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Conventional adaptive expectation as a mechanism of stabilizing an unstable economic
process is reexamined through a generalization to an adaptive adjustment framework.
The generic structures of equilibria that can be stabilized through an adaptive
adjustment mechanism are identified. The generalization can be applied to a broad class
of discrete economic processes where the variables interested can be adjusted or
controlled directly by economic agents such as in cobweb dynamics, Cournot games,
Oligopoly markets, tatonnement price adjustment, tariff games, population control
through immigration etc.
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1. MOTIVATIONS

Adaptive expectations, as one of the main back-
ward-looking expectations, has long been utilized
by economists to stabilize a dynamical economic
process. Early in Nerlove (1958), it was shown that
a traditional linear cobweb model with naive
expectations could be stabilized, should adaptive
expectations be introduced. Since then, numerous
studies on the effects of adaptive expectations on

the stability of economic equilibria have emerged
under different contexts such as oligopoly markets
(Okuguchi, 1970, Okuguchi and Szidarovszky,
1990) and adaptive learning (Marcet and Sargent,
1986) etc. Most studies are concerned either with
the comparison between the consequences of

adaptive expectations and rational expectations,
or with the stability conditions of equilibria under
some specific model specifications (Fisher, 1961).
Along with the prevalence of the forward-

looking expectations such as the rational expecta-
tions hypothesis since the 1960’s, the adaptive
expectations has become gradually outdated
(Mills, 1961). It wasn’t until the emergence of
nonlinear dynamics of chaos in the late seventies
that adaptive expectations once again attracted the
attention of economists. For instances, Heiner

(1989, 1992) showed that the adaptive adjustment
of decision variables can lead to their convergence
to optimal targets under a general decision-making
framework. Chiarella (1988) and Hommes (1991)
observed that a Cobweb model with adaptive
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expectations and nonlinear but monotonic supply
and demand curves may lead to chaotic fluctua-
tions. Other related studies can be found in Naish
(1993); Conlisk (1993); Garratt (1997) and Onozaki
et al. (2000). Recently applications to duopoly
models are provided by Puu (1997, 1998), oligopoly
market of multiproducts are given by Szidarovszky
and Weiye (2000) and Rassenti et al. (2000).

Theoretically, even though the adaptive expec-
tation can be ensured to equate its realized
counterpart in equilibrium, the convergence to
such an equilibrium can not be guaranteed,
especially in the case of a nonlinear multi-variables
process. It is the aim of this article to reconsider an
adaptive expectations scheme as a means of
stabilizing a nonlinear economic process from an

angle different from conventional studies. Instead
of focusing the stability conditions under some

specific economic processes, we shall turn to
exploring the internal dynamical structure of an
economic process that can be stabilized through
adaptive expectations under a general framework.
To furnish this purpose and to have a broader

view about the rationale and functioning of
adaptive expectations, we proceed by generalizing
the concept of adaptive expectations to adaptive
adjustment mechanism in such a way that eco-
nomic variables are directly adjusted adaptively to
their equilibrium. More specifically, for an en-

dogenous economic variable, say price, Pt, adap-
tive expectation in economics means that the
expected price for next period pte+l is formed
iteratively (dynamically) through weighted aver-

aging of current period’s expectation (formed in
last period) with current period’s realized price as
follows: pet+l- (1- oz)p -+-cpt, where c is com-
monly referred to as an adjustment parameter, and
is assumed to be in the range of zero and unity. By
adaptive adjustment, however, we mean to purpo-
sely modify a discrete economic process xt+=
O(x,) into Xt+l--(1--3‘)O(xt)-+-3‘Xt, where the ad-
justment parameter 3‘ is positive but allowed to be
greater than unity. The goal of implementation of
the adaptive adjustment is to stabilize an economic
process X,+l-O(xt) directly through variation of

the adjustment parameter 3’, regardless of how the
process is formed and what type of expectation is
actually assumed in the model. In economics, an

adaptive adjustment scheme so defined can be
applied to a broader class of discrete economic
processes where the variables interested can be
adjusted or controlled directly by economic agents,
such as in cobweb dynamics, Cournot games,
Oligopoly markets, tatonnement price adjustment,
tariff games, population control through immigra-
tion etc.

Despite the fact that partial adjustment models
have been widely utilized in economic analysis, by
which an economic variable is purposely adjusted
towards its desired value, the idea of stabilizing an
economic variable to a desired but a priori
unknown equilibrium through adaptive adjust-
ment, to our knowledge, has never been formally
addressed. Due to the increasing complexity
arising from higher dimensions, the convergence
issue is not as trivial as expected to be. As a matter
of fact, not all discrete processes can be stabilized
through adaptive adjustment in the conventional
sense-where the adjustment parameter is re-

stricted between zero and unity.
On the other hand, a rapidly growing interest in

complex and chaotic economic dynamics has been
witnessed in the last two decades. Although chaos
can be a beneficial feature on some rare occasions
(Huang, 1995), its undesirable characteristics such
as irregularity of orbits and strong sensitivity to
initial conditions and perturbations generally lead
to detrimental consequences. It is therefore wished
that chaos could be suppressed or adjusted so as to
force a dynamical economic process to converge to
a desired and "stable" equilibrium. Controlling
chaos, or more generally, stabilizing a unstable
dynamical process, thus has become a fascinating
topic recently and various algorithms and methods
have been proposed (see Chen and Dong, 1998
and references therein). Being effective in science
and engineering, these algorithms are difficult to
implement in economics due to the reason that a

priori information about the processes variables
and internal structure are always demanded. The
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adaptive adjustment mechanism, however, over-
comes such limitations and is proved to be an effec-
tive stabilizing mechanism for a chaotic process.
The paper is organized as follows. The ensuing

section briefly discusses the connection between
conventional adaptive expectations and adaptive
adjustment mechanisms in a one-dimensional
discrete process. Some basic properties are sum-
marized. Section 3 makes a simple generaliza-
tion the adaptive parameter is allowed to exceed
unity. Such generalization greatly improves the
power of the adaptive adjustment mechanism in
stabilization. Section 4 turns to higher dimensional
processes (multiple variable processes), where
uniformly adaptive adjustment is introduced and
analyzed, by which all economic variables are

adjusted with the same speed. We show that such
adjustment succeeds in stabilizing type-I and type-
II steady states (the steady states with all eigen-
values either greater than unity or less than unity).
The situation where economic variables are adjust-
ed with different speeds (that is, non-uniformly
adaptive adjustment) is the main focus of Section
5. Section 6 turns to the controllability issue.
Possible areas for further research and concluding
remarks are addressed in the last section.

