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In this paper we present a simple evolutionary model of childrens’ language
development, whose central nonlinearity is represented by noninvertible discrete
dynamical systems. The underlying assumption of the model is that children learn
from other children through their interactions. The concrete learning mechanism used is
based on imitation, where childrens’ languages evolve through attempting to imitate
other childrens’ utterances. The use of imitation in evolutionary models has been used,
for instance, in evolution of bird song by Kaneko and Suzuki. The model to be
presented here is similar to Kaneko and Suzuki’s model, the primary difference being
the continuous nature of bird song, in contrast to the discrete nature of childrens’
utterances.
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1. INTRODUCTION

Recent work in a complex systems approach is
highlighting the co-evolution of vocabulary and
grammar in child language [1], and the interde-
pendence of vocabulary and syntax in language
learning modelled by simple recurrent networks in
a connectionist approach [5].

Before proceeding we shall introduce some
notation, by the following definitions: A vocabu-
lary is a fixed collection of words; an utterance is
a sequence of words generated by a child; the
language of a child is the set of utterances that can
be generated by the child; and finally, an interac-
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tion is when two children talk together. It should
be noted that in our simple model neither words
nor utterances have any particular meaning
associated with them (apart from an inherent
ordering; see later). Improvements on the model
would obviously have to address the issue of
including some meaning, for example, through the
inclusion of a grammar.

In order to keep the model as simple as possible
we will make the following two basic assumptions
about childrens’ development of simple language.
We stress that the assumptions are meant as

suggestive and pedagogical rather than as a full
scale model of the complex phenomena involved in
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real life language development. Firstly, it is
assumed that children learn through interaction
with other children, that is, the learning is an
instance of unsupervised learning, contrasted by
neural networks which normally learn under
supervision [17]. Secondly, the primary learning
is through imitation of other children. Our model
is similar to the bird song model by Kaneko and
Suzuki [10].
The model is reduced from the complications

of real life language use and learning to a few
important qualitative features: basically, speech
generation and learning through reproducing the
speech of others heard in interaction. Current
views of both first and second language learning
emphasise the importance of social interaction in
the development [13, 14]. The model incorporates
key aspects of second language learning in which
both input to the learner and output produced by
the learner are necesssary [15]. The input to the
child in the model arises through interaction, albeit
of a very simplified form that downplays the
importance of comprehensibility or understanding
to learning [12, 13].
The co-adaptive language development being

modelled might be seen as either (a) first language
development after about three years of age, such as

might occur in nursery or pre-school classes, or (b)
classroom foreign language learning through pair
or group work. The major difference between these
two contexts of language development, as far as
the constituents of the model are concerned, lies in
the size of the vocabularies brought to the learning
task. In the first language context, the vocabularies
of pre-school children are estimated at 3000 words
or beyond [14]; in a typical foreign language
context, this level of vocabulary would take at
least four or five years of tuition to reach. The
vocabulary used in the present model is very small
relative to the first language figures, but might be
considered to represent a subset of vocabulary for
a particular group of children, perhaps referring to
a relatively unfamiliar semantic field that is met
only though formal schooling, such as weight and
mass.

The modelling process will involve defining the
development of the following three elements: a
model of a child; a model of interaction between
two children; and a model of the learning process.
Having defined these elements we can continue
with exposing the model to simulated evolution.
This will consist of letting a group of children
interact, and letting (some of) the children learn
from these interactions. After this we can then
evaluate the results qualitatively as well as quan-
titatively. First, we shall simply observe char-
acteristic features of the evolutionary processes,
such as determining what groups of children
perform well, and describing what stable (and
unstable) evolutionary structures are present in the
system; then we will evaluate the complexity of the
languages involved using finite state machines
as models of computation.

In the model, a child will be capable of listening
to other children (though only one at a time), to
think about what it has heard, or rather is
currently hearing, as well as generate speech.
Thus, the child is merely a specific instance of a

much more general situation: An entity capable
of receiving information, processing information,
and communicating information, i.e., the compo-
nents characterising a computer.
The organisation of this paper is as follows. In

Section 2 the mathematical model is derived and
formulated. Section 3 introduces the fitness land-
scape and examples are given. Then in Section 4
we present the results of simulated evolution in the
model by descriping the evolved structures. In
Section 5 we evaluate the complexity of the lan-
guages developed and interpret the results in this
context. Finally, Section 6 contains a discussion
of the presented results.

