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Unveil uncertain forces acting into (or onto) systems is a very interesting and old
problem. Indeed, a lot effort has been devoted to develop procedures which results in
the understanding of the uncertain forces and its effects. This contribution deals with
recovering of the dynamics of the uncertain forces from measurements (time series). The
main idea is to construct an internal model of the nonlinear system and design a discrete-
time feedback in such way that the model/system differences be stabilized at origin. In
principle, if the internal model tracks the trajectory of the nonlinear system, then the
uncertain force is recovered by the stabilizing command.
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1. INTRODUCTION

Unveiling the forces acting into (or onto) systems
is not an easy task. In fact, a lot effort has been
devoted to unveil the hidden secrets of nature. The
mathematical model development searches knowl-
edge in this direction. Several theories have been
proposed. There are some alternatives from the
probability theory (for instance, Synergetics [1])
whereas another one departs from the determinis-
tic and operators theory (see, for example, [2] and
[3]). However, mathematical models have some

limitations; hence estimation procedures are
desired.

Recently, estimation procedures have been
taken from control theory. For instance, ob-
servability property [4] of the nonlinear systems
can be exploited to get estimated values of un-

measured states. The observability property
strongly depends on the choice of the measured
state (which is so-called system output if meas-

urements are continuous [4] and time series if
measurements are discrete-time [5, 6]). The main

idea behind observability is the phase-space re-

construction; i.e., the history of all states is

into the time series [7]. The main application of
the observability property has been to recon-

struct, if exists, the attractor of the dynamical
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system [5, 6]. However, in [4] was discussed that 2. PROBLEM STATEMENT
observability property can be exploited to perform
chaos synchronization. This is, if the history Consider the following nonlinear dynamical
of all states is into the time series and the ob- system
servability property conditions are satisfied,
then the hidden states can be dynamically re- 5cl,M- XZ,M (1.a)
constructed. For example, according to Takens
theorem [7], it is possible to reconstruct an em- 22,M FI(XI;pM) + Tl(t; rM) + c(x(t))
bedding of a time series in a phase-space in y Cxt (1.b)
absence of noisy measurements [5] by using time-
delay coordinates. In addition, the time delay where x4E N2 is a state vector, Fa4 (xM; Pt) is a
coordinates can be employed as estimated smooth function (which could be uncertain),
values of a dynamical system to yield chaos (t;rt) is an external perturbation term (which
suppression [8]. Nevertheless, such state re- could be also uncertain) and pro, rm are parameter
construction has some constraints, which can set and yME N is the system output (time series).
be fundamentally seen as sensitivity tradeoffs Without lost of generality, one can denote c(x(t))
[9]. as the unknown force.
On the other hand, from the practical point Note that uncertain forces can be acting into (or

of view, there is an important problem. Can onto) the system. For example, let us assume that
the uncertain forces be reconstructed from the c(x)=0 and Fa4(x:vi;Pa)or T(t;ra)is uncertain,
measured state?. In principle, since the history the force to be unveiled is acting into the system.
of the system is in the time series and the dyna- In same way, if Fa4(xac;pa4) and Ta4(t; ra) were
mical series are yielded by forces acting into known functions, hence c(x)#0 represents the
(or onto) the system, hence the unknown forces uncertain force, which should be unveiled.
can be unveiled from the time series. Indeed, un- Let us now take an almost-exact copy of
veil uncertain forces is an interesting and old the system (1.a), which is so-called mathematical
problem for physicist. Some a priori informa- model
tion is often required; for example, the order
of the system, smoothness or boundedness. Be- 5Cl,s x2 (1.c)
sides, some information regarding noise or

disturbances can be useful. Nevertheless, the 5C2,s Fs(xs;Ps) + Ts(t; rs) + u

more interesting case is to unveil uncertain forces Ys Cxs (1.d)
against the least prior knowledge about the
system, where u is an external force (control law).
A force unveiling procedure is presented in Fs(xs;p,) and T,(t;p,) are known and bounded

this contribution. The main idea is to construct a functions; however; Pa P, and ra - rv.
dynamic feedback, which comprises a control The unveiling problem is: given the system
law and a discrete-time estimator. The estimator output YM and least prior knowledge of the structure

