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We present a finite volume discretization of the nonlinear elliptic problems. The dis-
cretization results in a nonlinear algebraic system of equations. A Newton-Krylov algo-
rithm is also presented for solving the system of nonlinear algebraic equations. Numeri-
cally solving nonlinear partial differential equations consists of discretizing the nonlinear
partial differential equation and then solving the formed nonlinear system of equations.
We demonstrate the convergence of the discretization scheme and also the convergence
of the Newton solver through a variety of practical numerical examples.
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1. Introduction

Nonlinear elliptic equations arise in many applications in many fields, so solving such sys-
tems is important. Solving nonlinear partial differential equations consists of discretizing
the partial differential equations and solving the formed nonlinear algebraic system of
equations. Work has been done on numerically solving nonlinear elliptic partial differen-
tial equations (PDEs). For example, Schwarz alternating methods (see [14] and references
therein), multigrid methods [5], and preconditioned FFT [12]. In this work, we explore
the convergence of the discretization method, and also the convergence behaviour of the
Newton-Krylov method for solving the nonlinear algebraic equations [7, 8]. Let us con-
sider the following nonlinear elliptic problem:

−div(K grad p) + f (p)= s(x, y) in Ω, (1.1)

p(x, y)= pD on ∂ΩD,

g(x, y)=−K∇p on ∂ΩN .
(1.2)

The above problem captures the fundamental features of the Poisson-Boltzmann equa-
tion arising in molecular biophysics (see [2–6]). Here, Ω is a domain in R2, the source
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2 Finite volume for nonlinear elliptic problems

function s is assumed to be in L2(Ω), and the diagonal tensor coefficient K(x, y) is pos-
itive definite and piecewise constant. K is allowed to be discontinuous in space. In bio-
physics literature, the medium properties K is referred to as the permittivity [2–5]. It
takes the values of the appropriate dielectric constants in the different regions of the do-
main Ω. In (1.1) and (1.2), ∂ΩD and ∂ΩN represent the Dirichlet and Neumann parts of
the boundary, respectively. f (p) represents the nonlinear part of the problem. Equations
(1.1) and (1.2) model a wide variety of processes with practical applications, some exam-
ples are pattern formation in biology, viscous fluid flow phenomena, chemical reactions,
biomolecule electrostatics, and crystal growth.

This paper presents the two-point finite volume discretization (2P-FVM) [9, 10] of
the nonlinear problem (1.1) and (1.2) on the rectangular meshes. An implementation
of boundary conditions is also presented. Several numerical examples are reported for
showing the convergence of the finite volume discretization scheme. A Newton-Krylov
algorithm is also mentioned for solving the system of nonlinear equations formed by
the discretization scheme. Convergence of the Newton method is demonstrated through
numerical work. For higher-order finite volume discretization of linear problems, the in-
terested reader are referred to [1, 11]. Handling complex geometries is a difficult task;
radial basis functions (RBFs) are a new numerical method that can offer very high ac-
curacy even on complicated domains [13]. RBFs can be promising in solving nonlinear
partial differential equations.

An outline of the paper is as follows. In Section 2, finite volume discretization of the
nonlinear elliptic equations is presented. An implementation of Neumann and Dirich-
let boundary conditions is also reported. Section 3 presents a Newton-Krylov algorithm
for solving the system of nonlinear equations. Numerical work is reported in Section 4.
Finally Section 5 concludes the paper.

2. Two-point finite volume discretization of the nonlinear elliptic problem

For solving partial differential equations (PDEs) on a domain by numerical methods such
as the 2P-FVM, the domain is divided into smaller good quality elements (meshing of
the domain). These elements are called finite volumes or cells. The degrees of freedom
(DOFs) for the 2P-FVM lie at the cell centers. Thus, each finite volume in the mesh gives
rise to an algebraic nonlinear equation corresponding to (1.1). A residual form of (1.1) is
−div(Kgrad p) + f (p)− s(x, y)= 0. Integrating it over one of the finite volumes V in the
mesh and using the Gauss divergence theorem lead to

−
∫
∂V

K∇p · n̂ +
∫
V
f (p)−

∫
V
s= 0, (2.1)

where n̂ is the outward unit normal on the boundary (∂V) of the cell V . Let us assume
that finite volumes V are rectangular or quadrilateral in shape. Thus, the boundary of
these finite volumes consists of four segments and the above equation can be written as

−
4∑
i=1

∫
∂Vi

K∇p · n̂ +
∫
V
f (p)−

∫
V
s= 0. (2.2)
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Figure 2.1. A nonlinear discrete equation for a finite volume. Here, �i with i= 1, . . . ,4 are the fluxes
through the cell boundaries.