2. THE MODEL

Let us briefly go through the main model com-

ponents, listening and speaking. The first com-

ponent is the listening device. This determines how
much we listen to ourselves and others. In one
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end we mainly ignore others and essentially we
have autonomous speach. This is referred to as low
coupling. At the other end we mainly listen to
others and ignore our own internal state; this is
called high coupling. For the speech generation we
need to know what we say in the absence of input,
i.e., autonomous generation of speech. We shall
pick the speech generation process as the model’s
primary nonlinearity, and most interpretations will
be in terms of this parameter. The model of a
single child will be characterised by three main
parameters, one determining the speech process:
a parameter p E [0, 1] (which will be referred to as
the parameter); one determining how much the
child listens to others during imitation: a

coupling c E [0, 1]. Finally, it is also necessary to
specify how the child starts to speak autonomously
through a state x0 [0, 1]. In the present model this
is always chosen randomly (i.e., Xo in Eq. (2) below
is always chosen by a pseudo random number
generator).
To simplify matters we will let each child have

access to the exact same vocabulary consisting of,
say, 20 words. As an example the vocabulary could
consist of the following words:

and, dog, not, cat, why, pat, sit, bat, let, say, has,
him, her, dot, wet, hot, hat, run, all, win.

The only significance of the words is that they
are ordered as we have just listed them. That
means that we consider the word pairs (and, dog),
(sit, bat), and (hot, hat) as being close, and
similarly the word pair (and, win) is considered
distant. The number of words in the vocabulary
is a parameter in the model and the effect of
changing it will be considered. Although all
children have the same basic vocabulary they
may not all be able to use all of the words in the
sentence, especially the words at the end of the list
are not used as much as those in the middle (the
explanation for this lies in the used speech gen-
eration process outlined below).

Let us now explain the autonomous discrete
speech generation (as in the case of a child being
asked to say "something"). The process must

generate a sequence of discrete elements, i.e.,
words taken from the vocabulary. Discrete state
systems are then a natural choice, e.g., finite state
machines, Turing machines and cellular automata.
However, we have chosen to use a continuous
variable, namely by the use of the logistic map,
and then apply coarse graining (or symbolic
dynamics) to generate utterances, as we describe
in the following. We start by generating a sequence
of fixed length, say, 20, {x0, xl,...,x19} by the
logistic equation

where a is determined by the parameter p through
the relation a=ao+p/2 where a0= 3.5 and the
initial condition x0. This sequence is converted to
an integer sequence {I0, I,... ,I19) by transform-
ing each x,. to an integer by I,.--integer part of
(20x.), i.e., by a coarse graining of the orbit.
Finally, the integer Ii is transformed into a word
by the vocabulary, i.e., Ii-0 gives and, and I; 6
gives sit. As an example of the creation of an
utterance consider the orbit {0.01, 0.16, 0.49, 0.71,
0.82}. This is turned into the integer sequence
{0, 3, 9, 14, 16}, which in turn yields the utterance

{and cat say wet hat}. Let us in passing note that
the choice of the logistic map as the underlying
dynamical system is rather arbitrary; any system
capable of generating complex dynamics could
presumably be used.
Having defined the autonomous speech genera-

tion we can proceed to define the interaction
between two children. The interaction between is
an imitation process. A child evaluates its lan-
guage by attempting to imitate an utterance
generated by another child and vice versa. This is
carried out as follows. The imitated child talks
autonomously (using Eq. (1)). The imitating child
listens to the other child while simultaneously
"talking" but not out loud; this is a transient
phase. After a while (an utterance of fixed length)
the imitating child stops listening and attempts
to imitate the other child by autonomous speech
and initial condition as generated by the transient
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phase. The roles are reversed and the imitation

process repeated. We then assign a score depend-
ing on their ability to imitate each other.
The mathematical details of the interaction are

as follows. The child that is being imitated

generates a sequence autonomously by the recur-

rence relation

yn+l ay,(1 -y), n 0, 1,..., 18 (2)

whereas the child attempting to imitate is being
coupled to the child being imitated. The non-

autonomous recurrence relation used here is

x,+l a((1 e)x, + ey,,)
(1 ((1 e)x, + ey,,)),

n=0,1,...,8
(3)

