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Plotting asset returns against themselves with a one-period lag reveals the "compass
rose" pattern of Crack and Ledoit (1996). They describe the pattern, caused by
discreteness, as "subjective". We develop a new and original set of "objective" statistical
procedures to quantify the compass rose and detect changes in it. Comparing empirical
and bootstrapped "theta histograms" permits hypothesis testing. Simulations suggest
that intertemporal statistical dependence skews the compass rose in ways that mimic
ARCH phenomena. Using our techniques on "credit ruble" data, we test the hypothesis
that "Big Players" influence the degree of this "X-skewing" and, therefore, apparent
ARCH behavior.
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Crack and Ledoit (1996) plot daily stock returns
against themselves with one day’s lag. Doing
so produces the "compass rose" pattern of
Figures and 2. The points of the graph are con-
centrated along several evenly spaced rays from
the origin. The rays corresponding to the major
directions of the compass accumulate the most
points. This "strikingly geometrical" pattern "is
indisputably present in every stock." The exist-
ence of a non-zero tick size produces discreteness

in the data which, in turn, generates the compass
rose.
The compass rose biases some standard statis-

tical tools of financial analysis. The Monte Carlo
study of Kramer and Runde (1997) proves that the
BDS test will falsely indicate chaotic structure
when applied to discrete data. The larger the
(simulated) tick size, the greater this false propen-
sity of the BDS test. Crack and Ledoit conjecture
that discreteness biases the standard tests for
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FIGURE The horizontal axis shows a given day’s return for Weyerhauser stock on the New York Stock Exchange. The vertical
axis shows the next day’s return. The data cover the period from December 6, 1963 to December 31, 1993. Out of 7558 points, 1212
fall outside the graph.

autoregressive conditional heteroskedasticity
(ARCH). Apparently, financial researchers cannot
rely on the statistical tools most commonly used to
study volatility dynamics.

Surprisingly, Crack and Ledoit do not call for
new tools of time-series analysis specifically suited
to the existence of ticks and of the compass rose

pattern. They seem to have assumed objective
tools of analysis cannot be created for use on the
compass rose. Their explanation of the pattern
uses "subjective language", they report, "because
the above statement ’the compass rose appears
clearly’ is itself subjective" (p. 754). We argue,
however, that if our current tools are biased, we
should try to create new "objective" tools that are
not biased by discreteness.
Chen (1997) takes a step in that direction by

using the information in the compass rose to

construct improved forecasts within an ARMA-
GARCH framework. He reports improved fore-
casts in all cases. If Chen’s result is sustained by
future studies, it will contradict Crack and Ledoit’s
conjecture that the compass rose "cannot be used
for predictive purposes", because "it is an artifact
of market microstructure" (p. 751). Chen’s fore-
casting algorithm corrects for discreteness, at least
partly. His GARCH coefficient estimates, how-
ever, do not. Chen’s ARMA-GARCH models,
therefore, are subject to the same discreteness-
induced biases likely to affect other ARCH
techniques.
We show that new objective techniques can be

devised which are not biased by discreteness and
are suitable for the compass rose. We plot the
number of points along a given ray of the compass
rose against the angle of that ray. This creates a
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FIGURE 2 Crack and Ledit’s "compass rose" graph for IBM daily stock returns, January 1, 1980 to October 8, 1992.

"theta histogram" which describes the angular
distribution of the points in delay space. We
compare this distribution to a standard theta his-
togram created by a simple bootstrap procedure.
The 2 test is then performed in order to estimate
quantitatively the consistency of the actual data
with the standard theta histogram. We test other
hyphotheses using the Bernoulli distribution.
Our tests suggest that returns on stocks and

other assets have a greater tendency to accumulate
along the main diagonals of the compass rose than
they would if they were statistically independent.
An X pattern is embedded within the compass
rose. In this sense, there are typically "too many"
points along the main diagonals of the compass
rose. This X pattern skews the compass rose away
from the pattern that would exist if returns
were statistically independent. We call this "X-
skewing." A simple simulation shows that X-
skewing of the compass rose can cause standard

tests to indicate autocorrelation in conditional
heteroskedasticity even when the underlying sto-
chastic process is not consistent with existing
ARCH models. X-skewing of the compass rose is
a product of human actions that are subject to
economic influences. The policy regime governing
an asset market helps determine how much the
compass rose is skewed. An important episode in
Russian monetary history illustrates the point.

In the late nineteenth century, the "credit ruble"
was a floating currency unlinked to precious
metals. Generally, the finance ministry actively
intervened to influence the ruble exchange rate.
The one exception was during Nicolai Bunge’s
tenure as finance minister. Bunge’s successor, Ivan
Vyshnegradsky, was an unusually vigorous inter-
ventionist. The shift in regime from Bunge the
non-interventionist to Vyshnegradsky the inter-
ventionist produced a marked change in the
behavior of the ruble exchange rate. The angular



104 R. KOPPL AND C. NARDONE

distribution in delay space of the ruble’s return
against the German mark shifted dramatically
under Vyshnegradsky. Hypothesis tests using
our new techniques support the view that
Vyshnegradsky’s activism caused X-skewing. It
caused a disproportionate number of points of
the compass rose to accumulate along the main
diagonals in delay space. The theory of "Big
Players" (Koppl and Yeager, 1996) provides a

plausible explanation.
Section I explains the compass rose and its

history. Section II explains and illustrates our new
statistical techniques. Section III uses a simple
simulation to show how the X-skewing we dis-
cover causes the appearance of ARCH behavior.
In Section IV we use data on the credit ruble to

study the possibility that X-skewing, and thus
apparent ARCH phenomena, are influenced by
the policy regime. In particular, we argue that an
increase in Big Player influence, or any other
policy change that increases the difficulty of
trading on fundamentals, will increase X-skewing
and, therefore, the appearance of ARCH effects.
Section V is the conclusion.