2. FROM ADAPTIVE EXPECTATIONS
TO ADAPTIVE ADJUSTMENT

In a traditional cobweb model, a perfectly com-

petitive firm must make its output decision one
period in advance of the actual sale- such as in
agriculture, fishing, forestry, and construction,
where the application of production inputs must
precede by an appreciable length of time the sale of
the output. It is assumed that the firm supplies its
output Qt based on the expected price P, that is,
Qt- S(Wi) and that the actual price Pt adjusts to
demand so as to clear the market, that is,

D(Pt) s(pet ), (1)

where D(Pt) is the market demand function.

Under conventional monotonic assumptions
(D’(.)<0 and St(.)>0) and so called naive
expectations P Pt-1, the market clearing condi-
tion (1) yields the so called quantity dynamics:
Qt--f(Qt-1)- S(D- I(Qt_ 1)).

If an adaptive expectation is adopted instead,
that is, P7 aPet-1 + (1 o)Pt-1, where 0 _< a < 1,
the quantity dynamics turn turns into Qt-
S(aS-1(Q 1)+(1 -a)D- I(Qt_ 1)"
When S takes a linear form, we then have

Qt aQt-1 + (1 o)S(D-l(Qt_))
(1- o)f(Qt_l) + OQt_l, (2)

that is, adopting the adaptive expectation rule
amounts to adjust adaptively the output Qt
directly with the same adjustment speed .

Heiner (1992) explained the rationale for why
economic agents would adaptively adjust to new

conditions, should they be unable to fully under-
stand the dynamic complexity of the optimal
decision over time. As he elaborated: "Given the
endogenously implied result, agents should focus
their attention on searching for an equilibrium
instead of trying to remain optimal at each instant
while dynamically adjusting".

Stimulated by the format of (2), we consider an
one-dimensional discrete economic process defined
by a first order difference equation:

Xt+l f(x,), (3)

wheref(xt) is a nonlinear function well defined in a
domain I [Xmin, Xmax]. Here, the function f can
be either "single humped" or "multiple humped",
either continuous or discontinuous, either smooth
or non-smooth (in the sense of C1), but must
intersect the diagonal axis xt+j-xt at least once.
That is, there exists at least one 2 such that
f(.) .

By adaptive adjustment mechanism in conven-
tional sense, we means the following modification
to the original process (3):

Xt._F1 --(X,)-%(I ")/)f(x,) -- ")/X (4)
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-’y)F(X(t))l+ ;)
Original System F(X(t))

X(t)x(t)

Stabilized System:X(t (1 -7)F(X(t)) + 7X(t)

FIGURE Adaptive Adjustment Mechanism.

where the constant 7 is commonly referred to as

adaptive parameter, and is assumed to satisfy the
constraint of 0 < 7 < 1. For the convenience of
later reference, we call the range between zero and
unity as the conventional range.
The conventional adaptive adjustment mechan-

ism resembles closely but not identical to partial
adjustment process where an economic variable xt
is adjusted gradually to its target x* through the
recursive process: xt+ xt 7(x* x). The con-

vergence to x* is guaranteed as long as 0 < 7 < 1.
In this article, we shall extend our interest

beyond the conventional scope of the stability
criteria of adaptive expectation and directly
explore the possibility of stabilizing a unstable
process through adaptive adjustment by (4) focus-
ing on the range of adjustment parameter(s).
The following theorem briefly summarizes some

unique properties of adaptive adjustment in the
conventional sense.

THEOREM The adjusted process .(xt) defined
by (4) possesses the following mathematical
characteristics:

(I) The process (xt) preserves the domain of the
original process f(xt).

(II) The processes f andf share exactly the same
set of fixed points, that is, .for any

I- [x,i,, Xm,x], (ff(2)-- 2, then.?(2) 2.

(III) Adaptive adjustment stabilizes the original
process in the sense that

]" (x) <- If’ (x) l, ff’ (x) > or f’ (x) <_ O,

and

>_’(x)>_f’(x), if O<f’(x)< 1,

where 0 <_ 7 < 1.
(IV) The greater the 7 value, the greater the

stabilizing effect.
Although these properties are straightforward, we

still include a proofjust for the convenience of later
comparison and references.

Proof

(I) Let the interval I-(Xmin, Xmax) with Xmi <
Xmax, be the domain of the chaotic process f,
and suppose that Xmi and Xmax are achieved
byfat x and xh, respectively, i.e., Xmin --f(xl)
and Xma :f(xh), with Xmi X X

h
Xmax,

then

j(x) (1 7)f((x) + 7x
(1 ")/)Xmin q- ")/x

_> (1 -’)/)Xmin q- Xmin Xmin,

?(x (1  )f(x +
(1 7)Xmax q- ")Ix

h

(1 -")/)Xmax @ Xmax Xmax,

that is, f maps I into I itself.

(III) The property is directly concluded from the
following identity:

?’(x) +
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(IV) Taking the partial derivative with respect to -y
over both sides of (5) gives

for any 3’E(0,1) and x EI. (6)

We see that (0/0)j’(x) takes a positive value
iff’(x)< and negative value iff (x)< 1.

By intuition, the greater the -y value is, the less
the original process f is weighted in the adaptive
adjustment mechanism. Q.E.D.