For small values of the coupling parameter e

the result very similar to that generated by the
autonomous process described in Eq. (2). After
the non-autonomous speech the imitating child
USeS

x,+=ax,,(1-x,), n 9,10,11,...,18 (4)

where a ao+p/2 and e is the coupling paramter
with different parameter and coupling values for
the two children.
For future reference, Figure shows the

bifurcation diagram for the nonlinear map in Eq.
(2). Note that this is a truncated version of the
usual logistic map for the chosen parameter range
[0, 1]. Also note the periodic windows, e.g., the

period three window near p 0.68. More informa-
tion on the behaviour of the logistic map can be
found in, e.g., Guckenheimer and Holmes [9] and
Collet and Eckmann [2].
The learning process is clearly an important part

of the model. If a child performs poorly relative
to other children it will learn; if it performs well
it doesn’t learn from the interactions. We have
chosen to let the speech generation process be
the only dynamic quantity during evolution,
meaning that the coupling remains fixed over

time. This is done in order to make it easier to

interpretate the results. To make sure that learning
is gradual, the learning involves adding or

subtracting a random number between 0 and
0.01 to the current value of the nonlinearity
parameter. The only exception is when p becomes
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FIGURE Bifurcation diagram for the reparameterized logistic map.
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larger than one we subtract one, and similarly
when the parameter becomes negative we add one.
This effectively places the nonlinearity parameter
on the circle, i.e., p E S1.
As mentioned above we assign a score to the

performance of the children in the imitation game.
This is done by measuring the quality of the
imitation. To do this we define the difference
between two utterances by the formula:

Z (distance between words)2

words in utterance

or more precisely

19

(integer part of(201xk ykl)) (6)
k--10

The better speaking child receives 10 points, the
poorer point; in case of a tie both receive 5.5
points. As described in Section 4, in the round
robin tournament, dealing with simulated evolu-
tion, the scores are normalized such that the best
overall gets a unit score.

3. THE FITNESS LANDSCAPE

To represent the performance of the children (or
the individual speech generation processes) we can

produce a so-called fitness landscape. The fitness
landscape represents the performance or fitness of
all individuals in a population relative to all other
individuals. To determine the landscape we take a

population of children and let all children interact
with all other children in a round robin tourna-
ment. The total score of each child is then
normalized with respect to the best score. The
fitness landscape is plotted by showing the fitness
versus the nonlinearity parameter. A general
feature of the fitness landscape is that it is in
general rugged, see, e.g., Kauffman [11]. We note
that the fitness landscape depends on the popula-
tion, and hence when evolution takes place (as we
will include later on), the fitness landscape changes
over time. In other words it may be considered the
goal of each individual to move around in the
changing fitness landscape attempting to optimize
its performance.
To test the importance of the size of the

vocabulary we have computed the fitness
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!|1[, perid’5perlod-4 |

0.95

0.9

0.85

0.8

0.75
0 0.2 0.4 0.6 0.8

p (nonlinearity)

FIGURE 2 Fitness landscape for a vocabulary with two words.
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FIGURE 3 Fitness landscape for a vocabulary with twenty words.
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FIGURE 4 Fitness landscape for a vocabulary with one thousand words.

landscape for different vocabulary sizes, and
a population containing 1000 individuals (small
variations occur depending on the number of

individuals, but the qualitative appearance is the
same). Each child is assigned a randomized
coupling between 0 and 0.1 which remains fixed.
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In Figure 2 we have shown a fitness landscape for 4. SIMULATED EVOLUTION
a vocabulary with only two words. Note the
ruggedness of the landscape. Figure 3 shows a In this section we will present the results of
fitness landscape when the vocabulary contains carrying out simulated evolution in the model.
twenty words. There are obviously many differ- The recipe is very straightforward. We take a