and control cannot be separately designed. This of the nonlinear system (1.a), design an feedback
is, the coupling between the control law and the scheme such that the uncertain forces can be

discrete-time estimator yields the unveiling of unveiled. In some sense, the unveiling problem
the unknown force. The state estimator is based seems as a synchronization one where the

on the time-delays coordinates from time series actual system (1.b) can be seen as the so-called
whereas the control law structure is a stabilizing "master" whereas the mathematical model (1.c)
command, represents the "slave" system. In others words,
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the synchronization objective is that y tracks YM.
which implies that x(t) -- 0 = Xs(t) -- XM(t). This
implies that Fs(x, t; Ps) ---+ FM(XM, l; PM) and
T(t; r) Ts (t; rs) therefore c (x(t)) u -- O. From
the control theory viewpoint, the synchronization
problem can be interpreted as follows. Let us
define xE such that Xi=Xi,M--Xi, for i--

1,2,3,...,n. In this way, the following dyna-
mical system describes the dynamics of the model
error

1 =X2

k2 AF(x, t;pl) + AT(t;p2) + c(x) u

y= Cx
(2)

where AF(x; pl) FM(XM;PM) F, (x,;p) and
AT(t; P2) TM(I; rM) T,(t, r) are uncertain
smooth functions, which represent the mismatches
between dynamical system and its model. Now,
since the unveiling problem can be seen as a
synchronization one and, from the control theory
point of view, the synchronization problem can
be understood as the stabilization of the system
(2) at the origin. Hence, the goal is to find a feed-
back control law u u(x, t) such that lim x -- 0
as l-- oo.

3. THE PROPOSED UNVEILING
SCHEME

3.1. Dynamic Evolution in an Extended Space

Following the ideas reported in [10], let us define
7=AF(x;p)+AT(t;pz)+a(x). Then the model
error system can be rewritten as follows

21 x2 (3.a)

2 7] -4-- u (3.b)

where F(x,7,u,t;Tr) x20(AF(x;p) + AT(t;p2)+
a(x))+[7+u]Oz(AF(x;pl) + 5T(t;p2) + a(x))+
/t, 7r is the parameters set.

It has been proved that, under feedback output
control, the a second-order driven oscillator can
be stabilized at origin (see Appendix in [10]). In
addition, has been proved that the system (3) is
externally dynamically equivalent to the system
(2). This is, there is a time-invariant manifold, (x,
r/, t; r), such that the solution of the system (2) is a
projection of the system (3) as long as the initial
conditions be (x(0), r/(0), 0; 70 0, which is satis-
fied by definition (see Appendix in [10]). In order
to illustrate the geometrical interpretation of the
augmented state, r/, we have selected the Duffing
equation. To perform the numerical simulations,
we have defined the augmented state as follows:
T] (X2 + X X --]- Acos(wt). In this way, one has
that F(Xl, x2, T], H, t)--
Awsin(wt). Figure shows the phase portrait of
the systems (2) and (3). The initial conditions were
chosen as follows: for system (2) x(0)-(0.0, 1.0)
while for system (3) (Xl(0),x2(0),/(0))=(0.0,
1.0.0.01). The same parameters values were chosen
for both systems.

Since systems (2) and (3) are dynamically
equivalent, hence a feedback can be designed from
the system (3) in such way that trajectories of the
system (2) be leaded to origin. In fact, Eq. (3) is
used as an intermediate system toward the con-
struction of the feedback. The main idea is the
following. If one is able to stabilize the trajectories

of the system (3) neither measurements of the
velocity, x2, nor the augmented state, 7, then the
trajectories of the system (2) will be leaded to origin
(prescribed point) against the uncertain terms.

