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The fractal tree-like structures can be divided into three classes, according to the value of the
similarity dimension Ds: Ds < D,D D andD > D, where D is the topological dimension of
the embedding space. It is argued that most of the physiological tree-like structures have
D >_ D. The notion of the self-overlapping exponent is introduced to characterise the trees
with D > D. A model of the human blood-vessel system is proposed. The model is consistent
with the processes governing the growth of the blood-vessels and yields Ds 3.4. The model is
used to analyse the transport of passive component by blood.
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I INTRODUCTION

The fractal tree-like systems are very common
objects, and have been attracted a lot of atten-
tion, c.f. Mandelbrot (1983), West (1990),
Bassingthwaighte et al. (1994). The most obvious
examples are ordinary trees. The physiological
tree-like structures such as a blood-vessel system,
a lung, nerve tissues, a lymphatic system are not
exceptions. Unlike the ordinary trees, the physiolog-
ical "trees" are "hidden" by tissues. For this reason,
it is quite a complicated task to study the fractal
properties of them. The constituent parts of these
tree-like systems (single blood vessels, neurons
and bronchial tubes) have been studied for a long
time and the physical properties of them are
known in great details. Meanwhile, the global
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properties of the respective "trees" have been the
object of systematic studies only during the last
decade.

In what follows we show that the fractal tree-like
structures can be meaningfully divided into three
classes, according to the value of the similarity
dimension Ds: Ds < D, Ds D and Ds > D, where
D is the topological dimension of the embedding
space. In Section II we argue that most of the
physiological tree-like structures belong to the
second and third classes (Ds> D). Section Ill is
devoted to the fractal trees with Ds D and to the
model of lung in particular. In Section IV we

discuss the case of Ds > D on the example of blood-
vessel system. Section V is devoted to the trees with

Ds < D and Section VI to the analysis of the trans-
port ofpassive scalar in the blood-vessel system.
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II THE PHYSIOLOGICAL TREE-LIKE
STRUCTURES

A fractal model of a biological tree-like structure
should satisfy the following rather generic criteria:

(a) it should be in accordance with the simplest
physical laws, such as the flow continuity and
the Poiseuille law in the case of the blood-
vessel system;

(b) it should satisfy certain physiological require-
ments, e.g. ensure a complete (homogeneous)
blood supply of the organism;

(c) it should be in accordance with our knowledge
about the processes governing the growth and
formation of the "trees";

(d) it should be self-similar within a wide range of
scales;

(e) the result ofmany iterations of a generation-to-
generation relation specifying the model should
not be very sensitive to the subtleties of the
model;

(f) the model should not contradict empirical data.

Some comments are needed here. First, adopt-
ing the criterion (d) we disregard the possibility of
a multifractal or a non-scale-invariant behaviour.
As discussed above, in some cases these effects can
be significant. The simplest way would be to assume
that there is a transition scale between two differ-
ent self-similar regions. However, in Section IV we
shall argue that at least for a considerable range of
scales, the self-similarity of the blood-vessels can
be a consequence of the dynamical growth mech-
anisms of the vascular tree. In order to shed more

light into the problem of scale-invariance, detailed
three-dimensional experimental data would be
needed.

Second, the consequence of the item (b) is that
in the case of physiological vascular networks, the
spatial distribution of the branches of the tree
should be quasi-homogeneous, i.e. the tree should
be space-filling. Indeed, in the case of the blood-
vessel system the "holes" are not admittable, since
all the cells need a blood supply. In the case of lung
the alveoli fill almost all the space of the lung.

Perhaps in a lesser extent this is true for a neural
network; however, within distinct regions of the
organism, the distribution of neurons is also quasi-
homogeneous. If there would be a true fractality of
the vascular network, the fractal dimensions could
not be less than the topological dimension (three in
most cases and two for effectively two-dimensional
structures), because the fractional values less than
the dimension of the embedding space would mean
that the structure is sparse, with "holes".
The models of the blood-vessel system have been

developed in several papers (cf. Spaan, 199 !; Family
et al., 1989; Masters, 1994; VanBeek et al., 1989;
Kalda, 1993); main subject has been the geometrical
arrangement of the blood-vessels. Special attention
has been paid to the essentially two-dimensional
structures, such as subcutaneous arteriovenous
networks (Gazit et al., 1995), human retinal vessels
(Family et al., 1989) and vessels of the avian cho-
rioallantoic membrane (Kurz et al., 1993). Three-
dimensional analysis has been attracted much less
attention; one can mention NMR-computer tomog-
raphy-based analysis of the pig kidney arteries,
where the box-counting fractal dimensions have
been calculated (Sernetz et al., 1992).

