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A chaotic environment can give rise to "flares" if an autocatalytic variable responds in a
multiplicative, threshold-type fashion to the environmental forcing. An "economic unit"
similarly depends in its growth behavior on the unpredictable (chaotic?) buying habits of its
customers, say. It turns out that coupled flare attractors are surprisingly robust in the sense
that the resulting "economy" is largely independent of the extent of diffusive coupling used.
Some simulations are presented.
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1 INTRODUCTION

Chaos by definition is non-robust. The butterfly-
effect [1,2], as featured in Steven Spielberg’s
blockbuster movie "Jurassic Park", is the best-
known example perhaps. Flare attractors reflect
this unpredictability and amplify it. This is because
only certain symbolic dynamic sequences many
consecutive "ones" rather than an even mixture of
zeros and ones, say (that is, many consecutive
suprathreshold rather than subthreshold chaotic
inputs) support an extended period of auto-
catalytic growth (a flare). One would therefore
expect these attractors to be very sensitive to
environmental influences. Unexpectedly, this is
not the case.
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As we shall see in the following, many coupled
flare attractors do not strongly influence each
other. Therefore, they can be used to generate an
abstract "model economy" in the computer.

2 AN EQUATION

Figure illustrates the principle. A corresponding
discrete equation is, for example,

xn+l 4xn(1 Xn),
bn+l bn / bn(xn threshold) ebZn

Here, the first variable (x) is the well-known
logistic map [3]. The second variable (b) grows
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autocatalytically whenever xn, the momentary
value of the chaotic forcing, exceeds the threshold
value assumed. The small parameter e > 0 prevents
the second variable from reaching unrealistic
unbounded flare amplitudes. Figure 2 shows a

simulation.
Figure 2(a) is self-explanatory: The name

"flares" is directly applicable to the elements of

such a time series. The x,b plot (Fig. 2(b)) is
also characteristic: If one waits long enough, a

screen-filling black "curtain" is eventually
obtained. In the transient picture shown here, the
exponentially decreasing density, towards the top
of the attractor, makes itself manifest to the eye.
For curiosity’s sake, we also present, in Fig. 3, a

more sophisticated flare attractor. It is generated

decay

FIGURE Basic mode of action of a flare attractor. A
chaotic subsystem "forces" a nonlinearly responding autocata-
lytic unit (schematic drawing).

FIGURE 2 A simple flare attractor based on the logistic
difference equation: Numerical simulation of Eq. (1). (a) Time
plot of the flaring variable, b. Hereby successive points were
connected by a straight line segment. (b) Side view (x, b plot).
Parameter values: threshold=0.7, e=0.01. Initial conditions:
x =0, b 1. Iteration number: 2000 for (a); and 1000000
for (b). This and all following calculations were done at 16-
digit precision.

FIGURE 3 Flare attractor generated by an invertible map,
Eq. (2). (a) Time behavior as in Fig. 2(a), but longer. (b) Side
view (x,b plot) as in Fig. 2(b). (c) Cross-view (y,b plot). A
cross section between x=0 and x is shown (note that no
narrower slice is necessary with this particular map). 1000 000
iterations are shown (in (b) and (c)). Initial conditions:
x0 v, Y0 0.1, b0 0.1, tend 5000 (in (a)).
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by an invertible three-variable map:

(2 10-15) 2xn if xn < i,
X,+l-

2x ifx>1/2,

{ (1/2- O.05)y if Xn 1/2’1Y,,+I (1/2- O.05)yn if x > i’

bn+l bn -+- b(0.37 x) 10-3z2n -+- 10-2.

(2)

The first two variables here jointly form the "tent"
baker’s map [4], although so with some contraction
due to the small constant (0.05) subtracted from
the factor 1/2 in the same line. (This contraction
assures genericity for the forcing attractor.) The
first two pictures clearly closely resemble those of
Fig. 2. The third picture, however, the y, b plot of
Fig. 3(c), shows a cross section through the
attractor which is generated by this invertible
map. One sees a self-similar fractal with gaps
the "lion’s paw" as it has been called [5]. Note that
in this flare attractor, the sign of the product term
containing the threshold has been inverted com-
pared to Eq. (1). Ifinstead the convention of Eq. (1)
had been used, the lion’s paw would be replaced
by the "fiery flames fractal" [5]. These invertible
flare attractors are examples of singular-contin-
uous-nowhere-differentiable (SCND) attractors,
cf. [6-8].

Obviously, the flaring behavior of the third
variable is largely independent of the intrinsic
complexity of the forcing chaotic subsystem.

