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Two modifications of the classical one-dimensional logistic map are proposed, which
permitted analytical study of the onset of the bifurcation (period doubling) cascade. The
modified maps are two-parametric ones. This introduces new features in their behaviour
and makes them more flexible. The results can prove to be useful in the ecological
(population dynamics) modeling, where the logistic map is a basic model and also in
other fields of application.
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1. INTRODUCTION

The now well-studied logistic map

Xn+, F(Xn) rX,(1 -X)
XC [0,1],0 <_ r<_4 (1)

is one of the most popular "icons" of the nonlinear
discrete dynamics (Ott, 1993; Peitgen et al., 1992).
Various modifications and generalizations of (1)
are known. For example, letting 2Z r(1 2X) and
4C--r(2-r), one obtains the equivalent version
of (1)

Zn+l Z2n -+- C (2)

suitable for extension in the complex plane (Peitgen
et al., 1992). Another example is the cubic logistic
map (Korsch and Jodle, 1994)

X [0, 1], 0 <_ s <_ 3x/-/2 TM 2.5981

This map has one critical point Xc- 1,/v/- and a
nontrivial fixed point 21- v/() 1)/r, which is
stable in the interval <s< 2. Between 2 and
2.5981 the map develops a bifurcation cascade
of period doubling, leading to chaos. Polynomials
of higher degree have also been worked out
(Sprott, 1993).
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Here we study analytically the map

X,+, F(X,) + bX,
X(1 Xn) (4)

where b>-l, 0_<r<_rl(b) (rl to be specified
later under the condition 0_<X_< 1). To our

knowledge, such a map has not been studied
before. In Section 2 we show how the properties of
the original logistic map (1) change when the new
parameter varies. The results can be of interest for
some applications. The derivations and discussions
go simultaneously. Section 3 deals with an alter-
native polynomial type version of (4).

2. ANALYTICAL RESULTS
AND DISCUSSIONS

Simple calculations show that (4) has negative
Schwarzian derivative SF(X, b, r)<0 and one
critical point (F’(X,., b, r) O)

Xc(b) - (-1 + v/1 + b)

at which

(2+b-2v/l+b) (6)F(X ) G(a)r, G(a) g

Obviously G(0)- 1/4 and 0 < X,.(b) _< 1/2 for b >_ 0,
while 1/2 <_ X,.(b) < for 0 _> b > 1. Hence, the

value of r at which F(Xc)- is given by

/’1 (b) 1/G(b) (7)

(See Tab. I for Xc and rl at b > 0 and Tab. II at

b<0)
The new map (4) has two fixed points" o- 0

for all r and b, and

r-1
X1 forr> b>-I (8)

r+b

Since F’(0)- r, Xo is stable (unstable) for r <
(r > 1). For the other fixed point

( b)2-r+- b>-l. (9)Ft(l)
b -+- r

It is stable if F’(I)] < 1. Hence

<r< rs(b)
b +3 [(b + 3)2 ]1/2 (10)

where r. is the positive root of the equation

r2 (b + 3)r- b 0

(See Tabs. I and II for the values of r,).
For r > r. two additional fixed points 2,z’3

appear as roots of the equation "2 F(F(2)) with

F(J0 from (4). However, 20 and 21 (already
unstable) satisfy this equation too. After factoring

TABLE Numerical values of X,,, r and r,, for b > 0

b 0 0.2 0.4 0.6 0.8 0.9 0.95 0.99 1.00

X,.(b) 0.5 0.4772 0.4580 0.4415 0.4271 0.4204 0.4173 0.4148 0.4142
rl(b) 4 4.3909 4.7664 5.1298 5.4833 5.6568 5.7411 5.8130 5.8284
r,(b) 3 3.2613 3.5138 3.7596 4 4.1185 4.1660 4.2244 4.2361

rl- r,= Ar 1.1296 1.2526 1.3702 1.4833 1.5383 1.5751 1.5886 1.5923

TABLE II Numerical values of X., rl and r for < b _< 0

b 0 -0.2 -0.4 -0.6 -0.8 -0.9 -0.95 -0.99

X,.(b) 0.5 0.5279 0.5635 0.6126 0.6910 0.7597 0.8173 0.9091

r(b) 4 3.6036 3.1492 2.6647 2.0944 1.7325 1.4972 1.21

r,(b) 3 2.7266 2.4358 2.1165 1.7403 1.5 1.3422 1.1465

r-r,=Ar 0.877 0.7134 0.5482 0.3541 0.2325 0.155 0.0635
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out them and solving the resulting quadratic
equation

one obtains

Y(z3(r’b) r+l[(r+l)2r+l1’2r
4-

4r2 -r(r-b)

1/2

(12)

The 2-cycle (12) is stable for r.(b) < r < r;l(b),
where rsl is the smallest positive root of the equa-
tion F’ (22) F’ (23) 1. However, explicit solu-
tion for rsl (b) cannot be obtained. But rsl(0)-
+ x/ as it must be (Hilborn, 1994). Due to the

rapidly increasing complexity, further analytical
treatment is futureless.
Looking on Table I we see that for b > 0 the

range At(b)- rl(b) r.(b) inside which all known
bifurcation events (period-doubling cascade, bands
ofregularity, full chaos) are expected to be observed
is wider than At(0)- 4-3- for the original map
(1). In other words, through the new parameter
b( > 0) one can stretch this range to a desired width.
Moreover rl(b)>4 and r.(b)> 3. For various
applications where the logistic map serves as a
model (ecology, economics, etc.) this can help for
better fitting of the model to the data.
An alternative approach to (4) is to fix r and to

consider b as a free parameter. With a view to (1),
two particular values of r are of special inter-
est- r- 3 and r- 4. In the first case (r-3)