Property Ill reveals that, under conventional
adaptive adjustment, all branches of f with
negative slopes are tilted counter-clockwise around
the fixed points, while all branches of f with
positive slopes that are greater than unity in value
are tilted clockwise. Even though the degrees of
steepness of those branches with slope between
zero and unity are increased slightly, the resulting
slopes still stay in the "stable" region (less than
unity). And hence, adaptive adjustment effectively
"stabilizes" those unstable fixed points while

leaving stable fixed points intact. Geometrically,
as illustrated by Figure 2, the conventional adap-
tive adjustment mechanism actually "squeezes"

the original process towards its diagonal axis:

Xn + Xn"
It follows from above the discussion that, for an

one-dimensional dynamical process defined by (3),
if there exists at least one fixed point 2 such that

f(2) < 0, then there always exists a constant -*defined by

-1 -f’(2) (7)"Y f’(2)

such that for all ",/(’*, 1], the process under
adaptive adjustment given by (4) will converge to

the stable fixed point. The convergence is guaran-
teed for all the initial points sufficiently close to

this particular fixed point.
It deserves mention that Property I! does not

hold for periodic orbits (i.e., fixed points of higher
order). Although there does exist an one-to-one
correspondence between the periodic points of f
and those of, the exact locations of these periodic
points are actually different. This results from the
fact that the solutions to 2(k) =fk(2()) and to
2() j(2()) are no longer the same if k is greater
than one. Although this is acceptable in most

applications, there are situations where the origi-
nal periodic orbits are preferred. In this regard, we

0()

1 1

O.5 0.5

0 0
0 0.5 0

Xt+ (1 7)xt(4xt 3) + 3’xt O(x) xt+ (1 ’)(3xt Mod 1) + 7xt

f/,,;4

:/."11 ’,I I
’/,/
V "/

O.5

FIGURE 2 Effects of Adaptive Adjustment.
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need to modify the adaptive adjustment mechan-
ism accordingly so to insure the trajectories
converge to a desired periodic orbit.

Redefine the adaptive adjustment mechanism as

--?m(X,) + (8)

where fm f of o... of denotes mth recurrent

rn times

process off. By similar arguments, the set of fixed
points ofj2m are identical to the ones offm, which
implies that, with a suitable choice of 7, the
adaptive adjustment algorithm defined by (8)
can lead to a stable periods-m orbit inherited
fromf

3. FROM CONVENTIONAL RANGE
TO GENERALIZED RANGE

Conventional adaptive adjustment mechanism
proposed in the last section is inherited from
adaptive expectation widely applied in economic
analysis and is effective in stabilizing only fixed
points with negative derivatives. This limit se-
riously impairs its effectiveness in application to
economic analysis. While it is true that bending
and folding are common characteristics for a
chaotic process to exhibit perpetual aperiodic
phenomena, the existence of a fixed point with a
negative derivative may not be guaranteed for
processes such as xt+l 3xt mod 1, for x c [0, 1] as
illustrated in Figure 2b.
Even if there exist such fixed points with

negative derivatives, they may be undesirable or
of no economic meaning under a particular
economic context. We need to have a mechanism
that can overcome this limitation so as to ensure
the convergence of an adjusted nonlinear process
to any desirable fixed point, no matter what sigr
its derivative may take.
To this end, we generalize adaptive adjustment

by extending its adjustment parameter to exceed
unity.
Denote 2 as the fixed point of f with slope

greater than unity, i.e., f(2) > 1, then it follows

from identity (5) that <1 can be easily
achieved by extending adaptive parameter 7 to the
range of (1, (f’ (2) + 1) / (f’ (2) 1)).

Such generalization may not have the same
economic interpretation as the conventional adap-
tive expectation, but it is mathematically feasible
and practically effective. In order to distinguish
from conventional parameter range, we refer to

7 > as the generalized range.
To see the effect of adaptive adjustment with 7

taking values in the generalized range, we recall
that j"(x)- (1- 7)f"(x). In contrast to the case
with 7 < 1, in which j" (x) preserves the same sign
off" (x) and the net effect is to squeeze the original
process toward the diagonal line (under most

circumstances), now has the opposite sign of

f’(x) in most cases, while jU(x) is always opposite
to f" (x). So the net effect of adaptive adjust-
ment in the generalized range is to reflect the
original process against the diagonal line in the
phase diagram. These points are well demon-
strated in Figures 2a-2b, where thick lines are for
the original process, medium lines for the pro-
cess adjusted in the conventional range, and thin
lines for the process adjusted in the generalized
range.

Example 1 Consider a cubic process defined by

Xt+l O(xt) xt(4xt 3) 2,

and illustrated in Figure 2a, from which we see

that the fixed point .2--(1/2) is stabilized with
conventional AAM with (1/2), the fixed point
at two ends xl =0 and x3 1, however, can only
be stabilized by generalized AAM with /c[1,
ma,,], where ")/max ((0’(0)--- 1)/(0’(0)- 1)) (5/4).
However, no matter what value may take,
adaptive adjustment always preserve the positions
of these fixed points.

Finally, we emphasize that, while Properties I[

to IV stated in Theorem still hold for the
generalization, Property I may not hold true
anymore, because the domain for bounded dy-
namics may be narrowed if is allowed to exceed
unity
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4. FROM ONE DIMENSION
TO MULTI-DIMENSION

The principal of adaptive adjustment can be easily
applied to multi-dimensional discrete processes,
but the analysis turns out to be much more com-

plicated due to the presence of complex eigen-
values and a lack of direct correspondence between
eigenvalues and the adjustment parameters.

Consider a n-dimensional dynamical process
defined by

The stability of a fixed point, X, is jointly
determined by all the eigenvalues {A}. Let
IAmaxl- max. IA I, Mathematically, the fixed point
X is stable if IAmaxl < 1.
We are only concerned with the unstable fixed

points, that is, the fixed points with IAmaxl >_ 1.
Denote a pair of complex conjugates Aj. and Xj

by

Aj aj + bji, Aj aj bji,

X,+I V(Xt), (9)

where Xt (xt, X2t,... Xnt), and F (fl,f2,...,
fn), with j) being well defined functions on a
domain In.
DEFINITION By Adaptive Adjustment Mechan-
ism (AAM for short), we mean the following
adjusted process:

Xt+l ’r (I- r)V(Xt) + rXt, (10)

where I diag{q,, 72,..., 7n} is a diagonal matrix,
with 7;-> 0, for i-1,2,..., n and is referred to as

an adaptive parameter matrix hereafter.

