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A charged particle circling in a uniform magnetic field and kicked by an electric field is
considered. An iterative map is developed, under the assumption of small magnetic field.
Comparison between the (relativistic) non-radiative case and the (relativistic) radiative case
shows that in both cases one can observe a stochastic web structure, and that both cases are .

qualitatively similar.
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I. INTRODUCTION

Zaslavskii et al. [1] studied the behavior of particles
in the wave packet of an electric field in the presence
of a static magnetic field. For a broad wave packet
with sufficiently uniform spectrum, one may show
that the problem can be stated in terms of an
electrically kicked harmonic oscillator. For rational
ratios between the frequency of the kicking field
and Larmor frequency associated with the magnetic
field the phase space of the system is covered by a
mesh of finite thickness; inside the filaments of the
mesh the dynamics of the particle is stochastic and
outside (in the cells of stability) the dynamics is
regular. This structure is called a stochastic web. It
was found that this pattern covers the entire phase
plane, permitting the particle to diffuse arbitrarily
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far into the region of high energies (a process
analogous to Arnol’d diffusion [2]).

Since the stochastic web leads to unbounded
energies, several authors have considered the
corresponding relativistic problem. Longcope and
Sudan [3] studied this system (in effectively 1%
dimensions) and found that for initial conditions
close to the origin of the phase space there is a
stochastic web, which is bounded in energy, of a
form quite similar, in the neighborhood of the
origin, to the non-relativistic case treated by
Zaslavskii et al. Karimabadi and Angelopoulos [4]
studied the case of an obliquely propagating wave,
and showed that under certain conditions, particles
can be accelerated to unlimited energy through an
Arnol’d diffusion in two dimensions. Since an
accelerated charged particle radiates, it is important
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to study the radiative corrections to this motion.
We shall use the Lorentz—Dirac equation to
compute this effect.

We compute solutions to this equation for the
case of the kicked oscillator. At low velocities, the
stochastic web found by Zaslavskii et al. [1] occurs;
the system diffuses in the stochastic region to
unbounded energy, as found by Karimabadi and
Angelopoulos [4]. The velocity of the particle is
light speed limited, by the dynamical equations, in
particular, by the suppression of the action of the
electric field at velocities approaching the velocity
of light [5].

II. MODEL

In the present study we will consider a charged
particle moving in a uniform magnetic field, and
kicked by an electric field. The effect of relativity, as
well as the radiation of the particle, will be
considered. We restrict ourselves to the “on mass
shell” case.

The fundamental equation that we use to study
radiation is the Lorentz—Dirac equation [7] is

oy €. I, .
Mt = zx,,F’“’ + Yoy (x” - c—zx”x,,xl’), (1)

where vo = (2/3)(ro/c) = 6.26 x 10™**s. 1 and v are
the coordinates of f and x, y,and z (or 0, 1, 2, 3), and
the derivative is with respect to 7, which can be
regarded as proper time in the “on mass shell” case.
F" is the antisymmetric electromagnetic tensor.
The first term on the right hand side of Eq. (1) is the
relativistic Lorentz force, while the second term is
the radiation-reaction term. Note that the small size
of the radiation coefficient (v, < 1) leads to a sin-
gular equation that requires special mathematical
treatment, as well as physical restrictions, as will be
shown in the succeeding sections.

Following Zaslavskii et al. [1], the magnetic field
is chosen to be a uniform field in the z direction, and
the kicking electric field is a function of x in the x

direction,
B = (0,0, By),

E(x,t) = (f(x) io: 6(t—nT),0,0>. @

n=-00

Originally, Zaslavskii et al. chose a uniform broad
band electric field wave packet which can be
expanded as an infinite sum of (kicking) é-functions
(wg 1s the frequency of the central harmonic of the
wave packet, ky is the wave number of the central
harmonic, and Aw is the frequency between the
harmonics of the wave packet).