ences between the fitness landscapes shown in uniformly randomized population of children,
Figures 2 and 3, but also similarities are present, i.e., they have random nonlinearity and coupling
such as the ruggedness. More important simila- parameter. The children then interact with all
rities are the peaks in the landscape, for example, other children in a round robin-like tournament.
the largest peak is close to 0.7, located near the Through each interaction the children accumulate
period-3 window (as is also indicated in the a score determining their fitness in the current

figures). Also note the smaller peaks near some population. A ranking is performed and the 10%
of the period-4 and period-5 windows. These poorest performers then learn, according to the
peaks are all clearly present in both fitness simple ruled described above. These steps are then
landscapes. Dramatically increasing the size of repeated over and over. We shall now show some

the vocabulary to one thousand words yields a examples of simulated evolution in the model with
fitness landscape as shown in Figure 4. The a population of 100 children and discuss the
qualitative similarity with the previous landscapes results.
is clear. Hence we conclude that the system As we are only including evolution on the
dynamics does not critically depend on the size nonlinearity parameter, we can plot this parameter
of the vocabulary. For simplicity we shall there- against time, i.e., for each, say ten time units (or
fore fix the size of the vocabulary at twenty words longer depending on the time scale) we show the
until Section 5 where it will be reduced to two parameter for each individual against time. In
words. Figure 5 we have shown the evolution taking place
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FIGURE 5 Simulated evolution in a population of 100 children.
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on a time scale from 0 to 1000. The initial
population is uniformly distributed as can be seen
on the ordinate axis. Around time 50 we note that
there is a depletion of individuals around the
parameter 0.6 which lasts until time 200. The
explanation for this can be seen in the fitness
landscape shown in Figure 3. The average fitness
of individuals near this parameter value is rather
poor, and hence the individuals located here
initially have learned and moved away from this
region. Similar depletions are seen many places in
the figure, but is most notable in this region where
it occurs repeatedly. Another feature we can note
is the clustering of individuals, particularly near
0.7. Figure 3 reveals that this is where the main
peak is located. Another concentration is found
around 0.8 at another peak. This structure also
seems to persist on the time scale shown. A smaller
clustering can be found near 0.95, but this is less
stable, i.e., it can be seen how the individuals here
disappear around time 600 only to return later.
The reason for the latter being unstable is found
in Figure 3 where we can see that there are
individuals with poor performance in the region

around 0.95, and hence the noise level (in the
evolution) makes this evolutionary structure un-
stable. Increasing the time horizon to 10000 we
obtain the result shown in Figure 6. Here the
structure near 0.7 becomes even more pronounced
and its stability emphasized. The two other
previously mentioned regions are seen to reappear
occasionally but are never stable for long. An
interesting feature present in this figure but not in
the previous one, is the clear trend of individuals
below 0.7 moving towards lower values of the
nonlinearity parameter. Again Figure 3 provides
a clue. It can be seen that for decreasing values
of the nonlinearity the average fitness increases
slightly, but of course with many fluctuations.
Increasing the time horizon once more to 100000
yields Figure 7. Here the structure around 0.7
is still stable, and we conclude that it is stable for
all times. The two other regions of clustering of
children can be seen to exist once in a while but not
for long judged on this time scale. The downwards
moving trend is now barely visible which is due to
the fact that it now moves downwards with a slope
ten times larger, i.e., almost vertically.
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FIGURE 6 Simulated evolution in a population of 100 children.
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FIGURE 7 Simulated evolution in a population of 100 children.

$. COMPLEXITY OF LANGUAGES

In the previous section we saw that simulated
evolution leads to clustering of children, with some
clusterings beings stable, some unstable. The
clusterings were located around specific parameter
ranges, which corresponded to the peaks in the
uniformly randomized populations fitness land-
scape (for example, as shown in Fig. 3). These high
performance peaks were located near large peri-
odic windows for the underlying logistic map (see
Fig. 1). Thus, simulated evolution does tend to
produce a clustering around parameter values for
the speech generation process that performs well in
the imitation process. However, it does not answer
any questions about what kind of languages are

doing well. To investigate this we shall attempt to
evaluate the languages used by the children in the
model.
To evaluate the language of a child we need to

decide what is meant by the complexity of a

language. This is obviously not an easy question to
answer satisfactorily, so we shall settle for an
operational definition. We will define the language
in terms of how difficult it is to recognize the set of

