Discrete Dynamics in Nature and Society, Vol. 3, pp. 51–55 Reprints available directly from the publisher Photocopying permitted by license only

A Note on the Global Attractivity of a Discrete Model of Nicholson's Blowflies*

B.G. ZHANG^{\dagger} and H.X. XU

Department of Applied Mathematics, Ocean University of Qingdao, Qingdao 266003, P.R. China

(Received 4 February 1999)

In this paper, we further study the global attractivity of the positive equilibrium of the discrete Nicholson's blowflies model

$$N_{n+1} - N_n = -\delta N_n + p N_{n-k} e^{-aN_{n-k}}, \quad n = 0, 1, 2, \dots$$

We obtain a new criterion for the positive equilibrium N^* to be a global attractor, which improve the corresponding results obtained by So and Yu (*J. Math. Anal. Appl.* 193 (1995), 233–244).

Keywords: Attractivity, Positive equilibrium, Discrete Nicholson's blowflies model

AMS Subject Classification: 39A10

I. INTRODUCTION

The delay difference equation

$$N_{n+1} - N_n = -\delta N_n + p N_{n-k} e^{-aN_{n-k}},$$

 $n = 0, 1, 2, \dots,$ (1)

is a discrete analogue of the delay differential equation

$$N'(t) = -\delta N(t) + pN(t-\tau)e^{-aN(t-\tau)}, \quad t \ge 0,$$

which has been used in describing the dynamics of Nicholson's blowflies [2,4-6].

* This work is supported by NNSF of China.

[†]Corresponding author.

By the biology consideration, we assume that $\delta \in (0, 1)$, $p, a \in (0, +\infty)$, and $k \in N = \{0, 1, 2, ...\}$. The initial condition is

$$N_j = \varphi_j \ge 0, \quad j \in \{-k, -k+1, \dots, 0\},$$
 (2)

and $\varphi_j > 0$, for some $j \in \{-k, -k+1, ..., 0\}$.

By a solution of (1) and (2) we mean a sequence $\{N_n\}$ which satisfies (1) for n = 0, 1, 2, ... as well as the initial condition (2). Clearly, the unique solution $\{N_n\}$ of the above initial value problem is positive for all large n [1].

If $p > \delta$, then Eq. (1) has a unique positive equilibrium N^* and

$$N^* = \frac{1}{a} \ln\left(\frac{p}{\delta}\right). \tag{3}$$

The global attractivity of N^* was studied by Kocic and Lada [3] and So and Yu [1] respectively.

The recent result is the following [1].

THEOREM A Assume that $p > \delta$ and that

$$\left[\left(1-\delta\right)^{-k-1}-1\right]\ln\left(\frac{p}{\delta}\right) \le 1. \tag{4}$$

Then any nontrival solution N_n of (1) and (2) satisfies

$$\lim_{n\to\infty} N_n = N^*.$$

In this note, our purpose is to improve condition (4). Exactly speaking, we will show some conditions for the global attractivity of N^* when (4) does not hold. Our results are discrete analogues of the results in [2].

To prove our main results, we need some known results.

LEMMA 1 [1] Let $\{N_n\}$ be a solution of (1) and (2). Then

$$\limsup_{n \to \infty} N_n \le \frac{p}{ae\delta}.$$
 (5)

As in [2], the following system of inequalities

$$\begin{cases} y + \ln(1 + (y/aN^*)) \le M(e^{-x} - 1), \\ x + \ln(1 + (x/aN^*)) \ge M(e^{-y} - 1), \end{cases}$$
(6)

play an important role in our analysis, where $M = aN^*[(1-\delta)^{-k-1}-1] = [(1-\delta)^{-k-1}-1] \ln(p/\delta)$. Let

$$D = \{ (x, y) : -aN^* < x \le 0 \le y < \infty \}.$$
(7)

LEMMA 2 [2] If one of the following conditions holds:

(i)
$$M \le 1$$
;
(ii) $M < 1 + (1/aN^*)$ and $aN^* \ge (\sqrt{5} - 1)/2$;

(iii)
$$M \le 1 + (1/aN^*)$$
 and
 $aN^* > (\sqrt{1+4\sqrt{3}}-1)/2,$

then (6) has a unique solution x = y = 0 in D.

II. MAIN RESULTS

The following theorem provides a new sufficient condition for the equilibrium $N^* = (1/a) \ln(p/\delta)$ to be a global attractor.