E. = E(x,1)

= —E Z sin(kox — wot — nAwt), (3)

n=—00

which, for wy=0, becomes

E(x, 1) = —EyTsin(kox) i 8(t—nT), (4)

n=—0o0

where 7= 27/Aw. Equation (2) is the generalization
of Eq. (4), with an arbitrary function f(x) instead of
the sine function of Eq. (4).

In order to introduce a map which connects
between cycles of integration which start before a
kick and end before the next electric field kick, one
has to first integrate over the 6 electric kick and then
integrate the equations of motion between the
kicks, where only a uniform magnetic field is pre-
sent and there is no electric field up to the beginning
of the next kick.

III. THE MOTION OF A CHARGED
PARTICLE IN A UNIFORM
MAGNETIC FIELD

In the case of a uniform magnetic field from
Eq. (2), Eq. (1) reduces to three coupled differential

 The more general case, which also includes the possibility “off mass shell” motion, is discussed in a separate article in this journal [6].
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equations,
ctf =% %o — - XoR
= = X0 — N
0 =701 Xo 20

X=X = —QX2+’70<X1 —§x1R>s (5)

y=X = Qx; +’)/0<X2 —EXZR),

where Q = egBy/moc, R = 33 + %3 — %3, and eg = —¢
(charge of the electron).

Using a complex coordinate [8], u=x-+1iy,
Egs. (5) can be written as,

. w1,
t:’}’()(l —c—2[R>,

| ©)
u=1Qu+'yo(u—§uR).

Here, we wish to constrain the radiatively perturbed
motion to the “mass shell”; to do this it is very con-
venient to use hyperbolic coordinates

{ = coshg,
¢sinh g cos ¢, (7)
y = c¢sinhgsin ¢,

X

since the “on mass shell” restriction (see [6] for
further discussion),

2

¥, =X 437 — Pt = - (8)

is then automatically satisfied. The complex coor-
dinate u then becomes

i = ¢sinh ge'?, )

and the equations of motion Egs. (6) can be written
as,

q= —'yoq52 cosh ¢ sinh g + o4, (10)

¢ = Q+ 2y0q coth g + 0. (11)

As pointed out earlier, in the case of a singular
equation (such as Egs. (10) and (11)), one has to

consider physical arguments as well as mathemat-
ical arguments. There are several suggested meth-
ods to avoid the “run away electron” problem [7].
One of the most frequently used, especially useful
for scattering problems, assumes [9] that the
particle loses all its energy after a sufficiently large
time, and the run away parts of the solution are set
to zero; the equations of motion can then be written
as an integral equation. Another method, which
permits the study of problems with only non-
asymptotic states [10], uses an iterative singular
perturbation integration that leads to the stable
solution. Since the integration we must use is over a
finite time, it is impossible to use an asymptotic
condition (e.g. |v] — 0 at 7 — 00). The Sokolov and
Ternov approach [8] is more suitable for our
purpose, since it can be implemented for bounded
time integration, and the mathematical solution is
simple. In this method, in the first step, the per-
turbation terms in Eq. (11) are disregarded (as in the
iterative scheme of [10]), and then the resulting
equation is exactly integrated. In the second step,
the singular term on the right hand side of Eq. (10) is
not considered; using &(7) from Eq. (11), the
equation including just the first term is integrated.
The solution is [8]

¢ = Qr,

B(t) = tanhq = v—;e_”"’QzT = Boe /™, (12)
where 8= vy/c is the actual (normalized) velocity,
and 79 = 1/700? is the decay time for the energy of
the particle.