2 b-3
U(21) (13)X1 3 + b’ 3(b 4- 1)

Hence, [F’[>I for -l<b<0 and IF’]<I for
b > 0. In the second case (r 4)

3 b-8
21 4 + b’ F’(2)

4(b + 1) (14)

Hence, ]F’] > (instability) for < b < 4/5 and
IF’{ < (stability) for b > 4/5.

In the general case, solving (11) with respect to b
yields

bs
r(rs- 3)

r,_>3 (15)
r+l

3, IIParticularly, for sequence of values
,...,r --- 3.57 where 2n-cycle (n- 1,2,...)

first appears in (1), the corresponding sequence

b’ 0, b;, b’,..., by - 0.4453 can be calculated.
At n---, oc the b-sequence obeys the Feigenbaum
limit 4.669..., as the r-sequence does.

Finally, if b =_ r, i.e.,

Xn+l
rXn(1 Xn)

,r > 1, (16)+ rXn

then
r-1 3-r

21 2r + r

Hence, IF[<I for all r>l and X1 remains a
stable point. These are qualitatively new features
of the map (4). In this connection, an intriguing
question arises related to the modification of (2)
on the analogy of (4)"

z +cZn+l- + bZn
(17)

where Z X + iY, C C + iC, 1, b-real
parameter. In fact, (17) is a two-dimensional map.
At b 0 it generates the classical sets of Julia and
Mandelbrot (Peitgen et al., 1992). There are three
possibilities for the new parameter: b-independent,
b- C, b Cv The impact of each one on these sets
remains to be investigated numerically.

3. AN ALTERNATIVE MAP TO (4)

We now consider the cubic map

Xn+ F(X) rX(1 + axe)(1 X)
X[0,1], -1 <a_< 1, 0<r_<r(a), (18)

with r(a) to be defined below (cf. r(b), (7)). Since

(1 +bX)- bX, (18) is closely related to (4),
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TABLE III Selected characteristics of the cubic map (18)

a 1/2 0 1/2

X,(a) 1/3 (v/J 1)/x/- 0.4226 1/2 (v/ 1)/3 0.5486 1/x/ 0.5774

2(a,r)(r > 1) (x/-- 1)/x/- (3/2) /(8 + r)/4r (r- 1)/r (-1/2) + V/(9r- 8)/4r x,/(r- 1)/r
r,(a) 27/4 6.75 6 4 3.1689 (3x/-J/2) 2.5981
rL(a) 4 3.8379 3 2.4194 2

rl r, At(a) 2.75 2.1621 0.7495 0.5981

but it may represent independent interest too.
Obviously, at a one obtains (3), while

Xn+l rXn(1 Xn)2 ata -1. (19)

This relationship implies a similarity in some

respects in the behaviour of both maps. Actually,
let us calculate and compare the same character-
istics (5)-(10) for the map (18):

the critical point and the nonzero fixed point

1(Xc(a)-aa a-l+v/a+a+l (20)

"a
-+-

4a2 +--ar r>

(21)

with (+) at a > 0 and (-) at a < 0;
the stability multiplier

F’() 3 2r- r(a- 1)(a, r); (22)

(Unlike (10), the inequality IF’] < cannot be
solved explicitly to obtain r,(a)).
the upper bound r(a) at which F(Xc)=

r(a) 3/X(a)(2 + (a- 1)X(a)). (23)

Some particular cases and numerical values of the
above characteristics are summarized in Table III.
Comparing to Table I and Table II, we observe the
same effect of stretching (a <0) or shrinking
(a > 0) of the first bifurcation range Ar rl-r...
Numerically the differences are not essential.
However, from technical point of view, the map
(4) is easier to work out than (18). In the same

time, the extension of (18) in the complex plane

Zn+l (Z2 + C)(1 + aZn) (24)

is simpler than (17) when represented as two-
dimensional map. Like before, the new parameter
a can be free, or a _-- C, or a Cv The impact of
the particular choice on the Julia and Mandelbrot
sets remains to be investigated numerically and
compared to (17).

4. CONCLUSION

In conclusion, we have shown that the proposed
modification (4) of the classical logistic map (1) can
change the properties of the latter quantitatively
(Tabs. I and II) and qualitatively as well. An
appropriate choice of r and b can prevent develop-
ment of bifurcation cascade and chaos. This makes
(4) more flexible as a model in ecology (population
dynamics). In such a context, (4) can be interpreted
as a logistic map with a strengthened (b > 0) or

weakened (b < 0) feedback (1-X). Accordingly,
Ar(b < 0) < At(0) < A(b > 0), where At(0) 1.
The same interpretation is valid about (18) and
Table III. When compared to each other, the map
(4) shows some advantages (deeper and simpler
analytical study of the onset of bifurcation cas-

cade). However, (24) is simpler for numerical
realization than (17).
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