The term
∫
∂Vi
−K∇p · n̂ is referred to as the flux through the edge ∂Vi. Let us denote it by

�i. Thus, (2.2) can be written as

4∑
i=1

�i +
∫
V
f (p)−

∫
V
s= 0. (2.3)

The degrees of freedom for the 2P-FVM lie at the cell centers, so the scalar variable p is
assumed constant in each cell. Thus, the integral

∫
V f (p) is approximated as

∫
V f (p) ≈

f (p)V . Here, V is the area of the cell. Thus, the above equation can be written as

4∑
i=1

�i + f (p)V −
∫
V
s= 0. (2.4)

For evaluating the integral
∫
V s, we use the Newton-Cotes formulas. Each finite volume

in the mesh results in the nonlinear equation (2.4). Figure 2.1 shows the equation for a
cell. Collecting all such nonlinear equations will result in a discrete system of nonlinear
equations A(ph) = 0. Now let us consider computing �i in (2.4). Figure 2.2 shows two
cells P and E. Let us compute the flux across the common edge AB of the cells. Let the K
of the cells P and E be KPI and KEI. Here, I is the identity matrix. Flux across the edge
AB by the 2P-FVM is given as [10]

�AB =Φ12
(
pE− pP

)
, (2.5)

where Φ12 is a scalar and is given as

Φ12 = KPKE

(
l

h1h2

)
1(

KP/h1 + KE/h2
) . (2.6)
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Figure 2.2. Flux �AB through the interface AB shared by the cells P and E; see (2.5).

Here, l is the length of the common edge AB. h1 is the perpendicular distance from the
center of the cell P on the edge AB. Similarly h2 is defined. Let there be total n cells in the
mesh (DOF = n). Each cell in the mesh provides a nonlinear equation (2.4). Collecting
all such equations results in a system of nonlinear equations given as

A(p)=

⎛
⎜⎜⎜⎜⎝

A1(p)
A2(p)

...
An(p)

⎞
⎟⎟⎟⎟⎠ . (2.7)

The above nonlinear system of equations can be solved by a Newton-Krylov method [8].
In Section 3, a Newton-Krylov algorithm is presented for solving the nonlinear system
A(p)= 0.

2.1. Implementation of boundary conditions. In the case of finite volume discretiza-
tion, every finite volume in the mesh results in a nonlinear discrete equation (2.3). It
requires computing flux through boundary edges. Thus, for handling boundary cells,
boundary conditions are converted into an equivalent flux expression. Flux or Neumann
boundary condition can be easily implemented and is more accurate than Dirichlet
boundary condition. Since we convert Dirichlet boundary condition into flux, in this
conversion we loose accuracy.

Since flux through an edge is given as
∫ −K∇p · n̂, thus computation of flux across an

edge requires computation of scalar potential gradient (∇p). So, let us write an expres-
sion for the gradient of the scalar potential p. Let the potential at the three vertices of
Figure 2.3(b) be p1, p2, and p3. Assuming that the potential is varying linearly inside the
triangle, the constant gradient of the potential (∇p) in Figure 2.3(b) is

∇p = −1
2Ω

3∑
i=1

pi ni. (2.8)
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Figure 2.3. Implementation of the Dirichlet boundary condition. (a) A 3× 3 mesh. Pressure is spec-
ified at the boundary points 1 and 2. Flux (�12) through the edge 12 is expressed as a linear combi-
nation of the potentials at the locations 1, 2, and 3; see (2.10). (b) Boundary triangle. Here, ni with
i= 1, . . . ,3 are the normal vectors on the edges.

Here, Ω is the area of the triangle, and ni is the normal vector on the edge opposite to the
vertex i. The magnitude of the vector ni is equal to the length of the edge.