There is also a considerable number of papers
devoted to the airway tree of a lung (cf. West, 1990;
Kitaoka and Takahashi, 1993; Weibel, 1991). They
include extensive experimental measurements
and concern mainly the geometrical arrangement
of the bronchial tubes (particularly characterised
by the box-counting dimension). Also, mathema-
tical models have been proposed to match the
experimental data.

According to the arguments given above, these
models cannot be applied to the blood-vessel sys-
tem (or to the lung) as a whole, particularly because
the reported fractal dimensions were less than the
topological dimension of the embedding space. The
fractional values of the box-counting dimension
should be attributed to the limited range of scales
and can be treated as an evidence of the lack of
global self-similarity. In order to avoid misinter-
pretations, these fractional values could be referred
to as the local scaling exponents.
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III TREES WITH Ds--D. THE MODEL
OF BRONCHIAL TREE

A characteristic feature of the fractal trees with

Ds D is that

(a) the structure is space-filling,
(b) a distinct branch (together with its sub-

branches) forms a compact structure, so that
overlapping of different branches of the same

generation is insignificant.

Bronchial tree is a typical example of this kind of
trees: the bronchial tubes and alveoli are packed
tightly and there are no major regions between them
filled by tissues of other organs. The tomographic
images of lung indicate that the condition (b) is
satisfied, as well. By Kitaoka and Takahashi (1993),
a simple regular three-dimensional model of lung
has been suggested. According to that model, all
the bronchial tubes are similar to each other; each
tube branches into two smaller tubes which are

perpendicular both to the given tube and to the
tube of the previous generation. Sometimes a con-

fusion has been caused by the fact that the experi-
mental dependencies are notpower laws (as would be
expected in the case of self-similarity). Thus, it has
been pointed out by West (1990) that the plot of the
logarithm of the average diameter of the bronchial
tubes versus the generation number differs notably
from the straight line. It has been shown that the
experimental curves can be modelled fairly well, if
we take into account the presence of the small-scale
cut-off at the alveoli size (Kalda, 1993). Indeed, for
real lung, the two branches of a bronchial tube are

always of different sizes. Thus we can modify the
model ofKitaoka and Takahashi (1993) by introdu-
cing the distribution function ofthe diameter ratio of
the branches. Due to such an unequal branching, the
generation number of the alveoli (the alveoli are
assumed to be approximately of the same size) can
vary several times. The power laws can be expected
only by the generation numbers, smaller than the
smallest generation number among the alveoli.
Another example (though not biological) of the

trees with Ds D is the river networks. The network

is space-filling, if we assume that the sources are

distributed quasi-homogeneously. The compact-
ness is caused by the limitations of two-dimensional
topology: two branches cannot intersect.

IV TREES WITH Ds > D. THE BLOOD-
VESSEL SYSTEM

To begin with, let us make a rough estimate of the
similarity dimension of the blood-vessel tree. Here
we can use the following empirical data: the length
of the capillaries (i.e. the vessels of the last gene-
ration) ,A00.5mm (cf. Hoppe et al., 1978),
the length of the largest vessels (aorta) l0 =0.5 m
and the total length of capillaries, LAoN
100,000 km. The total number of capillaries N can

be expressed via the effective number ofgenerations
neff as N= 2n% Being guided by the assumption of
self-similarity, we can express the similarity factor
a as a=()o/lo)l/n% Using the definition of the
similarity dimension we can easily find

Ds -1/log2 a 3.4. (1)

