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In this paper, we further study the global attractivity of the positive equilibrium of the
discrete Nicholson’s blowflies model

Nn+ Nn -5Nn +pN_ke-aun-, n 0, 1,2,....

We obtain a new criterion for the positive equilibrium N* to be a global attractor, which
improve the corresponding results obtained by So and Yu (J. Math. Anal AppL 193 (1995),
233-244).
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I. INTRODUCTION

The delay difference equation

Nn+l Nn -6Nn + pNn-ke-aNn-k,
n 0, 1,2,..., (1)

is a discrete analogue of the delay differential
equation

U’(t) -6U(t) + pU(t- 7-)e-aN(t--), >_ O,

which has been used in describing the dynamics of
Nicholson’s blowflies [2,4-6].
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By the biology consideration, we assume that
E(0, 1), p, aE(O,+oo), and kN-{0,1,2,...}.
The initial condition is

Nj-j_>0, j{-k, -k+l,...,0}, (2)

and j. > 0, for some j { k, -k + 1,..., 0}.
By a solution of (1) and (2) we mean a sequence

{Nn} which satisfies (1) for n--0, 1,2,... as well as
the initial condition (2). Clearly, the unique solution
{Nn} of the above initial value problem is positive
for all large n [1].
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If p > 5, then Eq. (1) has a unique positive
equilibrium N* and

N* ln(P=’] (s)

The global attractivity of N* was studied by Kocic
and Lada [3] and So and Yu [1] respectively.
The recent result is the following [1].

THEOREM A Assume that p > (5 and that

[(1 6) --’ 1] In () 1. (4)

Then any nontrival solution Nn of (1) and (2)
satisfies

lira Nn N*.

In this note, our purpose is to improve condition
(4). Exactly speaking, we will show some conditions
for the global attractivity of N* when (4) does not
hold. Our results are discrete analogues of the
results in [2].
To prove our main results, we need some known

results.

Let {N} be a solution of (1) andLEMMA [1]
(2). Then

limsupN_< P (5)
noo ae(

As in [2], the following system of inequalities

f y + ln(1 + (y/aN*))<_ M(e-x- 1),
x + ln(1 + (x/aN*))>_ M(e- -1 (6)

play an important role in our analysis, where M--
aN*[(1-6) -k-- 1]-[(1--6) -k-l- 1] ln(p/6).

Let

D--{(x,y)" -aN* <x_<0_<y<oo}. (7)

LEMMA 2 [2]
holds."

If one of the following conditions

(i) M_<I;
(ii) M<l +(1/aU*)andaN* > (x/-- 1)/2;

(iii) M _< + (1/aN*) and
aN* > (V/1 + 4x/-1)/2,

then (6) has a unique solution x-y- 0 in D.

II. MAIN RESULTS

The following theorem provides a new sufficient
condition for the equilibrium N*- (I/a)ln(p/6) to
be a global attractor.

THEOREM Assume that p > (5 and the assump-
tion in Lemma 2 holds. Then any nontrivial solution

{Nn} of (1) and (2) satisfies

lim N, N*.

Proof Let

N-N* +-x.

Then {x} is a solution of the equation

xn+ xn + 6Xn + a6N* (1 e-x"-

6xn_ke-x"- O, n O, 1,2,....

Since N>0 for all large n, it follows that

x > -aN* for all large n.

To prove this theorem, it is sufficient to prove
limn_ox =0. Lemma implies that {xn} is
bounded above. Let

# lim sup x and A lim inf x. (9)

Then -aN* < A _< # < oo. We claim that A- #- 0.
For the case {x} is eventually nonnegative or

eventually nonpositive, this has been proved in the
proof of Theorem 2 in [3]. Therefore it is sufficient
to consider the case that {x} is an oscillatory
solution of (8).
Our purpose is to prove that A- #- 0 under the

assumptions. There are four possible cases:

() -#-0;
(2) # > 0 and k 0;
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(3) #- 0 and A < O;
(4) # > 0 and A < O.

The cases 2 and 3 can be considered to be special
cases of case 4. Now we consider case 4.

In this case, there exists a sequence {ni) ofpositive
integers such that

k nl n2 ni ni+l --+ oo as i--+

and xni+ >_0, fori-l,2,...,

and for each i-1,2,..., the terms of the finite
sequence xj- for ni<j < ni+l assume both positive
and negative values. Let mi and Mi be integers in
(hi, ni+ 1) such that for i- 1,2,...

XMi- max{xj" ni < j < ni+l },

and

Xmi min{xj" ni < j < ni+ }.

We can assume without loss of generality that for
i-1,2,...