3 COUPLED FLARE ATTRACTORS

Figure 4 shows the sum dynamics of several flare
attractors first of three, then of six, finally of 18
of them. The difference equations used to generate
these pictures were:

9(’) 3.99x(nl)(1 x(nl))n+l
-3 (1)h(1) --b(n1) q-b(nl)(0.565- X(n1)) --10 zn -+-10-3S,"-’n+l

X2+) 3.99x2)(1 x(,,2)),

000

d

FIGURE 4 Several coupled flare attractors, superposed.
Numerical simulation of Eq. (3). (a) Time plot of b(1). A very
similar picture was, by the way, obtained if the last term
in the second line of Eq. (3) was replaced by a constant, 0.6.

(1) (6)(b) Time plot of b through b superposed, i.e. of
(1) (18) (1)s. (c) Time plot of b through b superposed. (d) b ,s

plot, 1000 000 iterations shown. Initial conditions for the first
variables x(/): 0.010, 0.011, etc.; for the second variables b(J):
0.2.
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n+l Zn -1- lO-3s’
x(3) 3.99x(3)(1 x(3))n+l

b(3) + b(3)(0.567_ x(3)) 10-3 (3)
n+l Zn + lO-3s,

x(4) 3.99x(4)(1 x4)),n+l
(4) b(n4) _[_ b(n4)(O.568 X(n4))_ lO-3z(n4)2 + 10-3S,n+l

n+l

/, (,s/+ (?/(0.s69 (2/ 0-3
n+l zn + 10-3s,

X(6) 3.99x6)(1 x6))n+l

1-6 + 6(0.s70_ 6)_ o-z6+ 10-3,

X 3.99x7)(1 x7)),

b + 7(0.s7 )_ O-z+ 0-3,

x, 3.99xS)(1 xS)), - (a) 0-3b b8) @ b8)(0.572- x8)) 1 zn @ s,

( 3.99( 9)n+l

( 9 + (0.s73 9)_ O-3z+o-,n+l

x(O) 99x1) (o)
n+l 3

(o (lO+,o(0.s74 (o 0-zO%0-3,+ b, -x, )-1 s,

x(11) 3.99x) (1)
n+l (1--Xn )’

( ((0.575- x O-3zn+ bn +bn )- )+10-3s,
(1 3.99( 1)n+l

12) 2)) 2)+10-3s,n+l-b +b12)(O.576-xl O-3z
a(3) 3)(1 x)),+ 3.99x.

b13)+b13)(0.577 x13)) 10_3 (13)+10_3
n+l zn s,

x(14) 4)( x14)),+1 3"99x.
4)+b14)(O.578-Xn )-10- zn +lO-3s,n+l b (14) (14)

a(15) 3.99x5)(1 (5)),n+l Xn
(5) b5)+b5)(O.579_x5))_lO-3z5)+lO-3s,n+l

X(6) 3.99X6) (1 (16)
n+l Xn ),
(6 (16+6(0.s0_6) 0- (16
n+l bn Zn +10-3S,

X(7) 3.99X7)(1 (7)
n+l Xn

-3 (17)(17))-- 10 Zn +lO-3s,n+l

+ 3 (1 x

FIGURE 5 "Finite decay plot". Numerical simulation of
Eq. (3), with the last line of Eq. (3) replaced by Eq. (4).
(a) Almost no smoothing (a=0.99); this picture is almost
indistinguishable from Fig. 4(d). (b) Medium smoothing
(a 0.2). (c) Strong smoothing (a 0.05). Compare text.

b(a)+b(18)(O.582_x8)) 10-3 (18)
n+ n n Z + 10-3s,

Sn+ --b(n1) nl- b(n2) nk-’’" (3)

Each "cell" (pair of variables with index (i), i-

1,..., 18) involves a similar, formally identical,
chaotic forcing variable. However, the initial
conditions of the x-variables were different for
each subsystem so that indeed the chaotic forcings
are independent. Note also that each flare attractor
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(x(0, b(0) differs from its neighbors in that the value
of the threshold used in the second variable (b) is
different in every case.

Figure 4(d), finally, shows the behavior of a

single flare-attractor variable (b(18), plotted
against the sum variable, s, of all coupled flaring
variables.

In the final picture, Fig. 5, we add some
simulations in which the sum variable (s) was made
an integrator rather than being instantaneous as it
was in Eq. (3). It now reads:

sn+ Sn + b1) + b(2) + aSn. (4)

The case with a--1 (instantaneous summing) has
already been presented in Fig. 4(c). Figure 5 in
addition shows three further cases with an increas-
ingly strong smoothing-effect (a=0.99, a=0.2,
and a 0.05, respectively). Figure 5(b) to us looks
a bit like a "frozen sea".
We present these last pictures in the hope that

specialists dealing with realistic time series like
those taken from a real economic system like the
stock market may find some similarities between
their own data and the sum signals of Fig. 5 gen-
erated by a "society" of flare attractors as it were.