The seemingly curious fact that the similarity
dimension exceeds the topological dimension can
be explained as follows. It is easy to show that the
Hausdorff-Besicovitch and box-counting dimen-
sions of a space-filling fractal set DHB and Db are

always equal to the topological dimension of the
embedding space D. As for the similarity dimen-
sion, it is generally accepted (cf. Mandelbrot, 1983)
that Ds coincides with the Hausdorff-Besicovitch
dimension DHB. Thus it may seem that always
Ds _< D. However, the equality Ds DHB-- Db can
be applied only if all the dimensions are less than
the dimension of the embedding space. Indeed,
one can imagine that the fractal tree was originally
embedded into a space of dimensionality Din > Ds
and then projected into the space of dimensionality
D < Ds, see Fig. 1. As a result of such a projection,
the dimensions DHB and Ds become equal to the
new value of D, whereas the similarity dimension
will evidently remain unchanged. The similarity
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F1GURE Example of a fractal tree with the similarity dimension exceeding the dimensionality of the embedding space:
Ds 2.53, D 2.

dimension exceeds the topological dimension if
the ratio 6,/I, of the average distance between the
branches of nth generation 6n and average length of
them In vanishes towards higher generation num-
bers n, i.e. towards smaller values of l. This is
possible in two cases:

(a) the tree is not self-similar, but instead, self-
affine;

(b) the branches of the same generation number
have significant overlapping regions.

Finally, let us note. that in order to provide an

homogeneous blood supply ofthe organism, the dis-
tance between capillaries should be less than the

effective diffusion radius 6/.. 100 lam: the relative
distance between capillaries is somewhat smaller
than between large vessels. So, it is rather natural that
the similarity dimension of the blood-vessel system
does exceed the dimension of the embedding space.
The self-similar model of the spatial arrangement

of the blood-vessels is, in fact, a generalisation of
the Scheidegger’s model of rivers (Scheidegger,
1967). The Scheidegger’s model can be outlined as
follows: tree-like network is generated by trajec-
tories of particles ("droplets") randomly jumping
from site-to-site on n-dimensional square lattice

(in our case n 2). In the n + 1-dimensional space
(time-axis added) the trajectories follow the edges
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FIGURE 2 Scheidegger’s rivers. This picture arises as a pattern of particle trajectories. At each time step, a particle is born at every
integer value of x; the particles move with constant velocity and random direction along the x-axis through a unit length; the colliding
particles coalesce.

of the parallelepiped-shaped grid and coalesce from
time-to-time forming larger particles, see Fig. 2.
The Scheidegger’s model has been chosen as a

starting point because the underlying parallelo-
piped-shaped grid gives us a convenient way to

ensure a quasi-homogeneous distribution of the
capillary vessels (i.e. of the vessels of the smallest
size). Alternatively, we could use the generators of
fractals to construct trees similar to that of depicted
on Fig. 1. The latter method can also be randomised
(cf. Mandelbrot, 1983) and as it can be seen on

Fig. 1, the resultant distribution of the capillary
vessels is quasi-homogeneous, too. However, the
model based on Scheidegger’s rivers has still the
advantage that it has more control parameters which
can be used to adjust the model to the empirical data.

The modified Scheidegger’s model is given by the
following rules of the dynamics of the "droplets":

(i) The time is discrete with the unit time step.
(ii) At each time step, each coordinate of a particle

changes randomly and independently of the
other coordinates and other particles but
correlates with its previous history so that the
resulting motion is fractional Brownian with
the Hurst exponent H (the average rms dis-
placement of a particle is proportional to t/-/);
the coordinate is increased or decreased by one.

(iii) Colliding particles coalesce with the probabil-
ity of if both of the following conditions are
fulfilled: (a) the mass ratio lies between 1/2
and 2; (b) the interaction cores of the particles
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overlap. Otherwise, the particles continue their
motion without interaction. The radius of the
interaction core is defined by the mass of the
particle as follows:

rm rorn’, p > 0. (2)

(iv) At each time step and at each lattice site, a new

particle ofunit mass is added. As compared with
the original Scheidegger’s model, in item (ii) now
a non-locality in time is assumed; in item (iii) now
two particles can coalesce at a non-zero distance
and the coalescence of particles which are very
different in size is prohibited.