Expressing (10) as Xt+ F(Xt) + I(Xt- F(Xt)),
we see that AAM forces an adjustment whenever
the relevant process variables stray away from its

previous state. The practical implementation is
illustrated in Figure 1.

Let X be the fixed point of (9), that is, X F(X).
It is easy to see that the process r(Xt) shares
exactly the same set of fixed points of F, that is,

’v(), which will be referred to as the generic
property for later reference. The other properties
stated in Theorem 1, however, can not be similarly
satisfied in the multi-dimensional implementation
of AAM.
Denote J(X) as the Jacobian matrix of the ori-

ginal process F evaluated at with {A1, A2,...,
as the n roots of the characteristic equation: i.e.,

0,

where I is a unit matrix.

with the modules Ij -I,j V/4 +
For the convenience of later reference, we

classify a unstable fixed point according to the
modulus of related eigenvalues as follows"

DEFINITION 2 (Classification of Unstable Fixed

Points) Type-I Unstable Fixed Points a. < 1, for
all j, i.e., the fixed points with all eigenvalues less
than unity in real parts;

Type-II Unstable Fixed Points a-> 1, for all j,
i.e., the fixed points with all eigenvalues greater
than unity in real parts;

Type-III Unstable Fixed Points ai > 1, aj <
for some i, j, i.e., the fixed points with some real
parts greater than unity, others less than unity in
real parts;
Type-IV Unstable Fixed Points there exists at

least one j such that either aj or Aj. 1, i.e., the
fixed points with unity eigenvalues.

The objective of adaptive adjustment is to
stabilize a unstable fixed point such that, after
introducing an appropriate adaptive parameter
matrix I=diag{71, ")’2,’’-,")’n}, all eigenvalues,
denoted by A, J-1,2,...,n become less than
unity in modulus. Unfortunately, except for some

special situations, there does not exist an one-to-
one relationship between A, 7# and j. like identity
(5) in general, and hence the analysis of the effect
of each 7. on ,j turns out to be extremely difficult
in high dimensional cases.

Instead of addressing the general adaptive
matrix I directly, we start with one special case

in which a simple relationship analogous to
identity (5) can be established.
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This special case is related to the so called
uniformly adaptive adjustment,

{7,%... ,T} Tin,

that is, all economic variables are adjusted with
same speed:

x,+ [ )F(X,) + x,. (11)

We shall see that the discussion with such
simplified process, which is commonly seen in
economic modeling where all endogenous vari-
ables are adjusted by a single economic agent
(tatonnement process, for instance), can provide
us invaluable insight into the mechanism of
adaptive adjustment in general.

Let J(X) be the Jacobian matrix of the process
evaluated at and {,l, ,2,..., ,,} be the related

eigenvalues, so that

d

AI (X)]- U(A ,j) 0. (12)
j=l

Then we have

THEOREM 2 For each and every fixed point of F
and F, there exists the following one-to-one

correspondence between their eigenvalues:

Aj-(1-7)Aj+7, J- 1,2,...,n.

Proof It follows from (11) that

T(X) (1 -7)J(X) + 7|. (4)

The characteristic equation-under the process
is given by

where (( 7)/(1 7)), so that Aj would
imply identity (13). Q.E.D.

Theorem 2 and the generic property together
enable us to adjust the eigenvalues to become less
than unity in modulus by suitable choice of a

single adaptive parameter 7 only.
To get a general picture of the role played by the

adjustment parameter 7, we examine the situation
in which a pair of conjugates are presented.

Adopting the same notations introduced before,
for an eigenvalues A=a+bi related to the
original process F, its counterparts from [" is

,j (1 7 (aj + bji + 7 [(1 7)aj + 7]
+ (1 7)bji.

The modulus is given by ]’jl- v/Hi(7), where

2 2My(7) ((1 7)aj + 7) 2
-4- (1 7) bj. (5)

Let j be the critical adaptive parameter such
that Hj(j) 1. Solving from (15), we have

2(aj 1)
5/j- + (16)

(aj. 1) 2 + bf’
and Hj(/)-2(aj-1). Therefore, jX1 and

/-/(j) >< 0 if and only if aj. >< 1.
For the special cases 7-0 (without AAM) and

7- (no effect of the original process), there exist
the following identities and inequalities’

4 + > 0,

Hj(O) 2(aj Hi(O)),
Hj(1)- 1,

/-/.(1) --2(1 -a) X 0 if aj><0.

Also note that

/-/a"’ (7) 2((1 a/) 2 + b.) > O.

These relationships enable us to explore the way
Itj (7) is changed with 7 in term of the nature of

Hi(O)"

Case A H/(0)> (and hence > If aj <
we have H:(0)j <0 and H(I)> 0. The identity
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Hi(l) implies that there always exists a j such
that Hj(Tj)< for all 7 E (j, 1). However, when

7 > 1, H.(/) will resume to exceed unity.
If aj > 1, both Hi(0) < 0 and Hi(l) < 0 hold true.

The convex property of Hj reveals that Hj is

decreasing along the increase of 7 from 0 to (but
never to the extent that it is less than unity).
Therefore, there always exists a j. such that
H(7 < for all 7 E (1, j). But when 7 > , Hj(7)
starts to exceed unity again.

If a--1, although /4j(7)< 0 holds for 7 < 1,
Hj(7) is always greater than unity.
The above analysis is illustrated in Figure 3a

with the omission of subscript j, where H(0) 4 is

assumed, and H(7) is plotted against 7. We see, no
matter what a is, uniformly adaptive adjustment
with 7 < always helps in reducing the magnitude
of the modules. It also observed that the modulus
of an imaginary eigenvalue (a 0, b > 1) can only
be reduced by a 7 that is less than unity.

