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This paper deals with the modelling of complex sociopsychological games and recipro-
cal feelings involving interacting individuals. The modelling is based on suitable devel-
opments of the methods of mathematical kinetic theory of active particles with special
attention to modelling multiple interactions. A first approach to complexity analysis is
proposed referring to both computational and modelling aspects.

Copyright © 2006 N. Bellomo and B. Carbonaro. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

This paper deals with the modelling of complex sociopsychological games and recipro-
cal feelings based on some conceptual developments of a new class of kinetic equations
recently proposed in the literature to model the evolution of large systems of interacting
individuals such that their microscopic state is defined not only by mechanical variables,
but also by additional variables, describing social and/or biological functions or behav-
iors.

The guiding lines of the above mathematical approach is the derivation of an evolution
equation for the statistical distribution over the microscopic state, which, as a particular
case, may be also related to a somehow intelligent, or at least organized, behavior of in-
teracting individuals, which may be called active particles [33]. Interactions modify both
the mechanical state (generally position and velocity) and the above introduced internal
state; and those related to mechanical variables do not necessarily obey the laws of clas-
sical mechanics, considering that these may turn out to be themselves modified by what
we have called an organized behavior.

Specifically, we refer to [2] for the modelling of large systems of entities undergoing
short-range interactions, while systems with long-range interactions are dealt with in [7],
further developed in [12]. The kinetic theory approach has been developed starting from
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the paper by Jäger and Segel [25], devoted to modelling the social behavior of interact-
ing populations of insects. This research line, developed after the above pioneer paper, is
documented in [3, 4, 30].

One of the main problems to be tackled consists in dealing with the complexity of
modelling the evolution of the sociobiological variable. This aspect appears to be partic-
ularly relevant when the model refers to personal feelings [15, 16], political ideas [28, 29],
or social competitions [13, 20–22]. Additional applications refer, among others, to mod-
elling multicellular systems in biology [8, 18], swarm dynamics [14, 31, 34], living fluids
[35], or vehicular traffic flows [9, 17, 24], while the interest of applying the methods of
kinetic theory to model large systems is documented in the collection of surveys edited
in [10].

One of the complexity problems which have to be taken into account in modelling
refers to coupling mechanics and self-organization, which may even be related to indi-
vidual thinking and psychological attitude. On the other hand, in order to simplify the
problem in its most technical features, the mechanical aspect could even be neglected in
a first approximation. This is obviously restrictive in principle, and can be accepted only
when interactions do not explicitly require a mechanical evolution (just to show an exam-
ple, we may think of a system consisting of two populations whose evolution is simply to
reach conclusions and decisions, and whose interactions—between members of the same
population as well as between the two different populations—can be simply described
as “debates”: in such conditions, it does not matter whether the debates are realized by
meeting in a chosen place, or by mail, or by phone calls). In a suitable context, mechanical
variables have been and can be replaced by behavioral variables [15].

Dealing with the above topics leads to tackle, in addition to the basic difficulty of any
attempt to describe the above kind of systems, also the problem of describing multiple
interactions [1, 32]. Then, while two individuals are interacting, the presence of a third
individual can substantially affect also their interactions. This is in fact one of the com-
plexity problems discussed in this paper. In other words, for any triple of individuals, the
triple of interactions of each of its elements with the binary interactions between the other
two must be considered. The basic idea is indeed that each individual not only interacts
with any other individual, but also with any binary interaction between two other indi-
viduals. Now, each interaction between two (or more) individuals may be described by
a function of their actual state variables, and its results can be expressed by a law linking
the value of this function with the evolution in time of these latter; or, as we will see in
the next sections, it can be described by a transition probability density from a state to
another for each individual involved in the interaction: this is the statistical (or stochas-
tic) description of interactions. Such a probability density completely characterizes the
interaction, at least in a given context; accordingly, when we say that three (or more) in-
dividuals interact at the same time, we say that each interaction between a pair of them
is influenced by the presence of all the others, and this influence is expressed by the fact
that the transition probability density is conditional depending on their actual states.