XMi > O, XMi XMi- >_0

lim sup XMi ]_L > O,
and

while

Xmi < O, Xmi Xmi-1 0

lim inf Xmi A < O.

and

Then there exist subsequence {qi} of {mi} and
subsequence {Qi} of {Mi} such that

XQi > O, XQi- XQi_ 0 and

lim XQi # > O, (1 O)

while

Xqi ( O, Xqi Xqi_

_
0 and

lira Xqi A < O. (11)

It follows from (8) and (10) that

XQi_ + aN* <_ [XQi_k_ + aN*]e-xQi-k-1

thus

XQi "-Jr- aN* (1 I)(XQi_ --Jr- aN*)- ((XQi_k_ - aN* )e-XO_i-k-,

_< (1 ()(XQi_k_ -3r- aN*)e-xQi-k-’

+ (5(XQi-k- + aN*)e-Xei-k-1

(XQi_k_ -- aN*)e-xQi-k-1

that is

aN* <_ (XQ_:_l + aN*)e-xQi--I (12)

Now let us prove

XQ,-k-1 < O, (13)

assume the contrary, then XQi-k-1 0 or

XQi_k_ > O. If XQi_k_ --0, then XQi 0, which
contradicts (10). IfxQi_k_ > 0, then XQ-k-1 > XQi,
thus

lim inf XQi_k_l lim inf XQi

on the other hand, we have

lim sup XQi_k_ lim sup XMi #,

so we get

lim XQi_k_ --/z, (14)

then taking the limit in (12), we obtain

aN* _< (# + aN*)e-u,

which implies # _< 0 that contradicts (10), so (13)
holds.
From (12) and (13), we have

XQ .ql_ aN* < aN*e-xQi-K-
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therefore

XQi
XQi_k_l < --ln1 + /.

aN*/
(15)

For given e > 0, by (9), there exists a positive integer
n* such that

, e < Xn < [Z nt- e, for n >_ n* k,

this induce xn_ ke- xn_ < # + e, for n _> n*.
Rewriting Eq. (8) into the following form:

(16)

Now summing (16) up from n-Qi-k-1
(assuming Qi- k- _> n*) to n- Qi- 1. we have

Substituting (15) into the above inequality, we get

(1 5)-Q’xQ, < -(1 5) -Q’+k+ ln(1 + aN*/

+ [(u + ) + ,N* (,-+
(1 )-Qi[1 (1

and

xoi + (1 )k+l ln(1 + xoi
aN*/

< [( + ) + N*(-+ 1)Ill-(1- )+l],

let -- cx, c 0, we get

# + (1- 5)K+ ln(1 + N*)
_< [# + aN*(e-’ 1)]{1 (1 6)k+l].

We rewrite the above inequality:

#+In 1+-; _<M(e-’-1). (17)

In a similar way, we have

’x+ln 1+- _>M(e-’-1). (18)

Then we establish the following
inequalities"

system of

# + ln(1 + (#/aN*)) <_ M(e-- 1),
’X + ln(1 + (/aN*)) >_ M(e-"-1).

(19)

For case 2, the system of inequalities corresponding
to (19) is

# + ln(1 + (#/aN*)) < M(e-- 1),
(20)

It is obvious that (20) holds iff ’X-#- 0.
For case 3, the system of inequalities correspond-

ing to (19) is

’X + ln(1 + (,X/aN*)) _> M(e-’- 1).
(21)

Similarly, (21) holds iff ’X # 0.
Thus it will suffice to consider case 4, for (19) in

case 4, by Lemma 2, we get ’X # 0. So the proof is
complete.
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Remark 1 In cases 2 and 3 in Theorem 1, we add
some reasonable conditions to aN*. We know

M aN* [(1 8)-k-

on the right side of which there is nothing to
do with 5 and k. While l/(1/aN*) as
aN*O+, properly choosing the values of
[(1 -5)-k-l_ 1], we can let M equal or infinitely
tend to the value of +(l/aN*), then M can be
changed to arbitrarily large. Obviously this is not
reasonable.

Remark 2 Theorem 4.1 in [1] only applies to the
case M <_ 1, while Theorem in this paper not
only applies to M< but also to M> 1. So the
results in this paper improve those in [1].

Example Consider the delay difference equation

N+, N 1/4e(-’) (22)--4Nn +- /2Nn_3e-2N,-3

then we can calculate

aN*-X/-I and [(1-6)--’-1]-175
2 81

thus,

,,/ + 3
1.335 and +-- 2.618.

aN* 2

The conditions in Theorem are satisfied. Thus

is a global attractor or (22). But Theorem 4.1 in [1]
cannot apply to this case.
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