2.1.1. Dirichlet boundary condition. Figure 2.3(a) shows a 3× 3 mesh. Let the pressure be
specified at the boundary points 1 and 2. For applying the finite volume formulation (2.4)
to the boundary cell 3, we have to compute the flux (�12) through the boundary edge 12.
For computing the flux, let us form a boundary triangle 123 as shown in Figure 2.3(b). Let
the unknown potential at the center of the boundary cell 3 be p3. The potential gradient
inside the boundary triangle can be approximated by the expression (2.8). Thus, the flux
through the boundary edge 12 is F12 =−(K∇p) ·n3. Let the outward normal vector on
the edge (see Figure 2.3(b)) opposite to the vertex i be ni = (nxi,nyi)t. The vector ni is
pointing away from the node i and the magnitude of the vector is equal to the length of
the edge. Let the property K of the boundary cell 3 be

K=
(
kx 0
0 ky

)
. (2.9)

Substituting the values of K and ∇p (given by (2.8)) in the equation �12 =−(K∇p) ·n3

results in

�12 =− 1
2Ω

[
kx

( 3∑
i=1

pi nxi

)
nx3 + ky

( 3∑
i=1

pi nyi

)
ny3

]
. (2.10)

Here, Ω is the absolute value of the area of the boundary triangle 123.
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2.1.2. Flux boundary condition. Implementation of Neumann or flux boundary condi-
tion is even simpler. Flux across a boundary edge will be added with the source term

∫
V s

in the discrete nonlinear equation (2.4).

3. Newton-Krylov algorithm

The nonlinear algebraic system of equations A(p) can be expanded by the Taylor’s series
around an initial guess p0 as

A(p)= A
(

p0
)

+ J
(

p0
)
Δp + HOT, (3.1)

where J is the Jacobian matrix, HOT exists for higher-order terms, J(p0) is the value of
the Jacobian matrix at the initial guess p0, and the difference vector Δp = p− p0. The
Jacobian J is an n×n (n is the DOF) linear system. The Jacobian J is given as

J=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂A1

∂p1

∂A1

∂p2
··· ∂A1

∂pn

∂A2

∂p1

∂A2

∂p2
··· ∂A2

∂pn
...

...
. . .

...
∂An

∂p1

∂An

∂p2
··· ∂An

∂pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.2)

Here, p1, p2, . . . , pn are the potential associated with the n cells in the mesh. The Jacobian
is symmetric, and it will be positive definite and diagonal dominant for positive non-
linearities, that is, for f > 0. Setting (3.1) equal to zero and neglecting the higher-order
terms results in a basis for the Newton algorithm

J
(

p0
)
Δp=−A

(
p0
)
. (3.3)

The above linear system is a basis for the Newton algorithm for finding the zeros of the
nonlinear function A(p). The linear system (3.3) is solved by the conjugate gradient solver
[15, chapter 5]. The Newton iteration for solving A(p)= 0 is

J
(

pk
)
Δpk =−A

(
pk
)
,

pk+1 = pk +Δpk k = 0,1,2, . . . ,m.
(3.4)

A Newton-Krylov iteration for solving A(p)= 0 is given by Algorithm 3.1.
In Algorithm 3.1, ‖ · ‖L2 denotes the discrete L2 norm and maxiter is the maximum al-

lowed Newton’s iterations. It is interesting to note the stopping criteria in Algorithm 3.1,
we are using three stopping criteria in the algorithm. Apart from the maximum allowed
iterations, we are using L2 norm of residual vector (‖F(p)‖L2 ) and also L2 norm of differ-
ence in scalar potential vector (‖Δp‖L2 ) as stopping criteria for the algorithm. Generally
in the literature maximum allowed iterations and the residual vector are used as stopping
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Mesh the domain;
Form the nonlinear system: F(p);
Set the Newton iteration counter: k = 0;
While k ≤maxiter or ‖Δp‖L2 ≥ tol or ‖A(p)‖L2 ≥ tol do

Solve the discrete system: J(pk)Δp=−A(pk) with a tolerance 1.0× 10−10;
pk+1 = pk +Δp;
k++;

end

Algorithm 3.1. Quasi-Newton-Krylov algorithm.

criteria. If the Jacobian is singular, then the residual vector alone cannot provide a robust
stopping criterion. We have implemented the algorithm in the C++ language.