I. THE COMPASS ROSE

Crack and Ledoit chronicle the (brief) history of
the compass rose in finance. Huang and Stoll
explain in a footnote that a graph of intra-day
returns plotted against themselves with a five-
minute lag shows "clusters of points that radiate
from the zero" (Huang and Stoll, 1994, p. 199, as

quoted in Crack and Ledoit, 1996, p. 753). They
do not pursue the issue, however.

Brealy and Meyers (1991) plot daily
Weyerhauser stock returns against themselves with
one day’s lag (13-2, p. 293). They said "it is
obvious from a glance that there is very little
pattern in these price movements" (p. 291). Crack
and Ledoit showed, however, that Brealy and
Meyers did "overlook a significant pattern",
namely, the compass rose (p. 752; emphasis in
original). Brealy and Meyers would have seen the
compass rose if they had used more data and a

better graphical package. In the next edition of
their textbook, Brealy and Meyers (1996) replace
their earlier graph with Crack and Ledoit’s
Figure 2 (our Fig. 1) and include a footnote
explaining the compass rose. They still say,
however, "it is obvious from a glance that there
is very little pattern in these price movements" (p.
326). The sentence continues "but we can test this
more precisely by calculating the coefficient of
correlation between each day’s price change and
the next" (p. 326). Brealy and Meyers thus neglect
the difference between correlation and statistical
dependence. As we show below, they overlook a

significant pattern, as do Crack and Ledoit. The
pattern we find is X-skewing. Like the ARCH be-
havior to which it is related, X-skewing is a case of
statistical dependence without linear correlation.
Crack and Ledoit list three conditions for the

compass rose pattern to emerge:

(1) Daily price changes are small relative to the
price level;

(2) Daily price changes are in discrete jumps of a

small number of ticks; and
(3) The price varies over a relatively wide range.

The explanation of these three conditions is
straightforward. Following their notation, let Pt
and Rt be the price and return of some stock on

day t. If price changes are small relative to price
level ((Pt-Pt-1)<<Pt), and ignoring dividends
and splits, the following approximation holds:

Rt+l/Rt (Pt+l Pt)/Pt
(Pt Pt-1)/Pt-1
Pt+I Pt .nt+lh (1)
Pt Pt-1 nth nt

where h is the tick size and nt -(Pt-Pt-1)/h is the
day-t price change calculated in ticks. Equation (1)
shows that the ordered pairs (Rt, Rt+l) will be
close to the rays through the origin that pass
through (nt, nt+ 1). If prices usually change by a

small number of ticks, then most points will
accumulate along the major directions of the
compass rose. The ticks that induce discreteness
need not be official. As Crack and Ledoit explain,
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an official tick size is neither necessary nor
sufficient for the compass rose. "The correct
criterion for the existence of the compass rose is
whether the effective tick size is of the same order
of magnitude as typical price changes" (p. 758).

Finally, Crack and Ledoit explain, if the price
varied only slightly around the value Pt, a grid
pattern would result, not the compass rose. "On
any given ray (m,n) data points would cluster at
discrete distances from the origin: (mh/Pt, nh/Pt),
(2mh/Pt, 2nh/Pt), and so on" (p. 754). Price
variations produce "centrifugal smudging" which,
in turn, produces the compass rose pattern.

II. HYPOTHESIS TESTING
WITH THETA HISTOGRAMS

Crack and Ledoit describe the compass rose
pattern as "subjective". It is possible, however,
to transform the data of the compass rose and
apply objective techniques to them. The transfor-
mation we propose is the result of a two step

0.08

procedure. First, express the points of the compass
rose in polar coordinates. The point (Rt, Rt+l)
becomes (rt, 0t) where

rt (R2t -+- Rt2+l
arctan(Rt+l/R,)

Ot arctan(R,+/R,) + 7r

arctan(R,+ /R,) 7r

if Rt>O
if Rt < 0, Rt+l > 0

if Rt,Rt+l < 0

(2)

(arctan conventionally ranges from -7r/2 to 7r/2).
Second, associate each 0, not with any of the

corresponding rt values, but with the number of
such values corresponding to a narrow interval
0 + 30. Finally, normalize by 7r in order to plot
histograms in the interval [-1, 1]. We call the
result a "theta histogram". A theta histogram
represents the angular distribution of asset returns
in delay space.

Figure 3 illustrates. The horizontal axis shows
the value of 0/Tr. The 0/Tr values have been

0.06

..=._ 0.04

0.02

0.00
-1.0 -0.5 0.0 0.5 1.0

O/re

FIGURE 3 "Theta histogram" (angular distribution in delay space) of Weyerhauser stock returns.
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partitioned into 201 bins of width 0.01. (Details
are in a footnote.) The vertical axis shows the
relative frequency of points in each bin. For each
0/r value, it shows the number of points in that bin
divided by the total number of points.
The theta histogram just described is an

empirical theta histogram. Before we can engage
in hypothesis testing, we need a benchmark with
which to compare it. We propose a simple boot-
strap to create such a benchmark. To construct a

bootstrapped theta histogram, one takes the
observed relative frequency of each return in the
data under study. Assume each period’s return was
draw from this distribution, and assume every
period’s return is independent of every other
period. Repeated sampling (with replacement)

from the empirical distribution of asset re-
turns allows one to generate a bootstrapped
theta histogram. Figure 4 illustrates. (We have
also constructed empirical and bootstrapped
"extensional histograms" showing the number
of points at each distance from the origin. These
are not shown here.)