utterances generated by a particular child. In other
words we wish to construct a machine that, given
an utterance, is capable of determining whether
it could have been uttered by that child.
The language of a child can be difficult to

describe, and we will approach the problem with a

straightforward operational definition. Many chil-
dren in the model are capable of chaotic word
composition and hence can generate infinitely
many utterances. Thus to simplify we only consider
utterances of fixed length, more specifically we will
only consider utterances of length ten. To deter-
mine the language we first have the child generate
ten utterances, each of length one thousand. These
utterances are then searched with a template of
length ten for all possible occurrences of strings of
length ten (out of the total possible number which
is 21= 1024). The set of different utterances found
is then defined as the language.
As we recall that the fitness landscape does not

depend sensitively on the number of words in the
vocabulary, we shall for simplicity only consider
the case of a binary language.
A language recognizer is a special case of a finite

state machine, see, e.g., Grimaldi [8] (more
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advanced machine models of the computation of
the logistic map are described in Crutchfield and
Young [4]). It can formally be described as a three-
tuple IS, I, f) where S is the set of states of the
finite state machine, I is the input alphabet, in this
case is the binary alphabet I= {0, 1}, and f: S x
I S is the function determining the next state
as a function of the present state and the input.

Figure 8 shows an example of a simple finite state
machine that recognizes the language defined by
the binary strings {000, 001,100, 110}. In the figure
it is clear that the two states 4 and 5 are identical
since they give rise to the same next state on the
same input, i.e., f(4,0) =f(5,0) and f(4,1) =f(5,1).
Collapsing these two states to one single state leads
to a smaller finite state machine equivalent to the
original. Continuing to collapse identical states is
a minimization process that leads to the smallest
finite state machine equivalent to the original one,
which is easily constructed. We then define the
complexity of a language as the number of states in
this minimal finite state machine.
To illustrate the minimization procedure we

shall now minimize the finite state machine shown
in Figure 8. As mentioned above states 4 and 5 are

equivalent and hence can be collapsed. The same is
true for state 3 and the acceptance state (note that
we haven’t included the arrows on the error and

acceptance states: the arrows should point to the
states themselves). Reducing the recognizer we
obtain the finite state machine shown in Figure 9.
Considering states and 4 we can see that they
map to the same states under the same input, and
hence they can be collapsed into one single state.
This yields the finite state machine depicted in
Figure 10. We observe that this machine cannot be
reduced any further, and hence it represents the
minimal finite state machine capable of recogniz-
ing the language {000, 001, 100, 110}.

0

FIGURE 9 Partially reduced finite state machine recognizing
the language {000, 001, 100, 110}.

0

FIGURE 8 Sample finite state machine recognizing the
language {000, 001, 100, 110}.

Accc

FIGURE 10 Minimal finite state machine recognizing the
language {000, 001, 100, 110}.
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FIGURE 11 Complexity of the language of children against the nonlinearity parameter.

In Figure we have shown the computed
complexity of the languages against the nonlinear-
ity parameter for a total of 2049 children,
uniformly distributed along the nonlinearity para-
meter axis. The most notable feature of the figure
is the peaks, which are much more pronounced
than the performance peaks in the fitness land-
scape. We recognize the largest peak as the period-
3 window in the logistic map where the most
dominant clustering took place during simulated
evolution. Also we note the period-4 and period-5
windows that had visible clustering during evolu-
tion. In addition there are a few peaks to be seen in
the left hand side of the figure, most prominently a

significant peak associated with another period-5
window. The figure shows that the most complex
languages are not created in the period-3 window
but rather in the period-4 and period-5 windows.
However, as we saw these are not as important
during simulated evolution. This is due to the
narrow structure of the peaks. Remember that
there are a number of inherent noise factors. First,
initial conditions before imitation are always
chosen at random, and secondly the learning

process adds a random number to the individuals
nonlinearity parameter when they learn. Especially
the latter has the effect of destabilizing very
narrow peaks. The most interesting information
we gain from Figure 11 is that the system
dynamics clearly selects individuals with languages
that are complex in terms of recognition, although
there is nothing in the system dynamics that refers
to the complexity of the language (only the ability
to imitate matters).