Case B Hj(0) < (and hence I jl < ): This case
exists only when aj < 1. Since H(0)
2(a- Hj.(0)), introducing a 7 that is less than
unity may decrease or increase the eigenvalue at
the beginning, but finally increased again until

Hj (1) 1. Hence, when 7 (0, 1), Hj (7) will never
exceed unity so that the stability of a fixed point is

preserved. To the contrary, when 7 > 1, Hi(7) will
become greater than unity so as to destabilize a
stable fixed point. Case B is illustrated in Figure 3b,
where H(0) =_ 0.6 is set.

When the original eigenvalue is real (Aj-aj),
identity (16) is simplified to

(Aj / 1) (17)- X.-1

which is the multi-dimensional analogue of (7).
The relationship between A and ) with respect to 7
is demonstrated in Figure 4.

It follows directly from the above analysis that:

TUEOREM 3 For a n-dimensional dynamical pro-
cess Xt+ l-F(Xt), a unstable fixed point X can be
stabilized through uniformly adaptive adjustment
defined by (11) if and only f( is either a type-Ifixed
point (aj < for allj- 1,2,..., n) or a type-Ilfixed
point (aj > for all j- 1,2,..., n).

Proof Let aj. and b. be the real part of eigenvalues
Aj, j- 1, 2,..., n, associated with a fixed point X.
respectively, and define "j + ((2(aj 1))/
((a.-1)2+b)), for j 1, 2,...,n. Denote
/min min{l, 2,. ?n} and "max max{’l,
/2, /n}.

H a 2a/= -1 H

_g__=--__!

./ 0
e

/=1

1aa,./=0 7ITa.gina:.Eigenvaluea 1.5
\\ a -0.g’/ _7 > 1 destabilizes

(a)Unstable fixed Orbit (b)Stable fixed Orbit

FIGURE 3 Effects of 7.
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-1

FIGURE 4 Effects of T-Real Eigenvalue.

When X is a type-I fixed point, that is, a/< for
all j-1,2,...,n, (but some a/<- 1), from the
reasoning above, for every j, there exists an

interval (./, 1) such that the eigenvalue resulting
from AAM will be less than unity in modulus (i.e.,
I,’j] < 1), if y (j, ). Therefore, if "7 (max, 1),

<
Similarly, if X is a type-II fixed point, that is,

ai> for all .]’-1,2,...,n, stability condition

I1 for all j is guaranteed when the adaptive
parameter / is take in the interval (1, /min),

Q.E.D.

Example 2 Consider the Hennon process X,/I
0(X,), defined by

X2t+ XI

This is a famous chaotic process with a strange
attractor. There are two fixed points" 511
(0.8839,0.8839) with eigenvalues {AI1),AI)}
{0.156,-1.924}, and X2 (-1.5839,-1.5839)
with eigenvalues {AI2),A2)} -{3.26,-0.92}, re-

spectively. Apparently, Xl can be stabilized
through uniformly adaptive adjustment since both
eigenvalues are less than unity.

11)_ All)+
Al1)-

1.3697,

,1)_ Al)+
A{l)

0.31601.

So it would be expected that the adjusted
process

Xlt+l (1 --/) - @ - X2t X21t

X2t+l (1 ")/)Xlt -- ")/X2t

(19)

will converge to the fixed point 511
(0.8839, 0.8839) when / (0.31601, 1).

Figure 5a shows the bifurcation diagram of x,
against the adaptive parameter -y after discarding
first 300 iterations. Along with the increasing of "7
the dynamics changes from pure chaos to multiple
periodic points, and finally convergance to the
stable fixed point X when T > 0.3.
To have a better idea of the effectiveness of

uniformly adaptive adjustment, two numerical
simulations are overlapped together in Figure 5b
for the cases of’7 0.2 and -y 0.4, respectively.
With these two adaptive parameters, the process
rapidly converges to a periodic-2 orbits and the
fixed point Xl, respectively. But it should be
emphasized that, while the fixed point converged
to, under -y- 0.4 is "generic", the periodic-2 orbits

converged to under 7-0.2, however, is not

inherited from the Hennon process.

Example 3 Oligopolistic Competition (Theocharis
(1960)) Consider a market with n oligopolistic
firms producing a homogeneous output, and with
a linear market demand curve p, a- bin___l xit,

where a > 0, b > 0 and x;t is the actual output of
firm at time t. We also assume linear cost curves

Cit for each firm, Ci,-C,+ cixit.
Given the assumption that each firm has an ex

ante market price expectation based on the belief
that the other firms’ outputs will remain un-

changed, namely

t+ a-- b xit+ @ xjt
,ji
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x(t) Bifurcation of Hennon Map
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(b)

Fixed point Converged (3’ 0.4)

Periodic-2 Orbits Converged (7 0.2)

FIGURE 5 (a) Bifurcation Diagram of ; (b) Stabilized Orbits under AAM.

on the basis of which firm determines its output

xit + ,, aiming at maximizing its expected profit

Cit/l7rt+ lot+ Nit+

axit+l bx2it+l bxit+lXjt (Ci -- cixit+l )"

The first order condition gives linear Cournot
reaction functions:

a--i
n

2b 2Xit’ fori-l,2,...,n.xit+l

At an equilibrium, the Jacobian matrix is a

constant matrix given by

It can be verified that the eigenvalue of J is

A, (- (n 1)/2) and ,ki- (1/2), for i- 2, 3,..., n.

Therefore, the process is unstable when n _>_ 3.
Since all eigenvalues are less than unity, the

process can be stabilized through uniformly

adaptive adjustment, which can be shown to be
identical to the situations that all firms take
adaptive expectations with the same weight.
The critical parameter - is equal to

"--((Al+l)/(Al-1))--((n-3)/(n+l)), that
is, the market is stable if all firms take the same

adaptive expectation:

,.)/*Pt+l (1 a b xit+l + Zxj, +/*pt,

where "* E (((n 3)/(n + 1)), 1), which results in
an adaptive adjustment model:

(1 "7) ( a ci
Xit+l 2b IN-’zXjt - ")/Xit.

