)
= det(D)k4 − (d11gv − d12gu − d21fv + d22fu

)
k2 + det(J).

(2.22)

The Turing instability sets in when at least one of the following conditions is violated:

tr
(
J̃k
)
< 0, det

(
J̃k
)
> 0. (2.23)

The first condition tr(J̃k) = tr(Jk), which is evident that tr(Jk) is not violated when the
condition tr(J) = fu + gv < 0 is met. Hence, only the violation of condition det(J̃k) > 0 gives
rise to diffusion-driven instability. Thus, the condition for diffusion-driven instability occurs
when

det
(
J̃k
)
= det(D)k4 − (d11gv − d12gu − d21fv + d22fu

)
k2 + det(J) < 0. (2.24)

Based on the above discussions, we can get the following theorem.

Theorem 2.1. If the following conditions are true:

fu + gv < 0,

d11gv + d22fu < 0,

d11gv − d12gu − d21fv + d22fu > 0,

(
d11gv − d12gu − d21fv + d22fu

)2
> 4(d11d12 − d21d12)

(
fugv − fvgu

)
,

(2.25)

then the positive equilibrium E∗ of model (2.5) is cross-diffusion-driven instability (i.e., Turing insta-
bility).

Proof. In view of fu + gv < 0 and d11gv + d22fu < 0, it follows that

tr
(
J̃k
)
< 0, det

(
J̃k
)
> 0 (2.26)

when d12 = 0 and d21 = 0. This implies the positive equilibrium E∗ is asymptotic stable in the
absent of cross-diffusion.



Discrete Dynamics in Nature and Society 7

A necessary condition for cross-diffusive instability is given by

d11gv − d12gu − d21fv + d22fu > 0, (2.27)

otherwise det(J̃k) > 0 for all k > 0 since det(D) > 0 and det(J) > 0.
For the instability, we must have det(J̃k) < 0 for some k. And we notice that det(J̃k)

achieves its minimum:

min
μi

σ2 =
4det(D)det(J) − (d11gv − d12gu − d21fv + d22fu

)2
4 det(D)

(2.28)

at the critical value k2
c > 0 when

k2
c =

d11gv − d12gu − d21fv + d22fu
2det(D)

. (2.29)

As a consequence, if d11gv − d12gu − d21fv + d22fu > 0 and (d11gv − d12gu − d21fv + d22fu)
2 >

4(d11d12 − d21d12)(fugv − fvgu) hold, then det(J̃k) < 0 is valid. Hence E∗ is an unstable
equilibrium with respect to model (2.5). This finishes the proof.

In Figure 1, based on the results of Theorem 2.1, we show the dispersal relation of r
with α. The green, red, and blue curves represent Hopf, self-diffusion Turing, and self-cross-
diffusion Turing bifurcation curve, respectively. They separate the parametric space into five
domains. The domain below the Hopf bifurcation curve is stable, the domain above the self-
diffusion Turing bifurcation curve is unstable, and the domain above self-cross-diffusion
Turing bifurcation curve is unstable. Hence, among these domains, only the domain (IV)
satisfies conditions of Theorem 2.1, and we call domain (IV) as Turing space, where the
Turing instability occurs and the Turing patterns may be undergone.

3. Pattern Formation

In this section, we perform extensive numerical simulations of the spatially extended model
(2.5) in 2-dimensional (2D) spaces, and the qualitative results are shown here. Our numerical
simulations employ the nonzero initial (2.2) and zero-flux boundary conditions (2.3) with a
system size of 200 × 200 by using a finite-difference methods. We use the standard five-point
approximation for the 2D Laplacian with the zero-flux boundary conditions. And the time
step and the grid width used in the simulations are τ = 0.01 and Δh = 0.25, respectively. The
parameters are fixed as

α = 2.5, β = 1.1, γ = 1.05, d11 = 0.2, d22 = 0.2. (3.1)

Initially, the entire system is placed in the steady state (u∗, v∗), and the propagation
velocity of the initial perturbation is thus on the order of 5 × 10−4 space units per time unit.
And the system is then integrated for 1000 000 time steps, and the last images are saved.
After the initial period during which the perturbation spreads, either the system goes into a
time-dependent state, or to an essentially steady state (time independent).
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Figure 1: The dispersal relation of r with α. Parameters: β = 1.3, d11 = 0.2, d12 = 0.05, d21 = 0.35, d22 = 0.2.
The green, red, and blue curves represent Hopf, self-diffusion Turing, and self-cross-diffusion Turing bifur-
cation curve, respectively. They separate the parametric space into five domains, and domain (IV) is called
Turing space.

With parameters (3.1), the positive equilibrium of model (2.5) is (u∗, v∗) = (0.4793,
0.1046). Let d12 = d21 = 0, that is, we first consider Turing instability in the case of self-
diffusion model. It is easy to conclude that tr(J) < 0, det(J) > 0, and for all k, tr(Jk) < 0 and
det(Jk) > 0. Hence, in this case, there is nonexistence of Turing instability in the self-diffusion
model (2.5).

Next, we consider the effect of the cross-diffusion in model (2.5), let d21 = 0.05, d12 ∈
(0.2, 0.8), and other parameters are fixed as (3.1). It is easy to know that tr(J̃k) < 0 for all k, and
det(J̃k) < 0 for some k. That is to say, in this case, Turing instability can occur. And in Figure 2,
we show five typical Turing pattern of prey u in model (2.5)with parameters set (3.1) and d12

change from 0.4 to 0.76. From Figure 2, one can see that values for the concention u are repre-
sented in a color scale varying from blue to red. And on increasing the control cross-coefficient
d12, the sequences “spots patterns (Figure 2(a)) → spot-strips coexist patterns (Figure 2(b))
→ strip patterns (c.f., Figure 2(c)) → hole-strips coexist patterns (Figure 2(d)) → holes
patterns (Figure 2(e))” can be observed.