Hypothesis tests can be conducted by compar-
ing the empirical and bootstrapped theta histo-
grams. In the tests we have devised, the null
hypothesis, H0, is that the Rt are statistically
independent. Under the null hypothesis, some
values of Rt+ ]/Rt are more likely than others. If
we had an infinite pool of identically, independ-
ently distributed returns, each ratio Rt+ ]/Rt would
have a given relative frequency. Thus, each

0 08
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FIGURE 4 Bootstrapped theta histogram created using the same data used to construct the empirical theta histogram of Figure 3.

Since the 0/r values 1.0 and 1.0 correspond to the same point on the compass rose, it was necessary to split the bin straddling
this point in order to avoid double counting. (Other solutions would have created programming difficulties.) Thus, the partition
contains an initial bin straddling zero, 0.005, 0.005]. It includes 99 bins of width 0.01 arrayed on to the right and another 99 bins of
width 0.01 arrayed on the left. The 100th bin on the right, [0.995, 1.0], has width 0.005. Similarly, the 100th bin on the left,
[- 1.0,- 0.995], has width 0.005. This makes a total of 201 bins.
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corresponding 0/Tr value would have its relative
frequency. For a given distribution, statistical
independence implies a certain relative frequency
of "hits" for each ray of the compass rose; it
implies a certain profile for the theta histogram. If
the observed relative frequencies of a sample are
close to the hypothetical values, we have no reason

to reject the null hypothesis of statistical independ-
ence. If, on the other hand, the observed relative
frequencies of some sample were sufficiently far
from the hypothetical values, we should reject the
null hypothesis.
An unrealistically simple hypothetical example

provides an easy illustration. Assume we had a

sample of 100 returns in which one half of the
returns were 0.001 and the other half were 0.002.
Under the null hypothesis of statistical independ-
ence, we would expect about half the points of
the compass rose to fall along the 45-degree line,
i.e., the ray bisecting the positive quadrant. For
this ray, 0/Tr 0.25. The remaining points
would be about evenly split between the rays at

0/7r=0.125 and 0/7r=0.375, i.e., those at 22.5
degrees and 67.5 degrees. The bootstrapped
theta histogram of our sample would have three
spikes. The relative frequency for the spike at

0/Tr =0.25 would be one half. The relative frequ-
ency for the other two spikes would be one fourth
each.

Since our hypothetical sample contains 100
returns, it gives us 99 points of the compass rose.
Assume we observed, say, 45 points at 0/Tr =0.25,
26 at 0/7r=0.125, and 28 at 0/7r=0.375. In this
case, the empirical theta histogram would be
similar to the bootstrapped theta histogram. We
would have no cause to reject the null hypothesis.
The tests we describe below would not reject H0
for this sample. A different sample, however,
might yield a different result. We would reject
the null if the original returns had come in the
following sequence: 0.001, 0.002, 0.001, 0.002,....

In this case statistical dependence is obviously
present. The empirical theta histogram would have
one spike of approximate length one half at

0/Tr 0.125 and another of the about same length
at 0/7r=0.375. (Details are in a footnote.) The
compass rose would have no points along the 45-
degree line instead of the 50 or so to be expected
under the null hypothesis. The tests we describe
below would reject H0 for this sample.2

In the example just given, statistical dependence
caused us to reject H0. The statistical dependence
considered would also have shown up as (negative)
linear correlation. But correlation and dependence
are distinct. If a sufficiently large fraction of the
points of the compass rose accumulate along the
main diagonals, forming an X pattern, there is
statistical dependence, but zero correlation. We
show below that X-skewing exists in the data. We
now explain our tests more carefully.

Let n be the number of observations. That is, n

is the number of Rt+l/Rt ratios in our sample
and n+ is the number of returns. (We are no

longer using nt to denote the number of ticks by
which price moved on day t.) Consider a narrow

interval of a ray 0/Tr, namely, -+-6. Let p be the
relative frequency of points in that interval under

H0. One reads p off of the bootstrapped theta
histogram. Given the sample size n and the null
hypothesis of independence, the expected number
of points in + 5 is np. Let k denote the
observed number of points in the interval. Define
2

Xobs as follows:

Xobs2 (3)(k np)2

np

where k n. Assuming Ho, in the limit of a

large number v of partitions, the complement
cumulative distribution of 2 is Q(x2lu) an

incomplete gamma function (Press et al., 1992).
Selecting the customary confidence level of 0.05,

In this example there are 99 points of the compass rose. Thus, they cannot be split evenly between the two rays. The precise value
for 0/7r=0.125 would be 50/99, slightly more than one half; the precise value for 0/Tr= 0.375 would be 49/99, slightly less than one
half. These values would be reversed, of course, if the sample had been 0.002, 0.001, 0.002,....
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we reject H0 if

2P(X2 >- Xobs) Q(X21 u)

f e- t(Xobs-1)dt < 0.05,
r(X bs)

where r(x) is the gamma function.
This 2 test probes the distribution as a whole.