2

However, in Example 3, it is unrealistic to assume

that all firms take on exactly the same adjustment
parameter % therefore, we assume that non-

uniform adjustment is taken. That is, each firm
decides its own adjustment speed, %- so that

/
xi,+l (1 "yj) [ 2b 2 ZxJ’ + jXit" (20>

ji

The stability of the equilibrium is now determined
by the dominant eigenvalues of the Jacobian
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matrix given by

71 --(1--71)/2 (1--71)/2
--(1--72)/2 72 --(1--72)/2 (1--72)/2

(1-%)/2 -(1-%)/2 7,

Since the demand function and cost functions are
all continuous, so are the reactions functions
under AAM given by (20) and the Jacobian ma-
trix ). If the dominant eigenvalue of) is less than
unity in modulus when all firms adopt the same

adaptive weight 7", 7* c (((n 3)/(n + 1)), 1),
which is a special case of non-uniformly adjust-
ment, we would have no doubt in expecting that,
when q/js are sufficient close to "y*, the dominant
eigenvalue of ]l is still guaranteed to be less than
unity in modulus.

5. FROM UNIFORMLY AAM
TO NON-UNIFORMLY AAM

Adaptive adjustment mechanism with general ad-
aptive matrix may be more realistic in economics
where different variables are adjusted by different
economic agents with different adjustment speeds.
In practice, there prevail the situations where only
a part of economic variables are adjustable.
We have concluded that the uniformly adaptive

adjustment fails in stabilizing type-III and IV fixed
points. We then expect that an AAM with a non-

uniformly adaptive matrix P defined in (10) may
overcome such limitations.
By intuition, it seems to be possible to stabilize

any type of fixed point by a suitable adaptive
parameter matrix P, with some 7s in the conven-
tional range, others in the generalized range.
Formally, it is questioned that, for a given
nonlinear process (9), if its fixed points are of
type-Ill or type IV, whether there always exists
an adaptive parameter matrix P=diag{-yl,
2,...,%}, with at least one and j such that

/;%., such that the adjusted process (10) is

stabilized at the same fixed point. The answer is
unfortunately negative.

Mathematically, a simple relationship between
the original eigenvalues and new eigenvalues
analogous to identity (13) can be obtained only
for some special situations such as recursive

processes (to be discussed in the sequel). Now
that all economic variables are dependent on each
other, on one hand, stability may be easily
achieved by adaptively adjusting only part of the
variables. On the other hand, if each economic

agent reacts to the unstable dynamics in different
ways, each and every aims at stabilizing its related
variable only, the overall result could become
totally erratic, should no coordination be taken.
To exemplify the above remarks, we start with

the examination of a 2-dimensional discrete
process.

Let J(X) be the Jacobian matrix associated with
a fixed point of some two-dimensional process:

J(2)- ( ac db)
Denote

T a + d trace of ,7,
79- ad- bc determinant of J,
7-{ "7-2 4D,

then eigenvalues of J() can be expressed in term
of these invariants, as follows

/1.2 1(r -+- X/-)- I(T-q- X//’2- 4D). (21)

The stability regime and distribution of unstable
fixed points can be depicted in a (T, D) plane,
which is sketcheen in Figure 6.

It is shown that a type-IV fixed point is
represented by the divergence bifurcation bound-
ary T-D= 1. While a type-III fixed point
(A1 > 1, A2 < 1) occurs only under two situations:

(i) 7)<1 and 7--D>l;and
(ii) D> 1, T-D< 1, but >0.
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Type-Ill

D

Type-I

FIGURE 6 Distribution offixed points.

With adaptive adjustment of P-diag {’)/l, ")/2},
the Jacobian matrix becomes

(1 ")/2)d @ ")/2 )
(22)

which gives the eigenvalues ,,2 pair as ,,2
(1/2)( +/- V/7z2 475) where

7
z T + 7, (1 a) + 72(1 d),

and

1 )( ")/2)) @ ’7-’)")/1 ")/2 @ a")/2 @ ")/l d.

We see that, even for a 2-dimensional process, the
relationship between adjustment parameters T,2,
original eigenvalues ,1,2 and new eigenvalues
becomes very complicated.

It is easy to verify that the simple relationship

,/--(1-j)A/+yj, j-- 1,2

exists if and only if one of the following situations
OCCUFS: (i) ")/l 2, i.e., un(/brmly adjustment; and
(ii) boz- O, i.e., recursive processes.

In general, when "yl ")/2, each eigenvalue is
affected by both adjustment parameters symmet-
rically, the interaction of these adjustments makes
the comparative statistic analysis of overall effects
become quite difficult.
Now that uniformly adaptive adjustment, which

is a special case of non-uniformly AAM, can
stabilize both the type I and type II fixed points,
by the continuity argument, we can assure the
existence of a non-uniformly adjustment para-
meter matrix P diag {’yl, ")/2, ")/n} (with at least
a pair (i,.j) such that Ti- .j) that can stabilize type
I and type II fixed points. A type-IV fixed point
can only occur when process parameters take some
critical values (bifurcation values) and hence is
liable to change into either a type-I or a type II
fixed point, we shall not discuss.
Then what remain unsolved is type III fixed

point, that is, the fixed point with part of the
eigenvalues are greater than or equal to unity but
the rest are less than unity. Several issues need to
be resolved.
At first, even though we have shown that a type-

III fixed point can not be stabilized through uni-
formly adaptive adjustment, we are still not sure
whether they can be stabilized through a combina-
tion of adaptive parameters that are not identical
but all in the same range (either in conventional
range or generalized range). An "impossibility" is
shown for a 2-dimensional process.

Actually, for the Jacobian matrices (21) and
(22), we have

7:- 75-- (1 ")/i)(1 ")/2)(’7- )- 1)-/ 1,

which implies

(1) A type-IV fixed point can not be stabilized
by any (/1,/2), owing to the fact that
7:- Z}- if T-D-1.