For the sake of learning the pattern formation in model (2.5) further, in the following,
we select a special perturbed initial condition for investigating the evolutionary process of
the infected spatial pattern, the initial condition is introduced as

u
(
x, y, 0

)
= u∗,

v
(
x, y, 0

)
=

⎧
⎨
⎩
0.2, if (x − 100)2 +

(
y − 200

)2
< 200,

0, otherwise,

(3.2)
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Figure 2: Patterns obtained with model (2.5) for (a) d12 = 0.4, (b) d12 = 0.55, (c) d12 = 0.65, (d) d12 = 0.70,
(e) d12 = 0.76 and the other parameters are fixed as (3.1). Time: t = 10000.

which is a circle in (x, y) plane. The parameters are taken the same as Figure 2(a). Then, we
can observe that after the decay of target patterns, the spots pattern prevails over the whole
domain finally (c.f. Figure 3(d)).

Besides Turing patterns (c.f., Figures 2 and 3), there exhibits spiral wave pattern self-
replication in model (2.5). As an example, in Figure 4, we show spiral patterns with α = 2.5,
β = 1.3, γ = 1.1, d11 = 0.7, d12 = 0.05, d21 = 0.01, d22 = 1. In this case, the equilibrium is
(u∗, v∗) = (0.0980, 0.0418). In order to make the image more clearly, the system size is 400 ×
400 and the grid width Δh is 0.5. One can see the random initial distribution leads to the
formation of macroscopic spiral patterns (c.f., Figure 4(a)). In other words, in this case, small
random fluctuations will be strongly amplified by diffusion, leading to nonuniform popu-
lation distributions. For the sake of learning the dynamics of this case further, we show time-
series plots (c.f., Figure 4(b)). From Figure 4(b), one can see that the system gives rise to
periodic oscillations in time, which is the reason why the spiral pattern emerges.

Thanks to the insightful works of Medvinsky et al. [36] and Upadhyay et al. [37], we
have studied the spiral wave pattern for an initial condition discussed in the following equa-
tions. In this this case, we employ Δh = 0.5, and the system size is 400 × 400. The parameters
set are same as Figure 4. The initial condition is given by

u
(
x, y, 0

)
= u∗ − ε1(x − 80)(x − 320),

v
(
x, y, 0

)
= v∗ − ε2

(
y − 100

) − ε2
(
y − 300

)
,

(3.3)

where ε1 = 3 × 10−7 and ε2 = 1 × 10−4.
The initial conditions are deliberately chosen to be unsymmetrical in order to make

any influence of the corners of the domain more visible. Snapshots of the spatial distribution



10 Discrete Dynamics in Nature and Society

50

50

100

150

200
100 150 200

0.9

0.8

0.7

0.6

0.5

0.4

1

0.3

(a)

50

50

100

150

200
0.35

0.45

0.55

0.65

0.75

100 150 200

0.7

0.6

0.5

0.4

(b)

50

100

150

200
50 100 150 200

0.8

0.7

0.6

0.5

0.4

(c)

50

100

150

200
50 100 150 200

0.8

0.7

0.6

0.5

0.4

(d)

Figure 3: The process of spiral patterns of u for parameters: α = 2.2, β = 1.1, γ = 1.05, d11 = 0.2, d12 = 0.05,
d21 = 0.4, d22 = 0.2. Time: (a) t = 50, (b) t = 500, (c) t = 1000, (d) t = 2000.
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Figure 4: Dynamical behaviors of model (2.5) with the parameters: α = 2.5, β = 1.3, γ = 1.1, d11 = 0.7,
d12 = 0.05, d21 = 0.01, d22 = 1 at t = 2000. (a) Spiral pattern. (b) Time-series plots.

arising from (3.3) are shown in Figure 5 for t = 0, 100, 250, 500. Figure 5(a) shows that for the
model (2.5) with initial conditions (3.3), the formation of the irregular patchy structure can
be preceded by the evolution of a regular spiral spatial pattern. Note that the appearance of
the spirals is not induced by the initial conditions. The center of each spiral is situated in a
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Figure 5: The process of spiral patterns of N for the parameters: α = 2.5, β = 1.3, γ = 1.1, d11 = 0.7,
d12 = 0.05, d21 = 0.01, d22 = 1. Time: (a) t = 0, (b) t = 200, (c) t = 250, (d) t = 500.

critical point (xcr, ycr) are (80, 200) and (320, 200), where u(xcr, ycr) = u∗, v(xcr, ycr) = v∗.
The distribution (3.3) contains one point. After the spirals form (Figure 5(b)), they grow
slightly for a certain time, their spatial structure becoming more distinct (Figures 5(c) and
5(d)).

4. Conclusions and Discussions

In this paper, we analyzed pattern formation of a cross-diffusion ratio-dependent predator-
prey model within two-dimensional space and give the conditions of cross-diffusion-driven
driven Turing instability. Then, we use numerical simulations to verify the correctness of the
theoretical results and find that the model exhibits complex self-replication.

The results show that model (2.5) has rich spatiotemporal patterns (spots, stripes,
holes, and spiral patterns); moreover, the existence of those patterns indicates that the cross-
diffusion can induce more complex pattern formation than in the case of self-diffusion.

Compared to the paper of Lin [23], we present the condition of cross-diffusion Turing
pattern, while in the case of self-diffusion the solution of the model is stable. We also show
that the increasing speed of diffusion d12 will decrease the density of the prey. Similar, increas-
ing speed of diffusion d21 will decrease density of the predator.

Therefore, we hope that the results presented here will be useful in studying the dyna-
mic complexity of ecosystems or physical systems.
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