THEOREM 1 Assume that $p > \delta$ and the assumption in Lemma 2 holds. Then any nontrivial solution $\{N_n\}$ of (1) and (2) satisfies

$$\lim_{n\to\infty} N_n = N^*.$$

Proof Let

$$N_n = N^* + \frac{1}{a}x_n.$$

Then $\{x_n\}$ is a solution of the equation

$$x_{n+1} - x_n + \delta x_n + a \delta N^* (1 - e^{-x_{n-k}}) - \delta x_{n-k} e^{-x_{n-k}} = 0, \quad n = 0, 1, 2, \dots$$
(8)

Since $N_n > 0$ for all large *n*, it follows that $x_n > -aN^*$ for all large *n*.

To prove this theorem, it is sufficient to prove $\lim_{n\to\infty} x_n = 0$. Lemma 1 implies that $\{x_n\}$ is bounded above. Let

$$\mu = \limsup_{n \to \infty} x_n$$
 and $\lambda = \liminf_{n \to \infty} x_n$. (9)

Then $-aN^* \le \lambda \le \mu < \infty$. We claim that $\lambda = \mu = 0$. For the case $\{x_n\}$ is eventually nonnegative or eventually nonpositive, this has been proved in the proof of Theorem 2 in [3]. Therefore it is sufficient to consider the case that $\{x_n\}$ is an oscillatory solution of (8).

Our purpose is to prove that $\lambda = \mu = 0$ under the assumptions. There are four possible cases:

(1)
$$\lambda = \mu = 0;$$

(2) $\mu > 0$ and $\lambda = 0;$

(3) $\mu = 0$ and $\lambda < 0$;

(4) $\mu > 0$ and $\lambda < 0$.

The cases 2 and 3 can be considered to be special cases of case 4. Now we consider case 4.

In this case, there exists a sequence $\{n_i\}$ of positive integers such that

$$k < n_1 < n_2 < \cdots < n_i < n_{i+1} \to \infty$$
 as $i \to \infty$.

$$x_{n_i} < 0$$
 and $x_{n_i+1} \ge 0$, for $i = 1, 2, \ldots$,

and for each i=1,2,..., the terms of the finite sequence x_j for $n_i < j < n_{i+1}$ assume both positive and negative values. Let m_i and M_i be integers in (n_i, n_{i+1}) such that for i=1, 2,...

$$x_{M_i} = \max\{x_j: n_i < j < n_{i+1}\},\$$

and

$$x_{m_i} = \min\{x_i: n_i < j < n_{i+1}\}.$$

We can assume without loss of generality that for i = 1, 2, ...

$$egin{array}{lll} x_{M_i}>0, & x_{M_i}-x_{M_i-1}\geq 0 & ext{and} \ \limsup_{i
ightarrow\infty} x_{M_i}=\mu>0, \end{array}$$

while

$$x_{m_i} < 0, \quad x_{m_i} - x_{m_i-1} \le 0$$
 and
 $\liminf_{i \to \infty} x_{m_i} = \lambda < 0.$

Then there exist subsequence $\{q_i\}$ of $\{m_i\}$ and subsequence $\{Q_i\}$ of $\{M_i\}$ such that

$$x_{Q_i} > 0, \quad x_{Q_i} - x_{Q_i-1} \ge 0 \text{ and}$$

 $\lim_{i \to \infty} x_{Q_i} = \mu > 0,$ (10)

while

$$x_{q_i} < 0, \quad x_{q_i} - x_{q_i-1} \le 0 \quad \text{and}$$

 $\lim_{i \to \infty} x_{q_i} = \lambda < 0.$ (11)

It follows from (8) and (10) that

$$x_{Q_i-1} + aN^* \le [x_{Q_i-k-1} + aN^*]e^{-x_{Q_i-k-1}},$$

thus

$$\begin{aligned} x_{Q_i} + aN^* &= (1 - \delta)(x_{Q_i - 1} + aN^*) \\ &+ \delta(x_{Q_i - k - 1} + aN^*)e^{-x_{Q_i - k - 1}} \\ &\leq (1 - \delta)(x_{Q_i - k - 1} + aN^*)e^{-x_{Q_i - k - 1}} \\ &+ \delta(x_{Q_i - k - 1} + aN^*)e^{-x_{Q_i - k - 1}} \\ &= (x_{Q_i - k - 1} + aN^*)e^{-x_{Q_i - k - 1}} \end{aligned}$$

that is

$$x_{Q_i} + aN^* \le (x_{Q_i-k-1} + aN^*)e^{-x_{Q_i-k-1}}.$$
 (12)