Further we have to tie the parameters of the
model with the physical observable quantities of
the blood-vessel tree. Evidently, the mass of the
"droplets" corresponds to the flux of blood through
the vessels. In order to derive the expression for
the average length of vessels via the average flux
through them, it is convenient to introduce the
mass doubling time tm of the "droplets" the aver-

age time needed for a particle ofmass m to double its
mass. Besides, let lm denote the average spatial dis-
tance between the "m’-particles (which we define as
the particles of masses within the interval [m, 2m]).
The problem of finding the mass doubling time

of a "droplet" is similar to the problem of finding
the kinetic constants of a chemical reaction. There
are two possibilities: first, the anti-correlation in
time is weak enough, so that the "m"-particles
behave as a gas. Then the area covered by the inter-
action core of an "m"-particle during a typical
coalescence time tm should be equal to the average
area per one "m"-particle:

rmtm 12m, if rmlm < 12mI-I. (3)

The other possibility is that process becomes
"diffusion-limited": Eq. (3) is no longer valid since
the self-overlapping of the particle’s trajectory can-

not be neglected. Instead, the time tm can be assessed
as the time needed for a particle to "diffuse" to the
distance lm:

2H 2 2Hlm, if rmtm > (4)

Suppose the system of "droplets" has been
evolved for a long time, then a stationary regime
should have been established. Specifically, the
spectral flux of mass per unit area (towards large
masses) has to be constant over the whole spectrum
of masses:

m

]2m tm
co,st. (5)

Solving the system (2)-(5) for tm and lm, we find

lm rn, tm rn, (6)

where

+p 1-p
A -1 r- if2H>

4 4

H
A r if 2H <

2H+ 1’ 2H+ 1’

l+p

l+p

(7)

Note that our arguments can be repeated without

changing the original Scheidegger’s model, as well.
In that case a logarithmic factor should be added
to take into account the effect of self-overlapping of
the trajectories; the relevant expressions of papers
by Takayasu (1989) and Huber (1991) can be easily
recovered.
Now let us recall that in the case of blood-vessel

system, m is the flux of blood, l is the average
distance between the vessels and tm is the length of
vessels. Due to the continuity condition, the total
flux through all the vessels of a given size is con-

stant, thus the number of"m"-vessels Nm cv m-1 On
the other hand, the number of vessels scales with
their length as Nm o( tTnDs. Further, if we take into
account Eqs. (5) and (6) we find

2A liDs. (8)

Comparing Eqs. (1), (7) and (8), it is easy to see that
there are solutions,

0=0.4, H> 1.2, (9)

p>0.4, H= 1.2. (10)
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The first solution corresponds to the case, when the
capillaries fed by a fixed artery form a sparse sys-
tem and in a vicinity of every capillary there are

capillaries fed by other arteries. We shall show
somewhat later that this situation is more realistic
than the opposite one (corresponding to Eq. (10))
when the capillaries fed by a fixed artery form a

dense system.
To conclude with the model, let us discuss it from

the evolutionary point of view. The growth of the
vascular network is controlled by several chemical
mechanisms. The generally accepted model (cf.
Gazit et al., 1995; Nekka et al., 1996) of this process
can be outlined as follows. In the growing organ-
ism, the tissue cells grow at a certain rate and
sub-divide when a maximum size is reached. The
existing vascular structure grows with all the other
tissues. The distance between capillaries grows as
well; this can cause ishemia of the most distant cells.
Ishemic cells generate chemical substances angio-
genic factors (AF) which lead to angiogenesis.
The particles of AF diffuse in all the directions.
These particles can be captured by blood vessels;
when captured, they cause a new vessel sprouting
towards the ishemic cell (actually, towards the
higher concentration of AF). Some purely perfused
vessels undergo regression and disappear.

Despite the fact that diffusion plays an important
role in such a model, it seems that in most cases the
growth is not diffusion-limited. Instead, diffusion
is faster than the growth of the tissues: the time
between the subsequent emergence of two ishemic
regions is longer than the characteristic diffusion
time. Such a growth model leads to a space-filling
statistically self-similar vascular tree. If we assume
that the average distance between the capillaries
is constant during all the growth process and that
the regression of vessels is negligible, there would
be a fractal tree of Ds 3 with slightly overlapping
branches. Besides, the relative distance between the
large vessels would be equal to the relative distance
between capillaries.