To get an estimate for the radiation during one
cycle, we will refer to the maximal uniform
magnetic field that can be achieved today in a
laboratory,* which is O(10T) = O(10° G). If, for
example, By=10°G, then Q=1.76 x 10'%s7!, and
7o=>5x 107s. Thus, it is clear from Eq. (12) that
the particle makes (9/27)7o~ 10'° cycles before it
decays to 1/e of its initial velocity. In other words,
the energy loss during one cycle is very small, and
since in our problem the time 7' between the kicking

1t is possible to obtain a short-lived magnetic field of O(10° G) in the laboratory.
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is of the order of the period, the energy loss between
consecutive kicks is very small. At much higher field
strengths, a qualitatively different behavior may
occur, for which the energy loss may be very high
during a single cycle, and the resulting motion may
be modified to reflect a non-relativistic behavior, or
it may entirely stop before the next kick. This
behavior may result in a stochastic web of a
somewhat different type.

The time between the kicking is measured
according to the observed time along the motion,
At =T. Thus, it is necessary to find the correspond-
ing Ar. It follows from Egs. (7) and Eq. (12) that,

1

(13
/1 — ﬂ%e—Zr/m

The solution of Eq. (13) can be obtained by an
elementary integration,

1+vV1—a?
t:mln<%cl>, (14)

where a = 3ge /™. After some algebraic operations
one gets,

B+ (14 /1 — B3/
AT =15ln 1% k . (15)

2 (/1= Ferin

In Fig. 1 we present the behavior of the function
[(AT(T/T¢))/T0]- It can be seen from Fig. 1 that in
any case,

i =coshq =

Ar<T; (16)

this implies that the time difference according to the
proper time 7 is always less than the time difference
according to the observed time ¢. This fact is similar
to the well known relativistic “time-dilation” phe-
nomenon. The inequality Eq. (16) can also be
shown by considering the two extreme cases,

1+y1-8

T>71=>Ar~T+7ln ) , (17)

1.0

A/t
05
0.0 ‘ < : :
0.0 05 1.0 1.5 2.0
T,
FIGURE 1 The function A7(T/7¢)/To versus T/7¢. Four typ-

ical cases are shown (8,=0, By =0.7, 8o=0.9, Byp=1). All pos-
sible curve lines are between the graphs of 5y=0 and Fy=1.
The dashed line indicates the asymptotic behavior of the case

Bo=1.

B

T<m=Ar=T 1—ﬂ§+7T—+O(T3).
0

(18)

For strong magnetic field (i.e. the case of Eq. (17))
the numerator is less (or equal) than 2 and thus the
In function will give a negative number; in this case
the inequality Eq. (16) is clearly achieved. For a low
magnetic field Eq. (18) behaves like a parabola; the

slope for T=01s y/1 — 33 which is less than 1, and

thus the inequality Eq. (16) is satisfied. As explained
above, in the present study we confine ourselves to
the case of very small T, since this time difference is
constrained because of the limited magnetic field
that can be achieved in the laboratory. Thus, only
Eq. (18) is applicable in this study.

IV. DERIVATION OF THE MAP

In the previous section we have shown the approx-
imate solution for a charged particle circling in a
uniform magnetic field. However, as mentioned
above, the kicking of the electric field from Eq. (2)
is with respect to the observed time 7, and it is
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therefore convenient to integrate the equations of
motion (Egs. (10) and (11)) with respect to ¢.

A. A Charged Particle in a Uniform
Magnetic Field — Integration with
Respect to the Observed Time ¢

The arguments that were used in order to obtain
Eq. (12), as well as the implementation of the chain
rule in Egs. (10) and (11) by the use of Eq. (7) lead
to the following equations of motion

dq 1 .

a;— —'E)'Slnhq, (19)
dp 0
— = . 20
dt  coshg (20)

A simple integration of Eq. (19) yields,

tanh% =eCe7t/m, (21)
where C; < 0. Substitution of Eq. (21) in Eq. (20)
gives,

do t
E-Qtanh(——Q), (22)