One may wish to know, however, if a particular
ray or subset of rays of the compass rose has more
(or fewer) points than would be expected under the
null hypothesis of statistical independence. For
example, to test for X-skewing we want to know,
in effect, if the four rays making up the main
diagonals of the compass rose have collected "too
many" points. Let us consider the test as it would
apply to one ray. The extension to groups of rays
will be obvious. Consider, then, the interval
+5. We can easily determine the relative
frequency of theta histograms of size n for which
the number of hits in that interval, k, is at least

equal to the number, h, observed in our sample.
Assuming H0, we have a sequence of Bernoulli
trials in which the probability of a hit is p. For
every integer k such that 0 _<k < n, there are

C(k,n)-n!/[k!(n-k)!] ways you could get k hits.
The probability of exactly k hits is C(k,n)pk

(1 _p)(n-k). Thus, the probability of k >_ h is

P(k >_ h) B(h) C(k,n)pk(1 _p)(n-k). (5)
k=h

We reject H0 if P(k _> h) < 0.05.
We can use our tests on the Weyerhauser data

studied by Crack and Ledoit. We used CRSP data
on daily returns from the period studied by Crack
and Ledoit, namely, December 6, 1963 to Decem-
ber 31, 1993. This gives us 7,559 returns and 7,558
points of the compass rose. As explained earlier,
our data are partitioned into 201 bins of width
0.01. Comparing Figures 3 and 4 suggests that the
empirical and bootstrapped theta histograms are
not the same. Figure 5 superimposes the two

0.06

..,--,_ 0.04

0.02

0.00
-1.0

botstralo]
observed |

0.5 1.0

FIGURE 5 Figures 3 and 4 superimposed.
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histograms. It appears that the two histograms are
significantly different and that the empirical histo-
gram shows more points at the 0/Tr values 4-0.75
and 4- 0.25. These are the values that correspond
to the main diagonals of the compass rose.
The 2 test shows that Weyerhauser returns are

not independent. The number of degrees of free-
dom, u, is equal to the number of bins, 201. Since u

is large, we could rely on the asymptotic distribu-
tion to carry out our test. We have

2 2P(X2 > Xobs) Q(Xobs u) " Q(x)

1/V/ exp(-t2/2)dt (6)

1
where x /2XZobs- X/2u- (Abramovitz and
Stegun, 1972,-- -formula 26.4.13). The X

2 test is
reported in Table I. For this data, 2

Hobs 5019.2
i.e., much greater than the expected value of 201.
The reduced normal variable x 80.2, then we can
again use an asymptotic formula for large x
(Abramovitz and Stegun, 1972, formula 26.2.12),
Q(x) .. 1/ (x/exp(-x2/2)/x, which corre-
sponds to an astronomically negligible value for
Q(x). Therefore we reject the null hypothesis of
statistical independence.

TABLE X hypothesis test for Weyerhauser data. The
empirical series includ_____n 7558 observations histogrammed
in u 201 bins. x-- /2X2obs- V/2u- is the reduced variable

VS,
which is asymptotically distributed normally, Q(x) is the
corresponding probability P(x’ > x)

Series X x Q(x)

Weyerhauser 5019.2 80.2 10 1392

This result of the X
2 test is not entirely

surprising. If the Weyerhauser data seem to exhibit
ARCH phenomena, they are probably not statis-
tically independent even if first-order autocorrela-
tion is zero. 3 Our X

2 test is not guaranteed to pick
up all forms of statistical dependence. Information
contained in the extensional histogram, for in-
stance, will not show up in the theta histogram.
Nevertheless, if standard tests indicate that the
data are autoregressive in conditional heteroske-
dasticity, it is not surprising that our X

2 test should
indicate statistical dependence.
We noted that Figure 5 seemed to indicate a

heavy accumulation of points at 0/Tr + 0.75 and
4- 0.25. If these rays collect significantly more
points than would be consistent with the null
hypothesis of independence, then we have X-
skewing in the Weyerhauser data. Results reported
in Table II confirm the presence of such a pattern.
The compound probability of a point being with
the intervals 4- 0.25( 4- 0.005) and 4- 0.75
(4-0.005) is p=0.027 under H0. The expected
number of points in those intervals is therefore
np 206.5. The observed number is h 872. From
Eq. (5) we obtain B(h) < 10-271, a value below our
confidence level of 0.05. We reject the null. It
seems as if the main diagonals are accumulating
"too many" points. Weyerhauser returns are X-
skewed.
Crack and Ledoit repeat in a footnote their

referee’s comment that they have not shown "that
there are no other predictable structures present"
in the compass rose. X-skewing is an example. The
existence of this pattern shows that Crack and

TABLE II Bernoulli hypothesis test for Weyerhauser data, 0/Tr -t- 0.25( + 0.005) and + 0.75( + 0.005). In this and the following
Bernoulli tables, n is the number of points in the empirical distribution, p is the probability that 0/Tr belongs to the interval considered
according to the bootstrapped histogram, k np, h is the observed number of points in the interval considered, Ak/r Ih kl/r is the
normalized fluctuation observed, and finally B(h) }]n= Pk (where Pk is the Bernoulli probability of k observation in the bin) is the
probability P(k > h)

Series n p k h Ak/o- B(h)

Weyerhauser 7558 0.02732 (+ 0.00013) 206.5( 4- 1.0) 872 665.5 < 10-271

If ARCH tests are biased by discreteness, we cannot rule out the possibility that standard ARCH procedures may sometimes
falsely indicate that statistically independent returns are autoregressive in conditional heteroskedasticity.
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Ledoit were mistaken to claim that all of the
information of the compass rose "is contained in
decades-old studies on the time-series properties
of stock returns" (p. 755). These studies make
distributional assumptions which may be false and
may mask regularities more easily detected by
other techniques of analysis.
X-skewing is distinct from the ARCH behavior

of standard models. But it induces standard tests
to indicate ARCH behavior. The next section
reports on a simulation that produces X-skewing
and gives the (false) appearance of standard
ARCH behavior.