4. Numerical examples

Let p be the exact solution vector and let ph be the finite volume solution vector on a
mesh. Let us further assume that pk denotes the exact solution at the center of the cell
k and pkh denotes the discrete solution by the finite volume approximation for the same
location. The error in the L∞ norm is defined as

∥∥p−ph

∥∥
L∞ :=maxk∈cells

[∣∣pk(x)− pkh(x)
∣∣], (4.1)

and error in the L2 norm is defined as

∥∥p−ph

∥∥
L2

:=
⎛
⎝∑

cells

[
pk(x)− pkh(x)

]2
Ωk

⎞
⎠

1/2

. (4.2)

Here, Ωk is the area of the finite volume k in the mesh.
For solving the Jacobian system, we use the conjugate gradient (CG) solver with the

ILU preconditioner. For all the numerical examples, our stopping criteria in Algorithm
3.1 are tol = 10× 10−20 and maxiter = 20. The tolerance for the CG solver is 1× 10−10.
During numerical experiments, we observed that the algorithm does not converge for all
initial guess of p as it is expected with Newton’s iteration.

Example 4.1. Let us solve the following problem:

−	p+ γpep = f in Ω, (4.3)

p(x, y)= pD on ∂Ω. (4.4)

Assume K = I and the nonlinear function f = γpep in (1.1). Let the exact solution be
p = x(x − 1)y(y − 1) and γ = 1.0. Let the domain of definition be Ω = (0,1)× (0,1).
Solution inside the domain is enforced by the source term and the Dirichlet boundary
condition. The initial guess for starting the Newton-Krylov algorithm is the zero vector.
For understanding the convergence behaviour of the finite volume method, we performed
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Figure 4.1. Example 4.1: Newton’s iteration versus the residual norm ‖A(p)‖L2 on various meshes.
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Figure 4.2. Example 4.1: Newton’s iteration versus norm of the difference vector ‖Δp‖L2 on various
meshes.

numerical work on the three meshes: 50× 50, 100× 100, and 200× 200. Figures 4.1,
4.2, 4.3, and 4.4 report the outcome of our numerical work. Figures 4.1 and 4.2 present
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Figure 4.3. Example 4.1: convergence of the discretization scheme. L∞ error versus the degrees of
freedom in the mesh. We are observing ‖p− ph‖L∞ ≈ Ch2.90. Here h denotes the size of the smallest
edge in the mesh.
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Figure 4.4. Example 4.1: convergence of the discretization scheme. L2 error versus the degrees of
freedom in the mesh. We are observing ‖p− ph‖L2 ≈ Ch1.99. Here h denotes the size of the smallest
edge in the mesh.

convergence of the Newton method while Figures 4.3 and 4.4 report the convergence of
the finite volume method.

It is interesting to notice in Figures 4.1 and 4.2 that for the three meshes, 5-6 Newton it-
erations are sufficient for reducing the residuals ‖A(p)‖L2 and ‖Δp‖L2 to about 1× 10−15.
The convergence of ‖A(p)‖L2 and ‖Δp‖L2 is asymptotically quadratic. Figures 4.3 and 4.4
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Figure 4.5. Example 4.2: Newton’s iteration versus the residual norm ‖A(p)‖L2 on various meshes.

report the convergence behaviour of the 2P-FVM method for the nonlinear elliptic equa-
tion. It can be seen in these figures that the method is converging as the mesh is refined.
In the L2 and L∞ norms, the method is super convergent.

Example 4.2. In this experiment, we solve (4.5) in Ω= (0,1)× (0,1). Let the exact solu-
tion be p = (x2 − x2)sin(3πy). Solution inside the domain is enforced by the Dirichlet
boundary condition and the source term. We assume zero initial guess for the Newton-
Krylov algorithm:

−∇2p+ k sinh(p)= f in Ω, (4.5)

p(x, y)= pD on ∂Ω. (4.6)

Again, we performed experiments on the three meshes. Figures 4.5, 4.6, 4.7, and 4.8 re-
port outcome of our experiments. Figures 4.5 and 4.6 demonstrate the convergence of
the Newton-Krylov Algorithm 3.1. It is interesting to see that for all three meshes, 5-6 it-
erations of Algorithm 3.1 are sufficient. Convergence of the 2P-FVM method is presented
in Figures 4.7 and 4.8. It can be seen in these figures that the method is superconvergent
(convergence rate ≥ 2.0).

Now let us consider the examples where the medium properties are discontinuous. For
applications, see [2–6] and references therein.