6. DISCUSSION

We have described a model of childrens’ language
development whose central element was the speech
generation process. This process was based upon
discretization of the orbits of noninvertible maps,
here logistic maps. The model of language devel-
opment was based on imitation, i.e., the childrens’
skills were measured by their ability to imitate
utterances of other children. The relative abilities
were presented in terms of the speech generation
parameter by computing the fitness landscape. The
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peaks in this landscape, which correspond to good
language skills with respect to imitation, were seen
to be located mainly in periodic windows for the
logistic map, with only the largest ones being
visible, the largest by far being the period-3
window.
The model was extended with a learning

mechanism by which the poor performing children
could learn from the better. This was used in
simulating evolution in a model with many indi-
viduals interacting through imitation. The dy-
namic interactions and hence learning lead to

clustering of children near parameter values where
periodic windows are located.
We introduced the complexity of the language

of a child through the number of states of a
minimal finite state machine capable of recogniz-
ing the child’s language. It was demonstrated that
the imitation mechanism during evolution selected
exactly those children with complex languages,
in the above sense. This was despite the fact that
the imitation process contains no information
about the complexity of the language. We saw
that even more complex languages existed but that
they were destabilized these in evolutionary terms
by noise.

Evolutionary models such as the present repre-
sent a qualitative approach to analysing complex
dynamical systems, in that they are constructed as

analogous to the real life system, not as a direct
representation of it [7]. The model of language
learning that we have explored contains only a few
features characteristic of real life language use
and development. In evaluating the usefulness of
computational modelling in the investigation of
extremely complicated real life systems, such as
language development, the extent to which the
model mimics, or not, the behaviour of real life
systems will give some indication of usefulness. If
a simple model performs appropriately, it might
be gradually developed by introducing further
features.
The features that were selected to be included

in the model-speech generation and learning
through reproducing the speech of others-are

central to language development in both first and
foreign language contexts. Evolving the model led
to the clustering around certain values, and to
a preference for the children who succeed in learn-
ing to be also those who develop more complex
languages, but not the most complex languages
which was due to the noise level as discussed
above. The model produces this as an emergent
outcome; it could not have been predicted from
the components of the model.
How does the emergent behaviour of the model

compare with real life language development? In
some key ways, the model reflects what applied
linguists and teachers would recognise as intui-
tively likely: reproducing the speech of others can
lead to the development of a more complex
language, as it has been defined here, which
contains some sense of being original or unex-

pected. The finding that this process is more
successful for the good speaker (those around the
period three window) than for really excellent
speakers, or those who are not so good, is initially
surprising, but might reflect the need for alter-
native ways of learning for children of different
proficiency levels. On the other hand, the less
positive learning experience of those children with
just slightly less complex languages than the good
learners is a counter-intuitive outcome that needs
further study.
The model we have presented is clearly extre-

mely simplified and, of course, many aspects have
been left out. There are obviously many ways in
which one could develop the model. If we start
with the speech generation mechanism it is impor-
tant that the underlying model is capable of
generating complex utterances, which was the
main reason for our choice of the logistic map. It is
possible to use other maps, for instance, higher
dimensional maps that include more parameters,
all or some of which could then be included in the
learning process. Since the utterances we require
are composed from a discrete set one could also
consider the use of finite state machines or Turing
machines, both of which could immediately deliver
utterances without coarse graining. The richness of
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the dynamics of the logistic map would require
large finite state machines and Turing machines
if we were to mimic these.

Other models of interaction could be tried.
For example, it would be better to include a

dynamic coupling rather than the static being
used, in order to reflect how speakers accommo-
date to each other in the process of word com-

position [3].
It is possible to maintain reproduction as the

main mechanism of learning but rather than the
current use of unsupervised learning one could
introduce supervised learning with a teacher or

other helpful adult who could present more
learnable utterances for reproduction. Likewise
the model of learning, which is extremely simple in
the present model could be replace by something
more sophisticated, for instance, a learning me-
chanism that takes some account of the child’s
zone of proximal development [16], i.e., that at any
given time, certain things are easier to learn than
others [6]. It would also be interesting to include
additional effects into the model, such as a

grammar which would constrain the order of
words in an utterance.
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