III. A SIMPLE SIMULATION
OF X-SKEWING

One of our tests indicated X-skewing for
Weyerhauser returns. Tests on other data suggest
this X-skewing is common. This pattern may
explain the widespread phenomenon of ARCH
behavior in return data. To test this possibility, we
ran a simple simulation. Our simulation was
designed to see if X-skewing can cause standard
procedures to indicate the presence of ARCH. It
was not designed to model stock returns accu-
rately. It seems that the X-skewing we found in
Weyerhauser data can indeed induce the false
appearance of standard ARCH behavior.
Our simulation started with an initial price, p(0),

and return r(0). It then drew from a normal
distribution centered about r(0). If the value drawn
exceeded a predetermined threshold level, it was
discarded and a new value is drawn from the same
distribution. (Without a cutoff value, the variance
would grow without bound. Since our simulation
is merely illustrative, we simply imposed a cutoff.)
With a probability of 0.5, the sign of the value
drawn was reversed. This value became a tentative
return. The tentative return was added to the old
price to get a new price. The new price was
rounded up or down to simulate the existence of
a postive tick size. From the new price a new
return was calculated. The simulation then used
these new values to calculate, in the same way, a

price and return for the following period. And
so on.
Each period’s return was gotten by first drawing

from a normal distribution centered about last
period’s return, then changing the sign with
probability one hall and, finally, adjusting to
create discreteness in the associated price series. If
the return in period t, r(t), was large and positive,
the absolute value of the return in period t+ 1,
It(t+ 1)1, was likely to be large too. The return,
r(t+ 1), was just as likely to be negative, however,
as positive. The distribution of the r(t+ 1), given
r(t), is bimodal. One mode occurs at r(t), the other
at -r(t). The distance between the modes is
greater the larger It(t)[. Only when r(t)-O is the
conditional distribution of r(t + 1) unimodal.

Since the sign of each period’s return has an
equal chance of being positive or negative, the
expected value of r(t) is zero for all t. The returns
generated by this simulation have no autocorrela-
tion in first moments. There is autoregression in
conditional variance. But the series is not gener-
ated by the processes described in standard ARCH
models, which assume a unimodal distribution.

Figure 6 shows the compass rose for this
simulated series.
The series generated by this simulation passes

standard tests for the existence of ARCH beha-
vior. Results of the Q and LM tests reject the null
of no autocorrelation of conditional variance at
the 0.0001 confidence level. We fit a GARCH(1, 1)
model to the data. The results, reported in
Table III, seem to indicate ARCH behavior. The
SAS subroutine we ran indicated a statistically
significant ARCH(I) coefficient and a statistically
insignificant GARCH(1) coefficient. An unwary
researcher might conclude that the series is an

ARCH(l) process.
The purpose of our simulation is not to model

stock returns, but to illustrate two points. First, X-
skewing may be generated by a stochastic process
which is not in the customary family of ARCH
models. Second, X-skewing nevertheless causes
standard tests to indicate ARCH behavior. The
relationship between ARCH and X-skewing merits
further study.
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FIGURE 6 Compass rose graph for a simulated series.

TABLE III Results of SAS fit of our simulation data to a GARCH(1,1) model. The results falsely suggest that the data follow an
ARCH(l) process

Variable DF B Value Std. error ratio Approx. prob.

Intercept 0.000256 0.000183 1.399 0.1618
ARCH(0) 0.000224 0.000048 4.670 0.0001

ARCH(l) 0.128261 0.0283 4.537 0.0001

GARCH(1) 0.011617 0.1852 0.063 0.9500

X-skewing is an unintended consequence of
human action. The human actions that generate it
are responses to the prevailing environment. If
the regime governing the market process should
change, the degree of X-skewing may change too.
We show in next section that certain changes in
government policy cause changes in the interpre-
tive environment of asset markets and thus in the
amount of X-skewing.

IV. BIG PLAYERS INDUCE X-SKEWING

We apply our techniques to an important episode
in nineteenth-century Russian monetary history.4

This episode has been studied in the past as a test
case of the theory of "Big Players" (Koppl and
Yeager, 1996; Broussard and Koppl, 1999). We
show here that Big Players induce X-skewing by
corrupting the interpretive environment of the

4The story we tell is related in Koppl and Yeager, 1996, which we follow closely. The data we analyze were gathered by Yeager.
They has been studied by Broussard and Koppl, 1999; Koppl and Yeager, 1996 and Yeager, 1969 and 1984.
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market. (Our results also show that the compass
rose is present in a class of assets other than stocks,
namely, foreign exchanges. We do not know if it is
always present or only sometimes. Here is another
area for further study.) Some discussion of theory
and terminology is need before we can turn to our
case study.
When traders observe a price change, earnings

announcement, or any other potentially relevant
event, they must interpret the signal. The signal
must be given a meaning. This interpretted mean-
ing encourages the trader to buy, sell, or hold. The
meaning given is a function of many factors
including the peculiarities of each individual
trader. Among the factors is the general market
environment. The general environment may be
influenced by government policy. An ill-chosen
policy may cause the general market environment
to produce poor signals. The signals become hard
to decipher. When this happens, we may say that
the policy has corrupted the interpretive environ-
ment of the market. We argue presently that Big
Players have this corrupting effect. Big Players
create changes in the interpretive environment
of asset markets that encourage herding and

contra-herding. Contra-herding is simply the con-
trarian policy of acting against the trend.