This kind of description may be applied in some way to the story of Kate, Jules, and
Jim, in the movie “Jules and Jim,” directed by François Truffaut, based on the novel of
the same title by Henri-Pierre Roché, and played by Jeanne Moreau (Cathérine), Oskar
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Werner (Jules), and Henri Serre (Jim). Referring to their story, one is naturally led to ask
whether a mathematical model could be constructed to describe such a complex, proba-
bly unpredictable, system. The first answer should be certainly negative. But still, applied
mathematics can try to capture and describe some small subsets (particular aspects) of
the system. At least, it is worth trying. One of the advantages is that dealing with the above
problem obliges to look again and again to the movie we are talking about. In fact, this
paper is dedicated to the director, actors, and technical staff of the movie Jules and Jim.
The reader of this paper is warmly invited to avoid the thought that the cold mathemat-
ics of this paper may attempt to overlap the smallest part of that beautiful movie, which
cannot be forgotten by all those who are fond of high-quality cinema.

To tackle the above problems by the methods of kinetic theory means to develop a sta-
tistical mechanical theory for interacting subjects with internal intelligent or at least orga-
nized microscopic structure, though this latter should be perhaps understood in a sense
rather different from usual. Indeed, as we will see in Section 4, the reference to an internal
structure can be enlightened by considering each individual as a whole system (popula-
tion) of interacting subindividuals: this interpretation allows to draw a detailed descrip-
tion of the internal competition between different psychological drives which in [15, 16]
has been epitomized by the mathematical concept of self-interaction. A self-interaction of
any given individual produces in principle a change of its state, so that any of its possible
self-interactions is completely characterized as a correspondence law in the set of all its
possible states, which associates to each state (before the self-interaction) a subset of states
(after the self-interaction). If this last subset is reduced to a single point, then the result of
a self-interaction is deterministic; more in general, we have to consider the result of the
self-interaction as a probability density function on the set of all possible states, and to
acknowledge that such density depends on the starting state. The statistical derivation of
such a density can be performed in the framework of the above interpretation of each in-
dividual as a population: this of course leads to a number of technical difficulties (e.g., the
definition of the number of subunits as well as of the parameters describing their states).
And one of the aims of the present paper is just to contribute at least an initial discussion,
along with an attempt of solution, of such kind of difficulties.

After the above preliminaries, we are in a position to outline the contents of this paper,
which are organized in four more sections which follow this introduction. Specifically, we
have the following.

Section 2 deals with the derivation of a class of mathematical equations to model the
above outlined complex systems. The analysis is developed in three steps: the first one
will be to introduce the concept of a generalized distribution function over the set of mi-
croscopic social states of a large system of interacting individuals (this state includes both
the mechanical and the social behaviors). The choice of a description in terms of such a
distribution function is related to the need to reduce the complexity induced by the large
number of individuals and by multiple interactions, as well as to the need to take into ac-
count any random modification of interactions when different subsystems of individuals
are considered. The second step deals with the modelling of microscopic interactions,
binary and triple interaction schemes. Finally, an evolution equation is derived for the
above distribution function starting from models of microscopic interactions.
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Sections 3 and 4 show how the mathematical framework designed in Section 2 can
be used to model, respectively, the evolution of social systems and personal feelings be-
tween partners. As we will see, suitable technical developments are needed to adjust the
mathematical framework offered for the first class of systems to the second one.

Section 5 is devoted to a critical analysis of some complexity problems related to var-
ious features of the class of models we are dealing with, and to outline some research
perspectives. The complexity analysis refers essentially to computational problems, to
modelling aspects, and to the implications of multiple interactions.

2. Mathematical framework

As already mentioned in Section 1, this paper deals with modelling large systems of in-
teracting individuals with a somehow organized behavior. The analysis developed in the
present section essentially aims at the derivation of a mathematical framework which
could be sufficiently general to include a variety of specific models, with special atten-
tion to the role of multiple interactions. The analogous problem in the case of binary
interactions is discussed in [2].

The contents are developed in three steps, each in one of the subsections which follow.
The first one is devoted to the statistical representation, the second one to the modelling
of microscopic interactions, and finally the last one deals with the actual derivation of the
evolution equations.

The analysis is addressed to systems that are homogeneously distributed in space, and
such that social interactions are predominant with respect to mechanical interactions.
Considering that this paper aims at studying both collective behaviors of large systems
of interacting individuals and personal feelings of a small number of individuals, some
technical differences between the mathematical treatment of the two kinds of systems
need to be pointed out. Therefore, this section deals with the mathematical framework
related to the first class of models, while the generalization to the second class of systems
will be dealt with in Section 4.

