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Dynamics of two coupled periodically driven oscillators is analyzed via approximate ef-
fective equation of motion. The internal motion is separated off exactly and then approxi-
mate equation of motion is derived. Perturbation analysis of the effective equation is used
to study the dynamics of the initial dynamical system.
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1. Introduction

Coupled oscillators play an important role in many scientific fields, for example, in me-
chanics, electronics, and biology; see [1, 4] and references therein. In this paper we an-
alyze two coupled oscillators, one of which is driven by an external periodic force. Im-
portant example of such a system is a dynamic vibration absorber which consists of a
small mass, m2, attached to the primary vibrating system of mass m1 [2, 10]. We make
the simplifying approximation that, while the motion of the smaller mass is nonlinear,
the motion of the main mass can be treated as linear. Equations describing dynamics of
such a system are of the form

m1ẍ1 + ν1ẋ1 +α1x1 +V
(
ẋ2− ẋ1

)
+R
(
x2− x1

)= f cos(ωt),

m2ẍ2−V
(
ẋ2− ẋ1

)−R
(
x2− x1

)= 0,
(1.1)

where α1 is linear spring constant for a spring connecting mass m1 with inertial frame of
reference, v1 is a coefficient of linear damping, V and R represent force of internal friction
and elastic restoring force, respectively.

Dynamics of coupled periodically driven oscillators is very complicated [4]. In the
recent paper we simplified (1.1) (approximately) reducing it to the Duffing-type effec-
tive equation [7, 8]. The effective equation is still very complicated. The main goal of
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2 Perturbation analysis of the effective equation

the present paper is to apply perturbation analysis to make progress in understanding
dynamics of the effective equation. This, in turn, should clarify dynamics of the exact
equation (1.1).

The paper is organized as follows. In Section 2, derivation of the approximate effective
equation for internal motion is outlined. Perturbation analysis of the effective equation
of motion is described in Section 3 and applied to study stability of nonlinear resonances.
In Section 4, computations testing results of the perturbation approach are presented. In
Section 5, perspectives of further research are outlined shortly.

2. Derivation of the effective approximate equation for the internal motion

In new variables, x ≡ x1, y ≡ x2− x1, (1.1) read

mẍ+ νẋ+αx+V( ẏ) +R(y)= f cos(ωt),

me(ẍ+ ÿ)−V( ẏ)−R(y)= 0,
(2.1)

where m≡m1, me ≡m2, ν≡ ν1, α≡ α1. Adding (2.1) we obtain an important linear rela-
tion between variables x and y:

Mẍ+ νẋ+αx+me ÿ = f cos(ωt), (2.2)

where M =m+me.
It is possible to separate variables in (2.1) due to its two-body structure to obtain the

equation for the internal motion variable y alone. Multiplying the first and the second of
(2.1) by me and m, respectively, we get

mmeẍ+meνẋ+meV( ẏ) +meR(y)=me f cos(ωt), (2.3a)

mme(ẍ+ ÿ)−mV( ẏ)−mR(y)= 0. (2.3b)

Subtracting (2.3a) from (2.3b) we obtain a new system of equations:

M
(
μÿ−V( ẏ)−R(y)

)=me
(
νẋ+αx− f cos(ωt)

)
, (2.4a)

meẍ =−me ÿ +V( ẏ) +R(y), (2.4b)

where μ is the reduced mass, μ = mme/(m + me). Now we can eliminate variable x in
(2.4a) differentiating it twice with respect to time and using (2.4b) to obtain the following
equations for y:

(

M
d2

dt2
+ ν

d

dt
+α

)
(
μÿ−V( ẏ)−R(y)

)
+ ε
(

ν
d

dt
+α
)
me ÿ = F cos(ωt),

meẍ =−me ÿ +V( ẏ) +R(y),

(2.5)
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where F =meω2 f , ε = (me − μ)/me =me/M is a small nondimensional parameter, and
(2.4b) was displayed again. Equations (2.5) are equivalent to the initial equations (1.1)
[7, 8].

Assuming in (2.5) 0 < ε� 1 (me �M) and neglecting the term proportional to ε we
obtain an approximate effective equation:

μÿ−V( ẏ)−R(y)= g(t), (2.6a)

(

M
d2

dt2
+ ν

d

dt
+α

)

g(t)=meω
2 f cos(ωt), (2.6b)

describing motion of mass me with respect to m.
Given the solutions g(t), y(t) of (2.6b), (2.6a) the function x(t) can be determined

from the second of (2.5) or (2.2). Let us finally note that it follows from the second of
(2.5) that large values of y lead to a large acceleration ẍ of the main mass.