70

and the solution is
gb = Q7 In COS][(£ — C]) + (23)
b

where C; = cosh™'(1/8), and C; = tan~"( j,/X0) +
Q7o In Sy. Returning to the original x, y coordinates
(using Eq. (7)), the equations of motion become,

dx CCOS(QTO In(cosh(z/79 — C1)) + C2)

dr cosh(t/m — Cy) ’ (24)
dy CSin(QTo In(cosh(z/79 — C1)) + C2)
de cosh(t/m — Cy) '

It is possible to write Eq. (24) in a more convenient
way, by using the relation

cosh <—t— — Cl)
o
1

= icosh + =

— Bsinh-
B w 1 ﬂosmhm. (25)

Equation (24) then becomes

dx _ (dx/dt)ycosa — (dy/dr)sina

At cosh(t/m) + /1 — Bsinh(t/m)

(26)
dy _ (dx/df)ysina+ (dy/di), cos
df " cosh(1/m) + /1 — A sinh(1/70)
where
_ ! / 2 !
a = Qrn ln(cosh}; (1 +4/1 -85 tanhT—0>>.
(27)

Itis necessary to integrate Eq. (26) since the value
of x is used in the electric field kicking in Eq. (2).
There is no analytical solution to Eq. (26) and a
numerical integration must, in general, be per-
formed. However, since we restrict ourselves to
T/To< 1, it is possible to expand dx/ds and dy/d¢
in a Taylor series and then integrate. The expansion
of Eq. (27) is

2
am /1 —ﬁ§t+1,6§t—+~\/1 s
C(2oa (’4 (28)
7'0( 0) 8)

The first order expansion (according to ¢/7¢) of Eq.
(26) is

dx
dt

| (@) 394%)

2
(@), Graog )]

dy
~ i (@) oG 20%3)

dr
+ dy cos Q Qﬂz £
de/, ’Y '

(29)



288 Y. ASHKENAZY AND L.P. HORWITZ

where v = 1/4/1 — 82. Since [(1/7)(t/T0)] < 1, one

can use the approximation,

1 1 ¢
R (V02 AT
Using Eq. (30), the actual velocities, dx/d¢ and
dy/dt, from Eq. (29) can be integrated and ex-
pressed by elementary Fresnel functions. However,
the effect of radiation is due to the [(1/7)(¢/70)] term
(which multiplies the sine and cosine functions),
and the [(1/2)Q85(£2/7)] term is not essential since
the major offset from the unstable fixed point is due
to the (/)¢ term.
Under the above assumptions the resulting
equations are,

() (-2

SSORG)
5 ) o

The exponential decay from Eq. (24) are replaced
by linear decay.

B. Integration over a ¢ Electric Kick

As pointed out in the previous section, the
Lorentz—Dirac equation (Eq. (1)) is a singular
equation. The electric field which is used in this pa-
per was expanded to a sum of § functions (Eq. (2)).
In that case, Eq. (1) cannot be integrated over the
kick by regular treatment, and some approximation

for the 6 function should be considered, instead. In
the present paper we assumed that the radiation
during the kick is negligible [11]. In addition,
since the integration is over an infinitesimal time
interval, there is no need to consider the constant
magnetic field during the kick.

Under the above assumptions, in the neigh-
borhood of the kick, the Lorentz—Dirac equation,
Eq. (1), can be written as,

d

dt( ) (x) Z 6(t —nT),

d(d) _

de\dr)

Integration over the § function yields,

dx dx
(&), - @) =
Dy (Y
dr/ - \dr/

where the + sign indicates after the kick, and the
— sign before the kick. Following Ref. [1], we chose,

(35)

flx)= ﬂsm(kx) Ksin(kx). (36)
mg

Using the fact that d/dr =-y(d/d¢) one obtains the
following relations,

Y+ =

dey e fdey L (37)
(dt P RN L B 1

dy o (b
de) .~y \dt)_

Returning to the initial charge ¢e= —¢y and thus
Q1 — —(, the map which connects the velocities
from just before the kick to the next kick (by the use
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of Egs. (31)—(33)) is,

(). - (- [(8) (27
R

(55 (—)] G:7)

dy
de n+1

w5 (@), (@) ]
-y K ) (d_)lj }m‘ (40)

Notice that the minus signs in Eq. (37) refer to the
nth points of the map.