2.1. On the statistical representation. Consider a physical system consisting of a large
number of interacting individuals that may be subdivided into different interacting popu-
lations. The analysis developed in what follows is confined to the particular case in which
the number of individuals is constant in time for each population. This case can be shown
not to entrain any real loss of generality, at least in the framework of a purely theoretic
description: it only leads to a loss of information when (as it happens when dealing with
social systems) the variation of the numbers of individuals of the considered populations
is just one of the experimental data we want to forecast (e.g., in prey-predator models).
On the other hand, as we will point out in details in Section 4, it is specially effective in
the modelling of personal feelings. It can be easily shown that in such a context, the ac-
tual value of the constant number of individuals is quite immaterial and can be arbitrarily
assigned.

Bearing all above in mind, and according to [2], the following definitions are proposed.
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Definition 2.1. The physical variable charged to describe the state of each individual of
the system is called microscopic state, which is denoted by the variable u, formally written
as follows:

u∈Du ⊆Rp. (2.1)

The space of the microscopic states is called state space.

It is to be carefully noted that the set of all possible states is implicitly assumed to be
the same for all the individuals of the system. This is in fact quite obvious, as can be easily
acknowledged from the following definition.

Definition 2.2. The description of the overall state of the system, assumed to be divided
into n different populations, labelled with the subscript i, is given by the one-individual
distribution function

fi : (t,u)∈R+×Du −→ fi(t,u)∈R+, (2.2)

which will be called generalized distribution function for i = 1, . . . ,n, and such that
fi(t,u)du denotes the number of individuals of the ith population whose state, at time
t, is in the p-dimensional interval [u,u +du].

Remark 2.3. Pair interactions refer to the test individual interacting with a field individual.
Triple interactions refer to the test individual interacting with two field individuals. The
distribution function stated in Definition 2.2 refers to the test individual. This means that
each population will work as a test individual, for example, Kate, Jules, or Jim, or as a field
individual according to whether we describe the results of interaction on its distribution
function or on the distribution function of the individual interacting with it.

Macroscopic overall quantities are obtained as weighted moments of the distribution
function. The zeroth-order moment of fi obviously identifies the number of individuals
in each population:

ni(t)=
∫
Du

fi(t,u)du. (2.3)

As expressed by the integral at right-hand side, ni turns out to be in principle a func-
tion of time. But the class of models we plan to consider in the sequel is such that ni can
be considered constant in time for any i (i.e., for each population): ni = ni0 = const., so
that the function fi(t,u) can be regarded as a probability density when divided by ni0:∫

Du

fi(t,u)du= 1, ∀t ≥ 0, (2.4)

for all i= 1, . . . ,n, and where notation fi has not been modified. In other words, for any
A⊆Du, the integral

Pi(A)=
∫
A
fi(t,u)du (2.5)

gives the probability to find a member of the ith population whose state lies in A.
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A comment is now useful: at a first glance, one could feel that the above assumption of
constancy in time for the numbers of individuals of all the involved populations should
result in a severe loss of generality, in particular if we note that the probabilistic inter-
pretation of function fi(t,u) can be introduced also when ni = ni(t). But our assumption
should instead be interpreted in the opposite sense: considering time-dependent numbers
of individuals would add no significant information in the framework of the problems we
have in mind to discuss, and would only produce a useless complication in calculations.
The explicit consideration of functions ni = ni(t,u) is of the greatest relevance in prob-
lems about population dynamics as tumor growth or prey-predator interactions.

It could be now of some interest to recall that each probability density fi(t,u) defines a
different one-parameter family of vector random variables, or— what is the same—a set
of p (one-parameter families of) scalar random variables. Accordingly, we have, for any
t ∈R+, np random variables Uij (the components of the state random variable).

The first-order moments of such random variables (i.e., their expected values) provide,
for each j ∈ {1, . . . , p} and for i∈ {1,2, . . . ,n}, a quantity

Aij = Aj
[
fi
]
(t)=

∫
Du

uj fi(t,u)du, (2.6)

which can be called the activation of the j-component of state within the i-population at
the time t. From a conceptual viewpoint, the activation can be taken as a (signed) measure
of the relevance of the jth state variable for the state of the ith population. This idea of
relevance is of course rather hard to interpret when the considered variable is a coordinate
in the classical mechanical sense. Quite different is its sense when the jth state variable is
a measure of an attitude, a trend, or a power (a feeling towards another person, artistic
or scientific ability, economic power, etc.). And analogously to what happens for kinetic
variables, it seems quite reasonable to associate to each state variable an energy term.