3. Analysis of the approximate effective equation

3.1. Preliminary considerations. Solving (2.6b) we get (see [7, 8])

g(t)= Ae−λt sin
(
ω1t+ϕ

)
+B(ω)cos(ωt+ δ), (3.1a)

λ= ν

2M
, ω1 =

√
ω2

0− λ2, ω0 =
√

α

M
, (3.1b)

B(ω)= −meω2 f
√
M2
(
ω2−ω2

0

)2
+ ν2ω2

, tan(δ)= ων

M
(
ω2−ω2

0

) . (3.1c)

In order to compare the exact equation (2.5) with the approximate equation (2.6) we
choose the following forms of functions V , R:

V( ẏ)=−νe ẏ, R(y)= αe y− γe y
3,

(
νe ≥ 0, αe ≥ 0, γe ≥ 0

)
(3.2)

so that the Duffing-type effective equation (2.6) is obtained:

μÿ + νe ẏ−αe y + γe y
3 = B(ω)cos(ωt+ δ), (3.3)

where λ, B(ω), and δ are defined in (3.1), and we have neglected the decaying term
Ae−λt sin(ω0t +ϕ) (note that in [7, 8] we have tested effective equation for another form
of R(y)). Equation (3.3) has three points of equilibrium given by R(y)= 0:

y∗ = 0, y±∗ = ±
√

αe
γe
. (3.4)

We will refer to a periodic solution encircling only one of the points y±∗ as a small orbit
(SO) while an orbit encircling all three equilibrium points will be referred to as a large
orbit (LO) following [3] (orbits with another geometries are, of course, also possible).
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3.2. Linear resonances. Linear resonance conditions can be determined for (2.2), (3.3)
as well as for (2.6b).

Firstly, if for me small enough the term me ÿ can be neglected in linear equation (2.2)
to yield

Mẍ+ νẋ+αx ∼= f cos(ωt), (3.5)

then the resonance occurs (for small ν) at ω ∼= ω0 =
√
α/M. We can thus expect large

amplitudes of x(t).
Precisely the same resonance occurs in (2.6b) and the amplitude B(ω) has (for small

ν) a narrow and high maximum around ω∼= ω0. In this case g(t) is large in (2.6a) and the
solution y reaches large magnitudes as well. Obviously, deeper analysis of (2.6) is however
necessary to investigate conditions under which nonlinear resonances can exist. We will
perform such analysis in Section 3.3.

Secondly, there is a linear resonance for SO states in the effective equation. Indeed, if
we put y(t)= y±∗ + ε±(t), with y±∗ given by (3.4), then for small ε±(t) linear approxima-
tion is obtained:

με̈± + νeε̇
± + 2αeε± ∼= B(ω)cos(ωt+ δ). (3.6)

The resonance condition is thus (for small νe) ω ∼= ω̃0 =
√

2αe/μ. In this case we can
expect that the SO state transforms into LO-type solution. Moreover, it may happen that
the two resonance frequencies nearly coincide, ω0

∼= ω̃0. In such a case for ω ∼= ω0
∼= ω̃0

the most rapid destabilization of the SO state can be expected.

3.3. Perturbation analysis of nonlinear resonances in the effective equation. We will
apply the Krylov-Bogoliubov-Mitropolsky (KBM) perturbation approach [5] to the ef-
fective equation (3.3) attempting to find steady-state solutions, working in the spirit of
[3, 11] (see also [9]). The effective equation is written as Duffing-type equation:

d2y

dt2
+h

dy

dt
− ay + cy3 = F(ω)cos(ωt), (3.7)

where

h= νe
μ

, a= αe
μ

, c = γe
μ

, F(ω)= B(ω)
μ

, (3.8)

since for large t the term Ae−λt sin(ω0t + ϕ) can be neglected (alternatively, we can put
this term to zero by the appropriate choice of initial conditions).

Equation (3.7) can be cast into a form suitable for application of the KBM approach:

d2y

dt2
+ω2y + ε f (y, ẏ, t)= 0, (3.9)
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with small parameter ε where

f (y, ẏ, t)= (−ω2
0− a0 + c0y

2)y +h0 ẏ−F0(ω)cos(ωt), (3.10a)

ω2 = εω2
0, a= εa0, c = εc0,

h= εh0, F(ω)= εF0(ω).
(3.10b)

We will now investigate 1 : 1 nonlinear resonance. The solution is sought in the following
form:

y(t)=A(t)cos
(
ωt+ϕ(t)

)
+ εy1(t) + ε2y2(t) + ··· , (3.11)

with slowly varying amplitude and phase:

dA

dt
= εM1(A,ϕ) + ε2M2(A,ϕ) + ··· ,

dϕ

dt
= εN1(A,ϕ) + ε2N2(A,ϕ) + ··· ,

(3.12)

and we assume that the series (3.11) converges.
Computing ẏ with the help of (3.11), (3.12) and substituting expressions for y, ẏ to