4 DISCUSSION

The flare phenomenon is well-known from many
natural situations like flaring outbursts from stars
or irregularly erupting burning logs. The idea to
consider "flaring" as a generic type of dynamical
behavior was originally triggered by numerical
experiments performed on Milnor-type attractors,
cf. [9]. Milnor attractors [10] are in general
(although not always) unbounded. An attractor
at infinity and an attractor at zero (say) coexist in
such a way that points in the intermediary region
undecidably belong either to the one attractor’s
basin or to that of the other. This is called the
"riddled basins" phenomenon, cf. [10,11,1 la].

Flare attractors can be considered as "tamed"
Milnor attractors. In Eq. (1), for example, a Milnor

attractor is obtained if e is put equal to zero. As
soon as the flaring amplitude of a (non-generic)
Milnor attractor is made bounded for example,
by introducing a growth limitation through assum-

ing e greater than zero however small we have a

(generic) flare attractor.
Flare attractors, in turn, belong into the class

of Kaplan-Yorke attractors [12]. That is, they
possess a small negative Lyapunov-characteristic
exponent which is smaller in its numerical magni-
tude (closer to zero) than the positive LCE of the
forcing chaos. This causes the Lyapunov-dimen-
sion of Kaplan-Yorke attractors to jump up by
unity to resemble that of a hyperchaotic attractor

(characterized by more than one positive LCE) [12].
Kaplan-Yorke attractors in general possess a no-

where-differentiable cross section on a Cantor set

(that is, they belong into the class of singular-con-
tinuous-nowhere-differentiable attractors. [7,8])
The same features are inherited by the flaring-type
Kaplan-Yorke attractors considered here. An
example of a pertinent (nowhere-differentiable on

a Cantor set) cross section has been presented in
Fig. 2(c) above. An analytical study of a closely
related map (lacking the last constant term in Eq. 2)
appears possible.
The main question, in the present context, reads:

Is there a connection to economics? The authors are

painfully aware ofthe fact that they are not qualified
to make an educated guess here. They were just
struck by a recent reaction-diffusion model of an
"evolutionary economy" proposed by Silverberg
[13]. It both fit their intuitions and seemed to admit
of a potential "enrichment" in terms of individually
responding (not averaged over) economic units.
This is where the flare attractor came to mind again
as a potential stand-in for such a unit.

Real enterprises are, of course, much more

complex than the here considered "units" (the flare
attractors). Nevertheless there seemingly exists
an intuitive connection: Friedrich Jahn’s meteor-
like rise and fall. Everbody knows about
Wienerwald(R), the precursor to McDonald’s(R)

success story. Friedrich Jahn adhered to the
domestic policy of putting every dollar earned into
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the next branch office of his chain, that is, the next
Wienerwald "Stube". This fact in principle enables
the occurrence of autocatalytic growth. A typical
flare phenomenon followed including the down-
fall of the empire. We recommend his autobio-
graphy, "Ein Leben ftir den Wienerwald vom
Kellner zum Millionir... und zurtick’’t [14].

Jahn’s sense of enterpreneurial management
somehow resonates ("gibes") with our own intui-
tion that a realistic economic subsystem is in
general not completely immune to being governed
by unpredictable symbolic-dynamics sequences
[15]. To put this idea to a test, we came up with
the above skeleton model of an economy. Other
stochastic time inputs beside chaotic ones

including hyperchaotic ones can likewise be used
numerically. In other words, the "flaring behavior"
appears to be very robust indeed. For example,
chemical reaction systems of the continuous
type -so-called continuous-stirred-tank-reactors
(CSTR’s) readily produce flaring behavior if
autocatalytic subsystems with a threshold, analo-
gous to the b variable in Eq. (1) above, are
introduced in the presence of a chaos-generating
subsystem [9,16,17]. Flare attractors therefore
appear to be robust constituents ofmany nonlinear
dynamical systems with complex behavior
including perhaps the economy, but including
perhaps also a living cell.
To conclude, an important prototype of dyna-

mical behavior may be hidden in everyday eco-
nomic phenomena. We would like to invite
criticism to our idea that it may be legitimate to
believe that a four-variable continuous dynamics
a three-variable chaotic attractor coupled to a
threshold-type autocatalytic fourth variable, mod-
elled in the simplest case by a discrete two-variable
system like that of Eq. (1) deserves to be elevated
to the status of a new generic phenomenon. Is this
phenomenon comparable in importance to chaos
itself? At any rate, a new "module" in a nonlinear
construction set appears to have been identified
on a level slightly higher than the lowest-level

single-variable modules that are so widely used
today in simulation programs like Simulink(R), for
example. Only the future can tell whether inter-
mediate-level modelling approaches like the one

proposed above have some practical usefulness.
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