The second-order moments of variables Uij , (the expected values of the random vari-
ables U2

i j) provide the activation energy of the j-component of state within the i-popula-
tion at time t:

�i j =� j
[
fi
]
(t,x)=

∫
Du

u2
j fi(t,u)du, (2.7)

where the definition is given of course only by analogy. But it should be carefully noted
that the convention to give the above integral the meaning of an energy is not more arbi-
trary than the definitions of kinetic and potential energy for mechanical variables. What
is to be carefully noted is that, a posteriori, such a definition must be endowed with a real
sense by the deduction of balance relations analogous to the ones known in the mechan-
ical framework as power and energy theorem or total energy theorem.

2.2. Modelling microscopic interactions. Consider now the problem of designing suit-
able models of microscopic interactions which occur between two or more individuals of
the same population as well as of two or more different populations. In general, two types
of interaction schemes can be proposed.
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(i) Localized (pair, triple) interactions occurring between individuals that are suffi-
ciently close to each other, that is, whose mutual distance is lower than a prescribed
critical value (individuals are essentially in contact). It is assumed that the surround-
ing individuals do not influence the interaction, which is considered to be instantaneous
in time, and only pair and triple interactions are assumed to be significant.

(ii) Mean-field—long-range—interactions which occur when the individuals are in a
certain action domain. In other words, an individual in a certain position x perceives the
action of all individuals localized into a certain volume around x, which one may call
action domain. Again only pair and triple interactions are assumed to be significant.

It should be carefully noted that, according to the above definitions, the difference
between localized and long-range interactions is reduced to the difference between the
distance limits out of which interactions produce no effects at all. Roughly speaking, the
limit for localized interactions is infinitesimal, while the limit for long-range interactions
is finite. This difference requires to be carefully formalized.

It is also worth noting that the above classification of interactions, which is endowed
with an immediate meaning when the state of interacting individuals is described only
in terms of space variables (or, more in general, in terms of positions in a metric space),
needs some discussion in the case of social, political, or philosophical characters or, in
particular, of feelings, since in all these cases to the spatial coordinates is added at least one
more coordinate which is a measure of a psychologic (or social or even intellectual) con-
dition (from now on, for the sake of simplicity, this additional condition—which is in fact
the very object of study—will be generally identified as a psychologic condition). Accord-
ingly, we can (and probably should) ask whether (a) a distance between psychologic states
can be defined; (b) a total distance between spatial and psychologic states can be defined;
(c) interactions between individuals should depend on the total distance (and, more
specifically, on the distance between reciprocal feelings) or only on the spatial distance.

As a matter of fact, we should probably consider as the most significant interactions
those which are capable to change the psychologic state of a test individual and possibly
to produce behaviors aiming in turn at changing the psychologic states of another indi-
vidual, or at producing other desired results: these interactions will then both depend on
the psychologic states and modify them. In such interpretation, a particular behavior is
perceived in different ways depending on the psychologic state of the individual perceiv-
ing them. The touch of one hand on a cheek is perceived as revealing a trend towards
love by a lover, but only as an expression of deep friendship by a friend, and also as an
improper attempt to enter one’s familiarity by a hostile individual.

According to the above remarks, we should probably divide interactions into four
groups. First the contact interactions working at a very short distance, but changing ef-
fect and, to say so, sign as a properly defined psychologic distance between the reciprocal
feelings grows, so that we should consider them in turn divided into two classes, the
former containing the psychologic contact interactions, the latter containing the mean-
psychologic-field interactions. The same division into two classes must be reproduced for
spatial long-range interactions. The four groups of interactions may then be identified
by the following four couples of labels: (spatial contact, psychologic contact), (spatial
contact, psychologic mean field), (spatial mean field, psychologic contact), (spatial mean
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field, psychologic mean field). These interactions can obviously be multiple interactions,
as far as more than two individuals can have physical contacts (being in the same room,
say, and exchanging friendly and/or hostile gestures), or being in contact by mail or tele-
phone. Nevertheless, as we will discuss little later, multiple spatial mean-field interactions
are somehow hard to describe and to realize (video conferences are nothing more and
nothing less than a reproduction of spatial contact interactions): the unavoidable time
lag between subsequent pair interactions makes the description in terms of multiple in-
teractions rather unlikely. The best starting point for a discussion of feelings will be to
consider only contact interactions. And, as a matter of fact, the class of models dealt with
in this paper has been obtained (in the existing literature) in connection with localized
interactions.