Big Players are defined by three properties.
First, they are big. Their decisions influence the
course of market events. Second, they are insensi-
tive to profit and loss. A nation’s central bank, for
instance, cannot be weeded out of the market by
losses resulting from bad choices. Third, they act
on their discretion. They are not bound by any
fixed rule of behavior. A central bank is a Big
Player when it practices discretion in monetary
policy. If it follows a rule to, say, expand the
money supply at a fixed annual rate, then it is not a
Big Player. It is not a Big Player because it chooses
rules over discretion. An activist central bank is
the proto-typical Big Player. Private actors are
normally sensitive to profit and loss. They are not
likely to be Big Players.

Building on Scharfstein and Stein (1990); Koppl
and Yeager show that Big Players may create
bandwagon effects. (See Fig. 7) Scarfstein and
Stein argued that portfolio managers have an
incentive to imitate one another. If things go
well, fine. If losses are incurred, one may share
the blame with others. A manager’s reputation

300

200

100

Bunge period Vyshnegradsky

1/02/83 1/13/87 3/31/92

FIGURE 7 From Koppl and Yeager, 1996 (ruble’s exchange rates in German marks per 100 rubles).
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depends more upon his relative performance than
his absolute performance. Thus, acting idiosyn-
cratically is risky, herding is safer. Koppl and
Yeager point out that this incentive to herd is
stronger when traders’ knowledge of fundamentals
has been clouded by Big Player interventions. The
Big Players’ actions often override fundamentals.
(One might prefer to say "other fundamentals".)
These actions must be anticipated to the extent
possible. But because Big Player actions are based
on discretion rather than any fixed rule, they are
hard to anticipate. Big Players act in surprising
ways. Big Players thus increase the chances of
failure for those who do not follow the herd. The
same is true for those who do follow the herd; but
they can share the blame.
Without Big Players it is easier for some traders

to made idiosyncratic choices yielding returns that
are satisfactory or above average. When Big
Players enter, fundamentals are harder to read
and indiosyncratic choices grow more dangerous.
When Big Players tred, prudence more strongly
suggests following the crowd and sharing the
blame should things go awry. Thus, Big Players
induce herding.
The root cause of the increased herding under

Big Players is ignorance. By scrambling market
signals, Big Players reduce the value of the market
information little players use to make their
choices. In this reduced state of knowledge, little
players are more likely to study past price changes
as a clue to the future course of prices.

Broussard and Koppl (1999) extend the point.
They argue that ARCH-like effects are likely to be
stronger under Big Players. "By reducing the value
of all information", they explain, "Big Players
increase the relative value of information about an
asset’s recent price behavior". An unusually large
price change becomes the object of competing
interpretations. "Some will see a trend, others will
expect reversal. Whichever view happens to gain
more adherents, the exaggerated attention paid to
the price movement encourages another large
movement" to follow. Broussard and Koppl
argue, in effect, that when Big Players induce

herding, some traders will become contrarians who
always expect the trend to be reversed. This is
contra-herding.

Big Players reduce the value of all information
traders might use except, perhaps, information
about the Big Players themselves. When the value
of all sources of information is reduced in this way,
the relative value of information about past price
behavior increases. More trading is conducted on
the basis of such information. Herding and contra-
herding result. X-skewing results from the simul-
taneous presence of herding and contra-herding.
The history of the credit ruble gives us a good test
case for the predictions the Big Players theory.
From the Crimean War (1853-56) to 1897,

Russian had a paper currency which floated
against other currencies, including the Germany
mark, a gold-standard currency. This was the
period of the "credit ruble". During most of this
period, the Russian finance ministry actively
intervened in the foreign exchange market, hoping
to influence the ruble’s exchange rate. A notable
exception was the period of Nicolai Bunge’s tenure
as finance minister. Bunge served from May 18,
1881 to January 13, 1887. He was a principled
non-interventionist.

Bunge’s successor, Ivan Vyshnegradsky, was
very different. He served from January 14, 1887 to
September 11, 1892. Vyshnegradsky was a highly
active interventionist who meddled frequently in
the Berlin market. Vyshnegradsky seemed to
derive great pleasure from getting the better of
the Berlin speculators in the ruble.
The contrast between Bunge and Vyshnegradsky

is unusually clear case of a change in regime
from a simple policy rule of non-intervention to
an activist, discretionary policy. It is thus a test case
for the "Big Player" theory. Nicolai Bunge was not
a Big Player because he maintained a principled
non-interventionist stance; he did not exercise his
discretion. Vyshnegradsky did use his discretion
and was thus a Big Player.
Our data is constructed from a series created by

Leland Yeager. Yeager used two contemporary
German newspapers to find the ruble exchange
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rate in German marks per 100 rubles of bank
notes. His data cover the period from January 02,
1883 to March 31, 1892. The ruble’s price moved
in discrete jumps of 0.05 or multiples thereof. We
do not know if this effective tick size corresponds
to an official tick. Nevertheless, it exists and is of
the same order of magnitude as price changes.
Thus, returns for this data exhibit the compass
rose pattern. We created a return series from this
data by taking the forward first differences of
prices and normalising by the price (i.e., Ri
(ei-Pi-1)/Pi-1)
Koppl and Yeager give evidence from R/S

analysis to show that herding increased under
Vyshnegradsky. (See Fig. 7) Broussard and Koppl
(1999) fit a modified GARCH(1, 1) model to the
data and find an (apparent) increase in ARCH
effects under Vyshnegradsky. (See Fig. 8) Us-
ing the same data, we find X-skewing under
Vyshnegradsky, but no X-skewing under Bunge.
This is and other results are reported below.
From our return series we calculated empirical

and bootstrapped theta histograms. The total
number of samples in the bootstrapped histograms
was 1000 times the length of the original series.
The data points have been binned into 201

partitions with a resolution of 0/r=0.01. The
probability associated with each bin is estimated to
be p kin with an error given by the correspond-
ing (approximate) bernoullian standard deviation