(3.9), (3.10) and keeping terms of order ε only we get

d2y1

dt2
+ω2y1 = C1 cos(ωt+ϕ) +C2 sin(ωt+ϕ) +Dcos(3ωt+ 3ϕ), (3.13)

where

C1 = 2aωN1 +ω2
0A+ a0A− 3

4
c0A

3 +F0(ω)cosϕ,

C2 = 2ωM1 +h0ωA+F0(ω)sinϕ,

D =−1
4
c0A

3.

(3.14)

Equation (3.13) contains resonant terms proportional to C1, C2, referred to as secular
terms [5]. Secular terms lead to contributions εy1(t) in (3.11) proportional to εt cos(ωt+
ϕ) and εt sin(ωt + ϕ) and hence |εy1(t)| grows unboundedly with time. Such contribu-
tions invalidate the perturbation expansion (3.11) and are unphysical as well, therefore
they have to be excluded [5]. Accordingly, we demand that secular terms vanish, C1 = 0,
C2 = 0, to get

N1 =− 1
2εωA

(
−ω2

0A− a0A+
3
4
c0A

3−F0 cosϕ
)

,

M1 =− 1
2εω

(hωA+F(ω)sinϕ).
(3.15)
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Figure 3.1. Dependence of the amplitude A on the frequency ω. Solid lines denote stable branches
while dotted lines mark unstable states.

Since we are seeking a steady-state periodic solution we have to request, according to
(3.12) [11],

N1 =M1 = 0. (3.16)

Taking into account (3.15), (3.16), and the definitions (3.10b) we obtain

A(ω)
(
ω2 + a− 3

4
cA2(ω)

)
+F(ω)cos

(
ϕ(ω)

)= 0,

hωA(ω) +F(ω)sin
(
ϕ(ω)

)= 0.

(3.17)

Finally, solving (3.17) we get conditions for the amplitude and the phase shift:

A(ω)= F(ω)
√

(hω)2 +
(
ω2 + a− (3/4)cA2(ω)

)2
,

tanϕ(ω)= hω

ω2 + a− (3/4)cA2(ω)
,

(3.18)

and equations for the correction y1(t):

d2y1

dt2
+ω2y1 =−1

4
c0A

3(ω)cos(3ωt+ 3ϕ),

y1(t)= 1
32ω2

c0A
3(ω)cos(3ωt+ 3ϕ).

(3.19)

Solving (3.18) for the following values of parameters m= 1, me = 0.04, ν= 0.024, νe =
0.018, α= 0.6, αe = 0.05, γe = 0.01, f = 5.5 (all parameter values are in the SI units), for
example, we obtain the typical form of the graph A(ω) in Figure 3.1.
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Figure 4.1. Bifurcation diagram for the effective equation.

Stability of the solution (3.18) is investigated considering the perturbed solution, A+
δA, ϕ+ δϕ. We get from (3.12)

d

dt
δA= ε

(
∂M1

∂A
δA+

∂M1

∂ϕ
δϕ
)

,

dδϕ

dt
= ε
(
∂N1

∂A
δA+

∂N1

∂ϕ
δϕ
)

,

(3.20)

where only terms linear in ε were kept. Substituting in (3.20) δA= A0eλt, δϕ= ϕ0eλt we
obtain eigenequation for A0, ϕ0, and λ. The condition of stability of solution (3.18) is
equivalent to Im(λ) < 0. We have performed such simple stability analysis for values of
the parameters given above. Stable and unstable branches have been shown in Figure 3.1.

4. Computational results

We have performed computations for the functions V , R chosen in form (3.2). In Fig-
ures 4.1, 4.2, results of computations are shown for the effective and the exact equations,
respectively. We have computed bifurcation diagrams running the program DYNAMICS
[6]. The program integrated these equations using the fourth-order Runge-Kutta method
with a fixed but ω-dependent step size h(ω) of the independent variable t. The bifurca-
tion diagrams show the projection of the attractors in the Poincaré section, t = const,
onto the coordinate ẏ for a given value of the control parameter ω. This choice of the
Poincaré section is motivated by the symmetry of the system, t→ t+T(ω), T(ω)= 2π/ω



8 Perturbation analysis of the effective equation

0.5 1 1.5 2 2.5 3

ω

�10

�5

0

5

10

ẏ

Figure 4.2. Bifurcation diagram for the exact equation.