If we admit that the regression of vessels can be
significant, we obtain a tree with Ds > 3. The higher
the regression rate is, the higher the similarity

dimension will be. Such an inequality has two ob-
servable consequences. First, the relative distance
between vessels increases with the size of vessels.
Second, there will be a significant overlapping of
the same-generation branches. This is rather im-
portant from the physiological point of view: the
damage of a vessel will not lead to the complete
cease of the blood supply, in a vicinity of every cell
fed by a capillary belonging to the damaged branch
there are capillaries belonging to healthy branches.
In order to describe this effect quantitatively, we

introduce the overlapping exponent of a fractal
tree. Let us draw around a branch of size a sphere
of diameter 1. We repeat this procedure with all
these branches which satisfy the condition L <
< 2L. Further, let the maximum number of spheres

of non-zero intersection scale with size L as

Nmax o( L-8 (11)

Then we say that/3 is the overlapping exponent. It
is easy to see that if the tree is self-similar (i.e. not

just self-affine),

/3- Ds D. (12)

Indeed, in the case ofvascular system the average
distance between the vessels of size with L < < 2L
can be calculated as d[l/(2mL)] 1/2. Here m
denotes the effective generation number of the
vessels of given size; it can be eliminated using the
expression for the similarity factor a-(L/lo)/"=
2 /D. Fin.a11.y, the Jumbe.r of OlezrJO.j.7),tPhCU,y
can be assessed as Nmax L3/(d2L) (lolL)D 3.
Due to the lack of experimental data, it is

impossible to check directly the applicability of
our model. In fact, it is a very difficult technical
task to make three-dimensional measurements of
vascular tree and cover a wide range of scales.
However, detailed data are available concerning
the correspondence between blood pressure, flux
of blood and diameters of the vessels. Particularly,
the diameter of the vessels scales with the flux
w of blood as do( w /, c 2.7 (see Takayasu,
1990). According to our model and Poiseuille law,
this scaling law corresponds to the dependence



304 J. KALDA

p(d) =P0- cd" with -y -0.5 (the exponent -y can
be expressed via c and Ds), where p(d) denotes the
average blood pressure in the vessels of diameter d
(for details see Kalda, 1993). This dependence is in
accordance with the experimental data (cf. Hoppe
et al., 1978) and can be considered as an indirect
argument supporting our model.

It should be emphasised that the model described
above cannot be used equally well for all the scale-
lengths. The experimental data (Kurz et al., 1993;
Sernetz et al., 1992) indicate that for some scale-
lengths the vascular tree can be notably non-self-
similar: the exponent of the local fit to a power-law
revealed a significant dependence on space-scale.
Further experimental data are needed to determine
the range of applicability of the model.

V TREES WITH Ds<D

Most of the ordinary trees fall into this category.
Typically, the fractal dimension of them is some-
thing between two and three. The trees with Ds < 2
are very "transparent" the shade of such a tree
(even with leaves) has significant holes. On the other
hand, the trees with Ds _> 3 are very thick: it is
impossible to climb on these trees, because all the
space ofthe heads ofthe trees is filled with branches.

Despite the fact that the ordinary trees can be
easily accessed and measured, it is rather difficult
to calculate the fractal dimension of them. This is
caused by the three-dimensional geometry. One
possible solution is to measure the length li and
mass Mi of each branch and find the similarity
dimension as the minimum of the function

)2/12OsFzs- (/1/s-+ /2’Dis-nt- /3Di 3i (13)

In fact, we can do the measurements even on two-
dimensional photographic images, assumed that
trees have lost their leaves and all the branches can
be distinguished (the other methods would fail here
and yield D 2). For instance, using the images of
several birch trees we obtained D 2.6.