It is possible to return to the non-radiative limit
by letting 1/79 — 0. In that case the map is equiv-
alent to the map which was derived by Longcope
and Sudan [3]. The non-relativistic limit, which was
derived by Zaslavskii et al. [1], is achieved by letting
/79— 0 and ¢ — oco.

C. Analysis

Up to the derivation of Eqgs. (38)—(40) we have
passed three stages: (a) the velocities were calcu-
lated using an exact solution and the position x can
be calculated by numerical integration (Eq. (26));
(b) the velocities were approximated by Eq. (29)
and the position x by the elementary Fresnel func-
tion; (c) the velocities were approximated by
Eqgs. (38) and (39) and the position x (Eq. (40))
was derived using elementary integration. Among
all combinations of the solutions for the velocities
and the position x we choose the combination of the
exact solution of velocities (case (a), Eq. (26)) and
the exact solution for the position x (stage (c),
Eq. (40)). The value of x was selected from the third
stage of our derivation since it enters the equation

Vo Vy X

exact solution numerical
integration

semi—exact by elementary

solution Fresnel functions

approximated exact

solution 7 solution

FIGURE 2 A diagram which present all the possibilities for
the map construction. The wider line indicates the chosen
combination.

just in the kicking term, and there it affects the

phase only slightly. Thus, one does not expect that

this fact can change the typical behavior of the

particle. The above analysis is summarized in Fig. 2.
The radiative map is then

dx
de n+1

<d_y) _ —(dx/dr), sina + (dy/dt), cosa
dt /.1 cosh(t/7) + /1 — 2 sinh(t/7)

(42)
wi=-5(%) (&) ]

e [(d) (&
(@), (@) J o @

where the values immediately after the kick are asin
Eq. (37) and « is defined in Eq. (27) (o« — —a since
e = —ep). Note that for our limit (7/7o < 1) there is
not a great difference between the map given by
Egs. (38)—(40) and Egs. (41)-(43).

_ (dx/dt), cosa + (dy/dr), sina

- cosh(t/79) + /1 — 8% sinh(t/7) ’
(41)

V. RESULTS

In order to obtain a web structure, there are
two conditions that have to be fulfilled. In the
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non-relativistic case, the first condition is that the
ratio between the gyration frequency, 2, and the
kicking time, 7, is a rational number, a condition
which can be expressed as follows,

Qr = 27r§, (44)

where p, and ¢ are integer numbers. Secondly, one
must start from the neighborhood of the unstable
fixed point (otherwise, the particle will not diffuse,
and will not create a web structure),

(),
dt/,
dy\ 7w

where n is an integer. The symmetry of the web is
determined by p and g¢. If, for example p=1 and
q =4, the particle is kicked four times during one
cycle, and thus, the symmetry of the web will be a
four symmetry [1].

In the relativistic case [3], the above conditions
are slightly different, because of the additional fac-

tor y/1 — 33 which multiplies the Q7 term. How-

ever, if the initial velocities are small, i.e. vy < ¢, the
additional factor is close to 1, and thus the struc-
ture of the web should not change. In the radiative
and relativistic case, as well as the non-radiative
relativistic case, conditions (44) and (45) become,

(),
(%)0’5 (2n+1)

For sufficiently large initial velocities the above
conditions do not hold any more, and the web
structure is not observed.

In this section we will compare (qualitatively; a
quantitative treatment for the diffusions rate will be
studied elsewhere) the diffusion of the non-radia-
tive particle and the radiative particle. Intuitively,
one would expect that a radiative particle will

(45)

(46)
I _gg%.

diffuse more slowly than a non-radiative one, since
the radiation effects act like friction, and are thus
expected to “stop” the particle. However, this naive
explanation is not true, as we will demonstrate
below.