[4]. The time interval [0,T(ω)] was divided into N subintervals and hence the step size
was selected as h(ω)= T(ω)/N , with N = 1024. This procedure preserved the exact sym-
metry t→ t+T(ω).

The computations were performed for the parameter values given in the preceding
section and variable ω. First of all, we realize that the bifurcation diagrams in Figures 4.1,
4.2 for the effective and exact equations are similar. In both figures large amplitudes of
relative motion of the small mass are present for ω ∼= ω0 =

√
α/M = 0.76, that is, when

B(ω) is large (or, equivalently, near the resonance frequency of (2.2)).
In Figures 4.1, 4.2 SO states can be seen for ω > 2.8, 1 : 3 nonlinear resonance appears

for ω < 3.05, and 1 : 1 nonlinear resonance is present for 1.2 < ω < 2.2 (the branch with
large amplitudes of ẏ), 1.6 < ω (the branch with small amplitudes of ẏ) and ω ≈ 0.4.

We will analyze shortly the 1 : 1 resonance comparing Figures 4.1 and 3.1. The first
branch of this resonance ends at ω ≈ 2.2 (but for specially chosen initial condition it
can be continued up to ω ∼= 2.3) in agreement with plot of A(ω), Figure 3.1. The second
branch starts at ω > 1.64 (but for carefully chosen initial conditions it can be contin-
ued down to ω ≈ 1.6) again in agreement with plot of A(ω), Figure 3.1, where the lower
branch starts at ω = 1.60. It turns out that at lower branch for ω > 1.6 LO states are at
first present which for ω � 1.7 transform into SO states. This phenomenon can be easily

understood if we recall possibility of SO resonance occurring at ω∼= ω̃0 =
√

2αe/μ= 1.61.
It follows that near the resonance frequency SO states cannot exist and LO states are cre-
ated. Since the lower branch of A(ω) is a decreasing function of ω the LO states cannot
be stable too far from the resonance at ω = ω̃0 and thus they transform into SO states.
Analogous dynamical phenomena are present in the exact system; cf. Figure 4.2.
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Let us note finally that in Figures 4.1, 4.2 transient phenomena are visible as it is sug-
gested by presence of the decaying term Ae−λt sin(ω1t+ϕ) in the function g(t); cf. (2.6a),
(3.1a).

5. Summary and discussion

Our analytical as well as numerical results cast light on the dynamics of nonlinear dy-
namic vibration absorber described by (1.1) or (2.1) and on the approximate effective
equation (2.6). Let us first notice that our approximations lead to the effective equation
describing relative motion of a smaller mass with respect to the main mass; cf. (2.6), that
is valid for arbitrary form of nonlinear forces V( ẏ), R(y) and sufficiently small ε =me/M
(the motion of the main mass can be obtained from (2.4b)). In the case of our computa-
tions with ε = 0.04 and V( ẏ), R(y) given by (3.2) the bifurcation diagrams computed for
the exact system (2.1) and the approximate one (2.6); cf. Figures 4.1, 4.2 that are indeed
very similar (see also [8] for other forms of V( ẏ), R(y)).

Analysis of (2.6), (3.1a) suggests that for small values of linear damping constant ν
presence of transition states can be expected in dynamics of the effective equation due to
the term Ae−λt sin(ω1t +ϕ), and, for small ε, in dynamics of the exact equation. Indeed,
long transients were observed for both equations; see Figures 4.1, 4.2, and [8].

It follows from Sections 3.1, 3.2 that there is always a resonance in the effective equa-
tion (2.6) (for small ν) at ω ∼= ω0 =

√
α/M; see (3.1a). In this case g(t) is large in (2.6a)

and the solution y reaches large magnitudes as well. Indeed, we can see vibrations with
high amplitudes near ω ∼= √α/M = 0.76 in Figures 4.1, 4.2. Motivated by this result we
have performed analysis of 1 : 1 nonlinear resonance for the effective equation (3.3) in
Section 3.3. We have determined, using the Krylov-Bogoliubov-Mitropolsky perturba-
tion approach, the dependence of the amplitude A of the resonance on the frequency ω.
It follows from Figure 3.1 that the graph A(ω) has a high but a narrow maximum near
ω ∼= √α/M and the stable branch of high amplitude resonance ends, for growing ω, at
ω ∼= 2.3. These results agree well with computational results presented in Figures 4.1, 4.2.
The stable branch in both figures ends at ω ≈ 2.2, but for specially chosen initial condi-
tion it can be continued up to ω ∼= 2.3, in agreement with plot of A(ω), Figure 3.1.

Let us remark finally, that it is possible to carry out the investigations further applying
perturbation analysis directly to the first of the exact equations (2.5) since it contains the
small parameter ε=me/(me +m) < 1.
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