Now let us prove

$$x_{O_i-k-1} < 0,$$
 (13)

assume the contrary, then $x_{Q_i-k-1} = 0$ or $x_{Q_i-k-1} > 0$. If $x_{Q_i-k-1} = 0$, then $x_{Q_i} \le 0$, which contradicts (10). If $x_{Q_i-k-1} > 0$, then $x_{Q_i-k-1} > x_{Q_i}$, thus

$$\liminf_{i\to\infty} x_{Q_i-k-1} \ge \liminf_{i\to\infty} x_{Q_i} = \mu,$$

on the other hand, we have

$$\limsup_{i\to\infty} x_{Q_i-k-1} \leq \limsup_{i\to\infty} x_{M_i} = \mu,$$

so we get

$$\lim_{i \to \infty} x_{Q_i - k - 1} = \mu, \tag{14}$$

then taking the limit in (12), we obtain

$$\mu + aN^* \leq (\mu + aN^*)\mathrm{e}^{-\mu}$$

which implies $\mu \le 0$ that contradicts (10), so (13) holds.

From (12) and (13), we have

$$x_{Q_i} + aN^* < aN^* \mathrm{e}^{-x_{Q_i-k-1}},$$

therefore

$$x_{\mathcal{Q}_i-k-1} < -\ln\left(1 + \frac{x_{\mathcal{Q}_i}}{aN^*}\right). \tag{15}$$

For given $\varepsilon > 0$, by (9), there exists a positive integer n^* such that

$$\lambda - \varepsilon < x_n < \mu + \varepsilon$$
, for $n \ge n^* - k_n$

this induce $x_{n-k}e^{-x_{n-k}} < \mu + \varepsilon$, for $n \ge n^*$.

Rewriting Eq. (8) into the following form:

$$(1-\delta)^{-n-1}x_{n+1} - (1-\delta)^{-n}x_n + a\delta N^*(1-\delta)^{-n-1}(1-e^{-x_{n-k}}) - \delta(1-\delta)^{-n-1}x_{n-k}e^{-x_{n-k}} = 0.$$
(16)

Now summing (16) up from $n = Q_i - k - 1$ (assuming $Q_i - k - 1 \ge n^*$) to $n = Q_i - 1$. we have

$$(1-\delta)^{-Q_{i}} x_{Q_{i}} = (1-\delta)^{-Q_{i}+k+1} x_{Q_{i}-k-1} - a\delta N^{*}$$

$$\times \sum_{n=Q_{i}-k-1}^{Q_{i}-1} (1-\delta)^{-n-1} (1-e^{-x_{n-k}})$$

$$+ \delta \sum_{n=Q_{i}-k-1}^{Q_{i}-1} (1-\delta)^{-n-1} x_{n-k} e^{-x_{n-k}}$$

$$< (1-\delta)^{-Q_{i}+k+1} x_{Q_{i}-k-1} + a\delta N^{*}$$

$$\times \sum_{n=Q_{i}-k-1}^{Q_{i}-1} (1-\delta)^{-n-1} (e^{-\lambda+\varepsilon} - 1)$$

$$+ \delta \sum_{n=Q_{i}-k-1}^{Q_{i}-1} (1-\delta)^{-n-1} (\mu+\varepsilon)$$

$$= (1-\delta)^{-Q_{i}+k+1} x_{Q_{i}-k-1}$$

$$+ [(\mu+\varepsilon) + aN^{*} (e^{-\lambda+\varepsilon} - 1)]$$

$$\times (1-\delta)^{-Q_{i}} [1-(1-\delta)^{k+1}].$$

Substituting (15) into the above inequality, we get

$$(1-\delta)^{-\mathcal{Q}_i} x_{\mathcal{Q}_i} < -(1-\delta)^{-\mathcal{Q}_i+k+1} \ln\left(1+\frac{x_{\mathcal{Q}_i}}{aN^*}\right)$$
$$+ \left[(\mu+\varepsilon) + aN^*(\mathrm{e}^{-\lambda+\varepsilon}-1)\right]$$
$$\times (1-\delta)^{-\mathcal{Q}_i} [1-(1-\delta)^{k+1}],$$

and

$$\begin{aligned} x_{\mathcal{Q}_i} + (1-\delta)^{k+1} \ln \left(1 + \frac{x_{\mathcal{Q}_i}}{aN^*}\right) \\ &< [(\mu+\varepsilon) + aN^*(\mathrm{e}^{-\lambda+\varepsilon}-1)][1-(1-\delta)^{k+1}], \end{aligned}$$

let $i \to \infty$, $\varepsilon \to 0$, we get

$$\mu + (1 - \delta)^{k+1} \ln\left(1 + \frac{\mu}{aN^*}\right)$$

\$\le [\mu + aN^*(e^{-\lambda} - 1)][1 - (1 - \delta)^{k+1}].