3.2. The Discrete-time Feedback
Via Uncertainties Estimation

Now, let us consider the ideal feedback, which
can be obtained from system (2) as follows:
u=-7+kzx2+klX, where, by definition,
AF(x;pl) + AT(t;p2) + c(x). Under such ideal
feedback the system (2) becomes stable at origin if
polynomial Pz(s)= s2-} kzS-}-kl has its roots at left-
hand complex plane. This implies that the system
(3) is also stable at origin. Nevertheless, the ideal
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FIGURE Blue line is the space-phase of the Duffing sequation whereas black line represents the trajectories of the Duffing
extended space.

feedback requires knowledge about the uncertain
terms. Here, the following estimation procedure
is proposed: The main idea is to estimate the un-
measured states of the system (3) from measure-

ments of the time series y x. It is clear that, from
Eqs. (3.a) and (3.b), the unmeasured states can be
estimated by x2 c2=(Xl(ti)--Xl(ti_l))//kt and
() (,-) (x(;) + 2x(t_ ) x(_))/zx-
u(ti_), where At denotes the sampling rate,
(22,)) are estimated values of (Xz, q) and x(ti)
is the value of the measured state at time t.. In
this way the ideal feedback can be modified to get

u(ti) - l(ti) + k2x,(ti) + k,(x,(ti) x,(ti_,))/At
(4)

where il(t) is given by the above estimator. Note
that the uncertainties estimator l(ti)=(xl(ti)+
2x(ti_ ) x(ti_ 2))/At + u(ti_ ) only requires
knowledge about the measured and the last
control action. This can be seen as a torque
balance. In this sense the estimated value )(t.)

reconstructs the unknown force acting into (or
onto) the system. The feedback (4) and the uncer-

tainties estimator cannot be designed separately.
In this way, the unveiling procedure depends on

two factors: (a) The feedback parameters should
be chosen such that the real part of the roots of
the polynomial P2(s) be negative defined and (b)
the sample rate At be arbitrarily small. Indeed,
as At-+ 0 as the u(h) tends to the ideal feedback,
u. Of course, if At=0 the feedback (4) cannot
be physically realizable. This is, there is a tradeoff
between the estimation and the stabilization capa-
bility, which can be resumed as: The rate of the
uncertainties estimation is limited by stabilization
rate and viceversa. The unveiling tradeoff is illus-

trated in next section.

4. ILLUSTRATIVE EXAMPLES

We have selected two interesting systems: The
former is the magneto-elastic beam. In this system,
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we illustrate that forces acting onto the system can
be reconstructed via the proposed scheme. The
latter is a magnetic bearing. In this case,
the uncertainties source is into the systems. The
unknown function is the force between the magnet
and a class of high-temperature superconductor.

4.1. Unveiling External Perturbing Force

Let us consider the magneto-elastic beam system.
This system was experimentally studied by Moon
and Holmes (see Chapter 2 in [2]) and can be
modelled by the a driven second-order oscillator
(Duffing equation): 5 + 5c- x + x re(t) + u,
where is a damping coefficient, u denotes the
stabilizing command and re(t) is a periodic func-
tion, which represents the perturbing external
force, e.g., re(t)= Acos(wt). Note that in this case
the uncertain force a(x(t)) =_ 0 for all t, see Eq. (1 .b).

Let us assume that only the perturbing force,
re(t), is unknown and unmeasured. In this way, the
augmented state is defined by ./:re(t) and the
extended uncertain system becomes

where 7 and its time-derivative are unknown.
Thus, the internal model feedback is given by

Figure 2 shows the performance of the time
discrete feedback for several sampling rate, At.
The sampling rate were chosen as follows:
At=0.0005 (dashed line), At--0.01 (solid line),

At=0.1 (dotted line) and At=0.5 dash-dotted
line. The unveiling feedback scheme was activated
at t- 50.

If the uncertain force is unveiled (which means
that is close to the unknown force), the control
action compensates the perturbation onto the
system. On contrary, as the At increases the esti-
mated value of the uncertain term the control
action increases and stabilization is lost. For
instance, if At =0.5 (see dash-dot line in Fig. 2)
then the estimation error is around 1.0, the
position, x, cannot be stabilized at origin and
the stabilizing command is larger, u. This is, the
uncertain force can be unveiled if the position
error is stabilized at origin and viceversa.

4.2. Unveiling the Magnetic Force
in a Levitation System

Consider the dynamical system given by

+ + x + t) +

where x means the position, is a damping factor,
-(t)=Acos(t) represents a periodic perturbing
force, a(x, k, t) is a nonlinear function acting into
the system, which represents the force between a

magnet supported by the high temperature Type-II
superconductor [11].