Figures 9 and 10 show the empirical theta
histograms from the Bunge and Vyshnegradsky
periods. Figures 11 and 12 show their corre-

sponding bootstrapped theta histograms. For the
Bunge period, the empirical and bootstrapped
histograms are almost identical. For the
Vyshnegradsky period, they differ. The asymmetry
in the Vyshnegradsky period is evident. Especially
evident is the large number of points accumulated
at 0/Tr -0.5. Days in which the ruble’s exchange
rate did not change tended to be followed by days
in which its value fell. We don’t know why.
For each period, we tested the hypothesis that

the probability of a point at 0/r -0.5 is equal to
the relative frequency of such points when returns
are independent. The results are reported in
Table IV.
For the Bunge period, the number of points n in

the sample was 1224. If returns were independent,
the probability of a point at -0.5( + 0.005) would
be p=0.0307 and the expected value of the

0.02

0.00

Bunge period Vyshnegradsky
period

,,,, II

,I
1/02/83 1/13/87 3/31/92

FIGURE 8 From Broussard and Koppl, 1996 (ruble’s price percent changes).
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Bunge returns

-0.5 0.0
o/r

FIGURE 9 Empirical theta histogram, Bunge period.

Vyshnegradsky returns
’1

.0 -0.5 0.0 0.5 1.0
0/

FIGURE 10 Empirical theta histogram, Vyshnegradsky period.
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Bunge returns i.i.d.
"1

.0 -0.5 0.0
e/n

FIGURE 11 Bootstrapped theta histogram, Bunge period.

Vyshnegradsky returns i.i.d.

2.0

0.0
-1.0 -0.5 0.0 0.5

FIGURE 12 Bootstrapped theta histogram, Vyshnegradsky period.
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Series n

TABLE IV Bernoulli hypothesis tests for ruble data, O#r= -0.5( + 0.005)

p k h Ak/cr B(h)

Bunge 1224
Vyshnegradsky 1581

0.03072 & 0.00016) 37.60( 4- 0.20) 37 0.10 > 0.5
0.02436 4- 0.00012) 38.51( 4- 0.19) 50 1.85 0.041

number of points would be k=np=37.6. The
actual number was h=37, well within the
standard deviation for a Bernoullian (or
x/Eft 6.1). We are therefore unwilling to reject
the hypothesis of independence. In other words,
for the Bunge period we do not have so many
points accumulating at -0.5 that we wish to
reject the null hypothesis of independence in
returns.
For the Vyshnegradsky period, the number of

points in the sample was n 1581. If returns were
independent, the probability of a point at -0.5
(+ 0.005) would be p=0.0244 and the expected
value of the number of points would be k 38.5.
The actual number was h 50. From Eq. (5) we
calculate the probability to get such k or higher.
This probability is B(h)=0.041. Since B(h) is less
than 0.05, our confidence level, we reject the hy-
pothesis of independence. For the Vyshnegradsky
period, under the assumption of independence, we
have an improbably large number of points
accumulating at -0.5. Our hypothesis test sup-
ports the conclusion one is likely to draw from
looking at Figure 10. Days in which the ruble’s
exchange rate did not change tended to be
followed by days in which its value fell.
The Big Players theory suggests we should

find another difference between the Bunge and
Vyshnegradsky periods. Under Vyshnegradsky,
there should be X-skewing. There should be a
greater tendency for points to accumulate at 0/Tr
-t- 0.25 and 0/Tr + 0.75. These are the values cor-
responding to the two main diagonals of the
compass rose pattern. We expect the Big Player
influence of Vyshnegradsky to encourage traders
to pay more attention to price history, because all
sources of information have been degraded by the
Big Player’s discretionary interventions. A large
price change today will become the subject of

interpretation in which some see a trend and other
expect "correction". Whichever theory becomes
more popular, a large-magnitude return today is

likely to be followed by a return of similar
magnitude, though not necessarily in the same
direction.
Our confidence in this result is strengthened by

an inspection of Figures 13 and 14. These figures
show the compass rose pattern for the absolute
value of returns. Since absolute values are
non-negative, all points appear in the positive
quadrant. Under Bunge, no ray is obviously
accumulating too many or too few points. Note
that the graph shows something close to a grid,
with little centrifugal smudging. This is because the
ruble exchange rate did not vary widely during
Bunge’s tenure as finance minister. (This is
exactly the result predicted by Crack and Ledoit.)
Under Vyshnegradsky, the 45-degree line seems
to have collected more points than it would have
if returns were independent. This difference
between the Bunge and Vyshnegradsky periods
is confirmed by hypothesis tests reported in
Table V.

In this case, in the Bunge period the compound
probability for 0/Tr being within the intervals

0/Tr + 0.25( + 0.005) and 0/Tr= + 0.75( + 0.005)
is p 0.0610, if returns were independent. Accord-
ingly, the expected number of points is k 74.6,
while we observe h 88. From Eq. (5) we calculate
the probability to get such h or higher. This

probability is B(h)= 0.065. Since B(h) is more than
0.05, we are unwilling to reject the hypothesis of
independence. For the Bunge period, under the
assumption of independence, we do not have an
improbably large or small number of points along
the 45-degree line of Figure 13.