(2) A type-IIl fixed point with 77< and T-
D> can only be stabilized through a
combination of (’71, "2) satisfying the inequal-
ity (1 -F) (1 -72) < 0, that is, one takes values
in the conventional range, the other takes
value in the generalized range.
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Secondly, does there exist any special form
processes that AAM always works-not only for
type-I or type-Hfixed points, but also for type-Ill
fixedpoints? The answer is definitely "Yes" One of
such processes is the recursive process that has
been widely applied in economic analysis.
A nonlinear process F(X)--{fl (X), f2 (X),...,

f (X)}, with X--(xl, x2,...,xn), is recursive if f,.
depends only on the first/variables, that is,

x,+ A(x,, x2,, x,)

Xnt+l --fn(Xlt, X2t,...,Xnt)

(23)

THEOREM 4(Recursive Systems) For a n-dimen-
sional recursive process defined by (23), /f
(dfi/dx,)lx=s 1, for i=1, 2,...,n., then there
always exists an adaptive parameter matrix P
diag {, 72,...,7,} such that the adjusted
process

Xt+, ’r (I- F)F(Xt) + IXt, (24)

can be stabilized to its generic fixed point

Proof If F is recursive, then at the fixed point 2,
its Jacobian matrix is a upper or lower triangular
matrix. Following the definition of (24),

af’ 0 0

/ dr: 0
J(R)---

dx1 dx2

dx dx2 dx, X=R

(25)

with eigenvalues )i (dfi/dxi), 1,2,..., n. At
the same fixed point, the Jacobian matrix for

adjusted process (24) becomes

j(x)

dfl +71(1 7gx, 0 0

(1 72) 7T (1 72) 72 72 0

(26)

which gives rise to the eigenvalues:

i- 1,2,...,n.

It follows from the discussion in previous sections,
if (dfi/dxi)ix=5:- 1, that is, the fixed point is not
of type-IV, there always exists a 7; > 0 such that
],i] < 1, for all i- 1,2,..., n. Q.E.D.

Theorem 4 serves both as an example that a
type-III fixed point can be stabilized through non-
uniformly adaptive adjustment and as an example
that a type-IV fixed point that can not be stabilized
through AAM.

6. FROM JOINTLY AAM
TO INDIVIDUALLY AAM

The last issue deserving our attention is the
controllability. As we have commented before, if
a multiple-dimensional process is not symmetrical,
the effect of each adaptive parameter %
i= 1,2,...,n, on the stability will be different.
There exist situations that some of adaptive
parameters are dispensable, that is, the process
can still be stabilized if these variables are not
adjusted (7;=0). On the other hand, there are
some critical adjustment parameters are indispen-
sable, that is, the stability can not be achieved if
any one of them takes zero value. This point can
be clearly illustrated through the following three
examples.
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Example 4 Part of adjustment parameters are
indispensable" For a two dimensional process, if
its Jacobian at the fixed point is given by

,._ (,l-+-/k2 0

then its counterpart from adaptive adjustment

.__ ((1- 1)(,1-+-/2) -t-"Y1 -(1 Y1),l,2)2 0

will produce . -(1/2)( @z-4), where-- (1-1)(1-

In this case, the adjustment parameter ")/2 has no
effect on the real part, so there exist some cases
that the dynamics can not be controlled by "y2

alone.
In fact, if -y 0, we have ,2

(1/2)((,1 -+-/2) -+- V/(/kl -q-/k2) 2 -+-4,klA22). Either
],kl-1-,21 > 2, or ,’1 /2 > 0, ")/2 will become ineffec-
tive. Therefore, 71 is indispensable.

Example 5 All adjustment parameters are indis-
pensable (Muth, 1961): Consider an isolated
market with output lags. Current demand for
consumption purposes Ct is assumed to depend on
current price Pt, while current production Qt, due
to the output lag, depends on the price p that was
expected to hold in the current period. It is also
assumed that the commodity is non-perishable, so
that inventories It of it can exist, and are in fact
held for speculative purposes, i.e., to profit from
expected changes in prices. Storage and other costs
are assumed to be negligible for the sake of
simplicity, we arrive at the following:

Qt apet + cxt,

It b (pte+, -Pt),
Ct -cpt,

where a, b, c and c are positive constants, xt
represents the effect of exogenous factor (such as

the weather) on supply and all the variables are
measured as deviations from equilibrium.

Without loss of generality, we let c=0. The
model is completed with a market clearing
condition: Ct + + It+ (Qt+ + It) 0.

It is assumed that expectation is rational, which
means perfect foresight in a deterministic context:
pe_ Pt. Without loss of generality, let c-0, the
production and inventory determining processes
are then given by:

Qt+ f Qt It) Qt + ozlt
It+l f2(Qt,It) flQt + (1 + ozfl)It,

where c (a/b) > 0 and/3- + (c/a) > 1.
Now the Jacobian matrix is

The eigenvalues will be a positive reciprocal pair
due to the facts that

A1A2 D- 1,

and

A + A2 T- 2 + 043,

which suggests that the fixed point (0,0) is a type-
III fixed point.

If the stability is pursued with adaptive adjust-
ment so that the production and inventory are

adjusted with speed of 7 and 72, respectively,

Qt+ 7 )(Qt + odt) + ")/1Qt,

It+ (1 72)(flQt + (1 + ceil)It) + 72It,

The Jacobian matrix is adjusted to

d ( (1 ")/2)fl
(1 ")/1 OZ-- (1 ")/2)Ofl

Let 5 c/3, we have b Id + 5> (1 ")/2).
Therefore, D > if y’y2--0, which implies the
neither producer nor inventory keeper alone has
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enough power to force the process converge to the
equilibrium. The stability can only be achieved
when the producer is taking an adjustment speed
in the conventional range, while the inventory
keep takes it in the generalized range.

Stabilization regime is jointly given by flip

bifurcation boundary (/2 1) + 75 1,
and 2 > 1, where T- 2 + (1 -y2)5. A typical
example is illustrated in Figure 7 for 5 2.

This is an example of both economic agents are
indispensable.

Finally, we provide an example in which both
economic agents are dispensable, that is, either one
is able to stabilize the market.