In order to investigate the above assumption, we
have chosen a four symmetry structure (¢ =4). We
used the same initial conditions for all cases; just the
kicking strength K has been changed. The initial
conditions were B=10, v,(=0, v,0=4x 1073,
k =10, and the number of iterations was N =10°.
In Fig. 3, we present the results as follows: the first
column is the non-radiative case, the second column
is the radiative case, and the third column is the
total velocity versus the iteration number (the cir-
cles indicate the non-radiative case and the squares
the radiative one). In the first row K=1x 107>, in
the second K=2x 10" and in the third K=
4%10°°.

As can be seen clearly from Fig. 3, the web
structure is valid for the radiative case (top panel,
first column). The web structure also exists in the
other cases; the web cells are very small and they are
difficult to see. Although the radiative particle and
the non-radiative particle start from the same initial
conditions they behave differently.

In some cases the diffusion rate of the radiative
case is larger than the diffusion rate of the non-
radiative case, for example, in the top and the
bottom panels after 9 x 10° iterations the radiative
particle reaches a higher velocity than the non-
radiative one. On the other hand, in the middle
panel the radiative particle is slower than the non-
radiative one. Obviously, it is impossible to draw
any general conclusion for the question of whether
a non-radiative particle is faster than the radiative
one. For this a more systematic approach should be
carried out. It would be beyond the scope of the
present paper and will be considered elsewhere.

When the velocity of the particle reaches close to
the velocity of light it actually stops growing
(according to the evolution in time ¢) although it
increases its energy. In Fig. 4 we show an example
for this behavior. The values of the parameters are:
B=10, v,0=0, v,0=1x10"", k=10, K=0.01,
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FIGURE 3 Different types of diffusion behavior as described in the context.

and the number of iterations was N = 1 x 10° (every
10th iteration was plotted). Figure 4(a) and (c)
represents the non-radiative cases, while Fig. 4(b)
and (d) the radiative cases; in Fig. 4(a) and (b) the
map of v, versus v, is presented, while in Fig. 4(c)
and (d) the total velocity v versus the iteration num-
ber is plotted (every 10th iteration was plotted). As
seen from Fig. 4, the particle accelerates quickly to
high velocity, and most of the time stays with this
high velocity, approaching light velocity asymptot-
ically, while increasing its energy to infinity.

VI. SUMMARY AND DISCUSSION

In the present paper we have investigated the
effect of radiation on the stochastic web. Under the
restriction of small magnetic fields (B < O(100T))
an iterative map was constructed. Moreover, the

effect of radiation on the stochastic web is very
small because of the small magnetic field. Qualita-
tively, the non-radiative and the radiative cases
have similar web structure. Despite of the naive
expectation that the diffusion rate in the radiative
case should be smaller than the non-radiative case,
one can find cases in which the opposite effect is
observed.

Although it seems that the effect of radiation is
not qualitatively significant under laboratory con-
ditions, it might have a strong effect in the presence
of a strong magnetic field [11]. Such a magnetic field
could occur near or in a neuron star (or other heavy
stars) and it can cause a large radiation correction
to the motion of the particle. In that case one does
not expect to have a web structure even when the
particle has very small velocity, since the particle
might move from the unstable fixed point and
thus destroy the web structure. On the other hand,
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FIGURE 4 The behavior of a particle with high velocity. (a) the non-radiative map, (b) the radiative map, (c) the total velocity
of the non-radiative case, and (d) the total velocity of the radiative case.

another scenario can take place; the magnetic field
may be so strong that the particle almost stops its
motion before the next kick, and under some sym-
metry conditions it can diffuse to the large energy
regime. The described scheme can reflect a new phe-
nomenon not previously predicted, and could give
some insight to the stellar systems.

We would like to thank I. Dana for helpful
discussions.
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