VI CONVECTION OF PASSIVE
COMPONENT BY BLOOD

In this section we outline a simple implementation
of the model of vascular tree (Kalda, 1996). We
consider the transport of a passive admixture
through the blood-vessel system. It is assumed that
the admixture has been injected into tissues and fills
a certain region between the vessels. Besides, the
following assumptions are made:

(a) outside the vessels, the propagation of the ad-
mixture is diffusive, ofmolecular diffusivity Do;

(b) the admixture particles can penetrate the walls
of the vessels;

(c) the presence ofthe admixture around and inside
the vessels does not affect substantially the
blood flow in these vessels. However, a small
change (by a factor of the order of two) in the
rate of the blood flow is admitted;

(d) a vessel is called to be of size L, if its length is
between L and 2L. The vessels of size L form an
homogeneous network;

(e) the transport is accomplished in the venous half
of the blood-vessel tree. In fact the admixture is
convected also by the arterial flow, but this is
the convection towards the capillaries and the
transport distance in the arterial tree is limited
by the size of the vessel where the injection was
made;

(f) the blood flow in vessels is laminar (cf. Hoppe
et al., 1978).

The analysis is based on two "integrals of
motion". The first one is the expression for the
total volume of the whole body:

V N(L)LA(L):, (14)

where (L) denotes the average distance between the
neighbouring vessels of size L and N(L) the total
number of vessels of size L.
The second one is the estimate of the total flux of

blood through the heart:

Q N(L)v(L)d(L)2. (15)
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Here v(L) denotes the characteristic velocity of the
blood in a vessel of size L and d(L) the diameter of
the vessel of size L. These equations are valid for
any value of L. Sometimes it is more convenient to
use the combined and hence a dependent "integral
of motion""

V/
(L)J(L)

1000s. (16)

Here the numerical value 1000s was obtained by
substituting V- 70 dm and 70 cm/s.

Let us assume that inside the tissues there is a spot
of passive admixture which diffuses into the blood
vessels and will be carried into the other parts of
the organism by blood. The admixture can be an

injection, a venom ofan insect or ofa snake or some-

thing else. The character of propagation depends
on the seed diffusivity Do and on the initial size of
the spot r. It can be shown that there are four
qualitatively different regimes of propagation.
The admixture propagates in the form of a "saus-

age" around the vessel stretching out of the initial
spot. The diameter of it can be assessed as /Dot and
the "stretching" velocity of the "sausage" as

d(L) 2

Vef v(L). (17)Dot

If the spot is large and diffusivity low, the
admixture fills the vascular system approximately
during one rotational cycle of blood, - W/
Q min, W being the total volume of the blood.

Otherwise the convection is slowed down by
diffusion inside the tissues. It can be shown that
in this case the characteristic time of invading the
whole organism is given by -- V/Q O0 s.

VII CONCLUSION

The values of the similarity dimension Ds and the
dimension of the embedding space D can be used
to divide the fractal tree-like structures into three
classes. Most of the ordinary trees belong to the
class of sparse trees with Ds<D. Most of the

physiological tree-like structures are quasi-homog-
eneous with Ds>_D. The compact self-similar
structures with non-overlapping branches (such as
a lung) have Ds-D. The dense structures with

Ds>D (such as a blood-vessel system) can be
additionally characterised by the self-overlapping
exponent. If the tree is self-similar (i.e. not just self-

affine), the exponent ,- Ds D > 0; this implies a

significant overlapping of branches.
We have constructed a self-similar model of

blood-vessel system, which is in agreement with
the modern understanding of the processes govern-
ing the growth of the vascular network. Our basic

assumptions were: (a) the tree can be considered
to be self-similar; (b) variations of the blood con-

sumption rate of the body cells are not significant.
The similarity dimension of the model Ds 3.4. On
the basis of this model, we have analysed the trans-

port ofpassive component by blood. Depending on
the diffusivity of the passive component, the char-
acteristic time of invading the whole vascular tree
can vary from one to twenty minutes.

It should be stressed that the applicability of the
assumption of self-similarity itself is not quite clear
and deserves further studies. On the one hand, it is

supported by the dynamical growth model of the
blood-vessel system; on the other hand, several
papers have been reported that the fractal box-
counting dimension of the effectively two-dimen-
sional structures retinal and subcutaneous vascu-
lar networks is close to Db,- 1.7 (Family et al.,
1989; Masters, 1994; Gazit et al., 1995). These
results could be treated as an evidence of the lack of
self-similarity for wider inertial range of scales.
However, it should be noted that the effectively
two-dimensional structures constitute only a negli-
gible part of the whole body. One should also bear
in mind that the uncertainties of the box-counting
dimensions can be easily underestimated, especially
if the available range of scales is limited.
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