Example 4.3. In this experiment, the exact solution is not known. We are solving simpli-
fied Poisson-Boltzmann equation (4.7) on Ω= (−1,1)× (−1,1) with k = 1.0 and source
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Figure 4.6. Example 4.2: Newton’s iteration versus norm of the difference vector ‖Δp‖L2 on various
meshes.
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Figure 4.7. Example 4.2: convergence of the discretization scheme. L2 error versus the degrees of
freedom in the mesh. We are observing ‖p−ph‖L2 ≈ Ch2.00.

f = 0. The domain Ω is divided into four equal subdomains (Ωi, i = 1, . . . ,4) as shown
in Figure 4.9 based on the medium properties ε; see Figure 4.10 for the distribution of
properties in the domain. Let ε1 = ε3 = 100.0I and ε2 = ε4 = 1.0I. ε1, ε2, ε3, and ε4 refer
to the medium properties in the subdomains Ω1, Ω2, Ω3, and Ω4, respectively.
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Figure 4.8. Example 4.2: convergence of the discretization scheme. L∞ error versus the degrees of
freedom in the mesh. We are observing ‖p−ph‖L∞ ≈ Ch1.990.

Ω4 Ω3

Ω1 Ω2

Figure 4.9. Example 4.3: domain is divided into four subdomains Ωi, i= 1, . . . ,4. The property ε in
the subdomain Ωi is εi.

Figure 4.11 is showing the surface plot of the discrete solution on a 64× 64 mesh.
There is a singularity in the solution at origin as it can be expected for the interface prob-
lems [10]. Figure 4.12 shows the convergence of the Newton-Krylov Algorithm 3.1. Again
we see that 5-6 Newton’s iterations are sufficient. It should be noted here that problems
with discontinuous ε can produce badly conditioned Jacobian systems:

−div(εgrad p) + k sinh(p)= f in Ω, (4.7)

p(x, y)= x(x− 1)y(y− 1) on ∂Ω. (4.8)



Sanjay Kumar Khattri 13

ε4 � 1.0I ε3 � 100.00I

ε1 � 100.00I ε2 � 1.0I

O

Figure 4.10. Example 4.3: property distribution in Ω= (−1,1)× (−1,1).

4

3.5

3

2.5

2
1.5

1

0.5
0

�0.5
�1

�0.5 0
0.5 1 1

0.5
0

�0.5
�1

Figure 4.11. Example 4.3: surface plot of discrete solution on a 64× 64 mesh. Solution is exhibiting
a singularity at (0,0).

Example 4.4. We are solving simplified Poisson-Boltzmann equation (4.9) on Ω= (−1,1)
× (−1,1) with k = 1.0 (see Figure 4.15). In this example, the source function exhibits a
huge variation inside the domain unlike the previous example (source is zero). The source
is f = 2.0y(y − 1) + 2.0x(x− 1)− (x(x − 1)y(y − 1))exp(x(x− 1)y(y− 1)). In this ex-
periment, the exact solution is not known. The domain Ω is divided into four equal sub-
domains (see Figure 4.9) based on the medium properties ε. Further assume ε1 = 1.0I,
ε2 = 4.0I, ε3 = 300.0I, and ε4 = 2.0I. ε1, ε2, ε3, and ε4 refer to the medium properties
in the subdomains Ω1, Ω2, Ω3, and Ω4, respectively. Figure 4.13 is a surface plot of the
discrete solution on a 50× 50 mesh. Figure 4.14 reports convergence behaviour of the
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Figure 4.13. Example 4.4: surface plot of discrete solution on a 50× 50 mesh.

Newton-Krylov Algorithm 3.1. It is observed that Newton’s algorithm converged to a tol-
erance of 10× 10−10 in 5-6 iterations:

−div(εgrad p) + k sinh(p)= f in Ω, (4.9)

p(x, y)= cosh(xy) on ∂Ω. (4.10)
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Figure 4.14. Example 4.4: residual and difference vector versus Newton’s iteration.
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Figure 4.15. Example 4.4: property distribution in Ω= (−1,1)× (−1,1).

5. Conclusions

We have presented the two-point finite volume discretization of the nonlinear elliptic
problems. An implementation of Dirichlet and Neumann boundary conditions is also
mentioned. A Newton-Krylov algorithm for solving the system of nonlinear equations is
given. Reported numerical work validates the convergence of the discretization scheme
for nonlinear elliptic problems. Convergence of the Newton-Krylov method is also re-
ported.
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