Example 6 None of adjustment parameters are

indispensable (Puu (1997)): Consider a duopoly
market where two firms produce identical goods,
denoted by x and y, with constant marginal cost
a and b, respectively. The market demand func-
tion is 1/(x + y). It is assumed that both firms
take Cournot strategy so that the each profit is
maximized with the assumption that the output of
its rival will not change, which gives rise to the so
called Cournot reaction functions:

At the equilibrium "-(2,y)-((b/(a+b)2),
(a/(a + b)2)), the Jacobian matrix is

2(a+b)
/(X) 2(a+b) A 0

0

with eigenvalues ,1,2 -nt- ,’-- -Jr- ((1/2(a+b))- 1).

If A > 1, the fixed point 5[ is of type-III. If both
firms decide to take adaptive adjustment with ad-
justment parameters /1 and "y2 respectively, that is,

then, at the same equilibrium 5[, the Jacobian
becomes

ZT(X) (1 --y2)A

which yields an eigenvalue pair"

+  r2)

IV/+ g

5=2 iYl=l

Real 1 < "
Complex 1

]t2=l

7’27’2[ Real < Complex Il <

"/__.722_
s

ss
s
S

S
SS$
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FIGURE 7 Asymmetric Stabilization. FIGURE 8 Symmetrical Stabilization.
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In this model, both firms have equal power in
adjusting the market stability. So the stabilization
regime in (1, "Y2) plane is symmetrical. Moreover,
either firm alone can stabilize the market by taking
an adaptive speed in the generalized range. A
typical stabilization regime is illustrated in
Figure 8.

7. CONCLUDING REMARKS

In this paper, Conventional adaptive expectations
as a mechanism of stabilizing an unstable econom-
ic process is reexamined through a generalization
to an adaptive adjustment framework. The generic
structures of equilibria that can be stabilized
through adaptive adjustment mechanisms are
identified theoretical and numerically. The adap-
tive adjustment schemes so defined can be applied
to a broader class of discrete economic processes
where the variables interested can be adjusted or
controlled directly by economic agents, such as in
cobweb dynamics, Cournot games, Oligopoly
markets, tatonnement price adjustment, tariff
game, population control through immigration
etc.

Comparing to other algorithms so far proposed
in the natural sciences, the adaptive adjustment
mechanism possesses some unique advantages.
First, it requires neither a priori information about
process nor any external generated control signal.
Secondly, it is easy to implement in practice. Last
but not least, it force the process to converge to its
generic fixed points.

References

Chen, G. and Dong, X. (1998) From Chaos to Order, World
Scientific, Singapore.

Chiarella, C. (1988) "The Cobweb Model, its Instability and
the Onset of Chaos", Economic Modeling, 5, 377-384.

Day, R. H. (1994) Complex Economic Dynamics. Volume 1o
MIT Press. Cambridge and London.

Fisher, F. M. (1961) "The Stability of the Cournot Oligopoly
Solution: The Effects of Speeds of Adjustment and Increasing
Marginal Costs", Review of Economic Studies, XXVIII(2),
125-135.

Gandolfo, G. (1996) Economic Dynamics, (Springer-Verlag,
Berlin).

Garratt, A. and Hall, S. G. (1997) "E-equilibria and adaptive
expectations: Output and inflation in the LBS model",
Journal. Economic Dynamics and Control, 21(7), 1149-1171.

Conlisk, J. (1993) "Adaptive Tactics in Games", Journal of
Economic Behavior and Organization, 22(1), 51 68.

Heiner, R. A. (1989) "The Origin of Predictable Dynamic
Behavior", Journal of Economic Behavior and Organization,
12, 233- 257.

Heiner, R. A. (1992) "Adaptive Stability with Limited
Structural Knowledge", Journal of Economic Behavior and
Organization, 18, 123-126.

Hommes, C. H. (1991) "Adaptive Learning and Roads to
Chaos, The Case of the Cobweb", Economic Letters, 36,
127-132.

Huang, W. (1995) "Caution Implies Profit", Journal of
Economic Behavior and Organization, 27, 257-277.

Marcet, A. and Sargent, T. J. (1988) "The Fate of Systems With
Adaptive Expectations", The American Economic Review,
78-2, 168-172.

Mills, S. E. (1961) "The Use of Adaptive Expectations in
Stability Analysis: A Comment", The Quarterly Journal of
Economics, 75-2, 330-335.

Muth, J. F. (1961) "Rational Expectations and the Theory of
Price Movements", Econometrica, 29, 315-335.

Naish, H. F. (1993) "The Near Optimality of Adaptive
Expectations", Journal of Economic Behaviour and Organisa-
tion, 20, 3-22.

Nerlove, M. (1958) "Adaptive Expectations and Cobweb
Phenomena", Quarterly Journal of Economics, 72, 227-240.

Okuguchi, K. (1970) "Adaptive Expectations in an Oligopoly
Model", Review of Economic Studies, 36, 233-237.

Okuguchi, L. and Szidarovszky, F. (1990) The Theory of
Oligopoly with Multi-Product Firms, (Springer-Verlag,
Berlin).

Onozaki, T., Gernot, S. and Masanori, Y. (2000) "Complex
Dynamics in a Cobweb Model with Adaptive Production
Adjustment", Journal ofEconomic Behavior and Organization
41(2), 101-115.

Puu, T. (1997) Nonlinear Economic Dynamics, (Springer-Verlag,
Berlin).

Puu, T. (1998) "The Chaotic Duopolists Revisited", Journal of
Economic Behavior and Organization, 33(3-4), 385-394.

Rassenti Stephen, Reynolds Stanley, S., Smith Vernon, L. and
Szidarovszky Ferenc (2000) "Adaptation and Convergence of
Behavior in Repeated Experimental Cournot Games",
Journal of Economic Behavior and Organization, 41(2),
117-146.

Szidarovszky, F. and Weiye, L. (2000) "A Note on the Stability
of a Cournot-Nash Equilibrium: the Multiproduct Case
with Adaptive Expectations", Journal of Mathematical
Economics, 33(1), 101 107.

Theocharis, R. D. (1960) "On the Stability of the Cournot
Solution on the Oligopoly Problem", Review of Economic
Studies, XXVII(2), No. 13, 133-4.