Let us assume that the internal force, a(x, k, t),
is uncertain. Besides, consider that external per-
turbing force, -(t), and damping parameter are

exactly known. In addition, suppose that only
position, x, is available from measurements.
Then, following the above procedure, feedback
with uncertainties estimator is obtained

2(ti) Xl (ti) Xl (ti-1)
At

](ti) Xl (ti) -+- 2Xl (ti-1) Xl (ti-2)
At2

-+- C2(t/) -t- Xl (ti) 7-1 (ti) t2(ti-1

u(ti) --](ti) + (5- k2)c2(ti)
q- (kl 1)Xl (re) 7-1(ti)

(6)
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FIGURE 2 Performance of the discrete-time unveiling scheme. The force acting onto the Duffing equation is unveiled.

where the feedback constants are kl 1.0, k2-- 2.0,
which implies that the roots of the polynomial
Pz(S) are located at -1.0.

In principle, the feedback (6) can be experimen-
tally implemented in a magnetic bearing device.
However, in seek of clarity, we have performed
numerical simulations of the magnetic levitation
process. Although c(x, 2, t) is not exactly known,
it has been reported [11] that the characteristics
of the system can depend on the hypo-elasticity
function whose dynamics is given by &(x,Sc)=
#l[c(x, Sc, t)-(x, Sc)], where lal is a parameter
and the nonlinear function is given by

b(x,k)-ql(X)[l-+-q2(Jc)]. Besides, the nonlinear
functions can be approximated by the force-dis-
placement relation, q51(x)- #2exp(-x), and

-#3 -2,

q52(Jc) (--2(/*3 -+- #4)/2),

where = 0.005, #1 =0.1, #2--0.3, #3--#4 1.0.
Figure 3 shows the performance of the uncertain

force for several sampling rates, At. In this case, if
sampling rate At =0.5 the closed-loop system is



SECOND-ORDER OSCILLATORS: A DISCRETE-TIME FEEDBACK 95

1,0

0,5

0,0
o
12.

-0,5

-1,0

"riMe

1,0

0,5

0,0. -0,5

0 20 40 60 80 100 120 140

Time (Seg)

FIGURE 3 Performance of the discrete-time unveiling scheme. The force acting into the magnetic-bearing equation is unveiled.

unstable; hence the sampling rate were chosen as

follows: At 0.0005 (dashed line), At 0.01 (solid
line) and At=0.1 (dotted line). The unveiling
feedback was activated for > 100. Note that as

the sampling rate decreases the stabilizing com-
mand increases, in consequence the unveiling error

increases. This is, if At- 0 the stabilizing com-
mand approach is not physically realizable. Hence,
the hidden forces cannot be unveiled.

5. CONCLUDING REMARKS

A procedure to construct an unveiling scheme was

proposed in this letter. The unveiling is a discrete-
time feedback scheme and comprises an estimation
procedure and a stabilizing command. The proce-
dure departs defining an augmented state to get
the construction of an extended system, which is
an uncertain nonlinear system. After that, the
augmented state is estimated via backward finite

differences. In this way, the resulting scheme only
requires measurements of one available state at

time ti, ti-1 and ti-2 and the knowledge about last
stabilizing command, ui_ 1. Two illustrative exam-

ples were presented. In first one an uncertain force
acting onto the system is unveiled whereas in the
second one an unknown force acting into the
system is unveiled.

In principle, the unveiling scheme allows to get
an estimated value of any uncertain force from
on-line measurements. Hence, experimental im-

plementation can be expected. Previously, the dis-
crete-time unveiling scheme should be designed.
Then, the following configuration for experimental
unveiling can be proposed: The measurements
from the experimental apparatus are entered to

any computing machine, where the model and the
discrete-time unveiling are programmed. The goal
is to synchronize the experimental system and the
programmed model via the discrete-time scheme.
If synchronous behavior is attained, the estimated
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value of the uncertain force is close to the actual
value. Experimental results will be reported in
short time.
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