There is no X-skewing under Bunge. Broussard
and Koppl do find statistically significant ARCH
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FIGURE 13 Compass rose in absolute values, Bunge period.

effects during this period. This pair of results is
futher evidence that X-skewing and ARCH
behavior are distinct even though they are related.
We hope to clarify their relationship in future
research.
For the Vyshnegradsky period, p=0.0312 and

k 49.4, while we observe h 73. Again from (5)
we obtain B(h)=0.0008, a value much smaller
than our level of confidence. We can therefore
reject the hypothesis of independence. For the
Vyshnegradsky period, under the assumption of
independence, we have an improbably large
number of points accumulating at +0.25 and
+ 0.75. Our hypothesis test supports the conclu-
sion one is likely to draw from looking at
Figure 14. Large changes in the exchange rate on
one day tend to be followed by similarly large
changes the next day, though not necessarily in the

same direction. This tendency is consistent with
the theory of Big Players.

Finally, for each period, we tested the hypoth-
esis of independence among returns using the 2
test. In order to avoid effects related to the number
of points in the sample, we choose n 998 for each
series. A "mixed" series has been studied, taking
the end of the Bunge period and the beginning of
the Vyshnegradsky period of tenure, in equal
proportions. The number of degrees of freedom u

coincides in our case with the number of bins, i.e.,
201. We use again the asymptotic formula 6

(Abramovitz and Stegun, 1972).
The X2 test results are reported in Table VI. The

test is in agreement with the previous tests on

specific 0/r values. For the Bunge period

Hobs2 --203.7, very close to the expected value
(X2)=u=201. Therefore Q(x) is quite large
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FIGURE 14 Compass rose in absolute values, Vyshnegradsky period.

TABLE V Bernoulli hypothesis tests for ruble data, 0#r + 0.25( + 0.005) and + 0.75( + 0.005)

Series n p k h Ak/o B(h)

Bunge 1224 0.06099( + 0.00022) 74.66( -4- 0.27) 88 1.54 0.065
Vyshnegradsky 1581 0.03123( -+- 0.00014) 49.38( + 0.22) 73 1.85 0.0008

TABLE VI X hypothesis tests for ruble data. The empirical
series include n=998 observations histogrammed in u=201
bins. The reduced variable x* corresponding to the 0.05 con-
fidence level, i.e., Q(x*)=O.05, is 1.645

Series x x Q(x)

Bunge 203.696 0.159 0.436
Vyshnegradsky 251.501 2.403 0.0082
Mixed 291.102 4.104 0.00002

and well within the confidence level. For the
Vyshnegradsky period 2

Xobs- 251.5 and Q (x)-
0.008<0.05, therefore we can reject the

hypothesis that Vyshnegradsky’s empirical theta
histogram is distributed as the corresponding i.i.d.
returns histogram. This conclusion is even more

probable for the "mixed" series, with obs2 291.1
and Q(x) 2 x O- 5.
Our tests show that the angular distribution of

credit-ruble returns in delay space shifted drama-
tically under the Big Player influence of Ivan
Vyshnegradsky. We could find no adequate
evidence of X-skewing under Bunge. X-skewing
was clearly present under Vyshnegradsky. Thus,
we have evidence that Big Players can induce or



120 R. KOPPL AND C. NARDONE

increase X-skewing by changing the interpretive
environment of an asset market. This X-skewing,
in turn, can induce the appearance of ARCH
behavior.

V. CONCLUSION

Building on Crack and Ledoit (1996), we have
described and applied some new techniques of
time-series analysis. We believe several considera-
tions suggest that our techniques and others like
them may be of fairly general interest in economics
and finance.
Our tests and techniques are designed specifi-

cally for discrete data and the compass rose. They
are not biased by discreteness. (They could be
applied, however, to data that is not discrete.)
Although the compass rose has been described
as "subjective", our procedures are perfectly
objective.
Our discovery of X-skewing gives us another

way to look at volatility dynamics. We have found
evidence that apparent ARCH effects may be due
at least partly to X-skewing of the compass rose.
This gives us information on the dependence
among returns that is not reflected in ARCH
coefficients. Crack and Ledoit suggest that ARCH
estimates may be biased by discreteness. If this is
true, then it may be desirable to have another
technique of analysis capable of getting at
volatility dynamics.
Our simulation is evidence that X-skewing may

be inconsistent with standard ARCH models even
though it induces the appearence of ARCH
behavior under standard tests. Further study is
needed on the relationship between X-skewing and
ARCH. In particular, the conditional distribution
of the return on day t, given the return on day t-

should be studied further. We conjecture that this
distribution is typically not unimodal and normal
as assumed in standard ARCH models.

Finally, our examination of the credit ruble
supports the view that the degree of X-skewing
may be a partial function of the interpretive

environment facing traders. In particular, Big
Players encourage X-skewing by scrambling mar-
ket signals and corrupting the knowledge traders
rely on. One way policy regimes influence asset
markets is by altering the interpretive environment
facing traders. Big Players change the interpretive
environment of the market by throwing traders
into a state of ignorance. This ignorance ecourages
herding and contra-herding, which together induce
X-skewing and the appearance of standard ARCH
behavior. Thus, the appearance of standard
ARCH behavior depends in part on the inter-
pretive environment, which, in turn, depends on

the policy regime governing asset markets. We
conjecture that the links between policy, inter-
pretation, and the behavior of asset markets is a

fruitful area for future research. Theta histograms
and other non-traditional tools may be required to
further explore these links.
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