We rewrite the above inequality:

$$\mu + \ln\left(1 + \frac{\mu}{aN^*}\right) \le M(e^{-\lambda} - 1). \tag{17}$$

In a similar way, we have

$$\lambda + \ln\left(1 + \frac{\lambda}{aN^*}\right) \ge M(e^{-\mu} - 1).$$
 (18)

Then we establish the following system of inequalities:

$$\begin{cases} \mu + \ln(1 + (\mu/aN^*)) \le M(e^{-\lambda} - 1), \\ \lambda + \ln(1 + (\lambda/aN^*)) \ge M(e^{-\mu} - 1). \end{cases}$$
(19)

For case 2, the system of inequalities corresponding to (19) is

$$\begin{cases} \mu + \ln(1 + (\mu/aN^*)) \le M(e^{-\lambda} - 1), \\ \lambda = 0. \end{cases}$$
(20)

It is obvious that (20) holds iff $\lambda = \mu = 0$.

For case 3, the system of inequalities corresponding to (19) is

$$\begin{cases} \mu = 0, \\ \lambda + \ln(1 + (\lambda/aN^*)) \ge M(e^{-\mu} - 1). \end{cases}$$
(21)

Similarly, (21) holds iff $\lambda = \mu = 0$.

Thus it will suffice to consider case 4, for (19) in case 4, by Lemma 2, we get $\lambda = \mu = 0$. So the proof is complete.

54

Remark 1 In cases 2 and 3 in Theorem 1, we add some reasonable conditions to aN^* . We know

$$M = aN^*[(1-\delta)^{-k-1} - 1] \le 1 + \frac{1}{aN^*},$$

on the right side of which there is nothing to do with δ and k. While $1 + (1/aN^*) \rightarrow \infty$ as $aN^* \rightarrow 0+$, properly choosing the values of $[(1-\delta)^{-k-1}-1]$, we can let M equal or infinitely tend to the value of $1 + (1/aN^*)$, then M can be changed to arbitrarily large. Obviously this is not reasonable.

Remark 2 Theorem 4.1 in [1] only applies to the case $M \le 1$, while Theorem 1 in this paper not only applies to $M \le 1$ but also to M > 1. So the results in this paper improve those in [1].

Example Consider the delay difference equation

$$N_{n+1} - N_n = -\frac{1}{4}N_n + \frac{1}{4}e^{(\sqrt{5}-1)/2}N_{n-3}e^{-2N_{n-3}}, \quad (22)$$

then we can calculate

$$aN^* = \frac{\sqrt{5}-1}{2}$$
 and $[(1-\delta)^{-k-1}-1] = \frac{175}{81}$,

thus,

$$M \approx 1.335$$
 and $1 + \frac{1}{aN^*} = \frac{\sqrt{5} + 3}{2} \approx 2.618.$

The conditions in Theorem 1 are satisfied. Thus

$$N^* = \frac{\sqrt{5} - 1}{4}$$

is a global attractor or (22). But Theorem 4.1 in [1] cannot apply to this case.

References

- J.W.-H. So and J.S. Yu. On the stability and uniform persistence of a discrete model of Nicholson's blowflies. J. Math. Anal. Appl. 193 (1995), 233-244.
- [2] Li Jingwen. Global attractivity in Nicholson's blowflies, Appl. Math.-JCU 11B (1996), 425–436.
- [3] V.Lj. Kocic and G. Ladas. Oscillation and attractivity in a discrete model of Nicholson's blowflies, *Appl. Anal.* 38 (1990), 21–31.
- [4] W.S. Gurney, S.P. Blythe and R.M. Nisbet. Nicholson's blowflies revisited. *Nature* 287 (1980), 17–21.
- [5] M.R.S. Kulenovic, G. Ladas and Y.G. Sficas. Global attractivity in Nicholson's blowflies, *Appl. Anal.* 43 (1992), 109–124.
- [6] J.W.-H. So and J.S. Yu. Global attractivity and uniformly persistence in Nicholson's blowflies, *Differential Equations Dynam. Systems* 2 (1994), 11–18.