The analysis developed in what follows is essentially based on localized interactions
considering that individuals may have deep psychologic contacts even at finite distances.
Still the analysis of mean-field interactions is an interesting perspective for other types
of interacting entities, for example, cells of a biological systems (where long-range inter-
actions have been already used [12, 18]), car drivers on vehicles on a road [17], and so
forth.

Bearing all the above mentioned in mind, the following models are proposed.

Model 2.4. Localized pair interactions refer to interactions between a test individual with
state u1 belonging to the ith population, and a field individual with state u2 belonging to
the jth population. Interactions occur at an encounter rate:

ηi j
(

u1,u2
)

: Du×Du −→R+, (2.8)

depending on both the states and on the populations to which the two interacting indi-
viduals belong. Moreover, the microscopic states of interacting individuals are modified
according to the stochastic description delivered by the transition probability density func-
tion:

ϕij
(

u1,u2;u
)

: Du×Du×Du −→R+, (2.9)

which is such that the integral

Pi j
(
A | u1,u2

)=
∫
A
ϕi j
(

u1,u2;u
)
du (2.10)

is the probability that any test individual of ith population, which is in the state u1, falls
into a state in the (p-dimensional) subset A⊆Du after a binary interaction with any field
individual of jth population being in the state u2.

In connection with the previous discussion about the distinction between localized
and mean-field interactions, we submit to the reader’s attention two remarks.

(a) We can assume that the state variable u is a couple (x,v), where x is a space variable,
describing the position of any individual in the space, and v is what we could preliminar-
ily identify as a model variable, expressing the relevant property in consideration (political
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ideas, behavioral trends, or feelings towards another individual). Then the above proba-
bility is written as

Pi j
(
A | x1,v1,x2,v2

)=
∫
A
ϕi j
(

x1,v1,x2,v2;u
)
du. (2.11)

(b) The interactions may be spatially localized, or localized with respect to the state
variable v, or both. In the first case, when a suitably defined spatial distance (e.g., the
Euclidean distance) dx(x1,x2) satisfies a condition dx(x1,x2) > �x, then

ϕij
(

x1,v1,x2,v2;u
)= δ

(
u−u1

)
; (2.12)

in the second case, (2.12) holds when a suitably defined distance dv(v1,v2) satisfies a
condition dv(v1,v2) > �v; in the third case, when a suitably defined distance du(u1,u2)
satisfies a condition du(u1,u2) > �u.

These relations should give a sufficiently clear expression to the conditions under
which an interaction produces no effects.

Model 2.5. Localized triple interactions refer to interactions between a test individual with
state u1 belonging to the ith population, and two field individuals, with states u2 and
u3, respectively, belonging to the jth population and to the hth population, respectively.
Interactions occur at an encounter rate

ηi jh
(

u1,u2,u3
)

: Du×Du×Du −→R+, (2.13)

depending on both the states and on the populations to which the three interacting in-
dividuals belong. Moreover, the microscopic state of the interacting triple is modified
according to the description delivered by the transition probability density function:

ϕijh
(

u1,u2,u3;u
)

: Du×Du×Du×Du −→R+, (2.14)

which is such that

P
(
A | u1,u2,u3

)=
∫
A
ϕi jh

(
u1,u2,u3;u

)
du (2.15)

is the probability that the test individual, being in the state u1 and belonging to the ith
population, falls into a state u of a (p-dimensional) subset A ⊆ Du after an interaction
with two field individuals being in the states u2 and u3, respectively, and belonging to the
jth and to the hth population, respectively.

It is quite obvious that the remarks already laid out for pair interactions keep holding
for triple interactions, with obvious changes in the formulation of the conditions under
which interactions have no effects. For instance, the third condition is replaced by the
following one: when du(u1,u2) > �u and du(u1,u3) > �u, then

ϕij
(

x1,v1,x2,v2,x3,v3;u
)= δ

(
u−u1

)
. (2.16)
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The transition probability densities ϕij and ϕijh satisfy, by their very definitions, the
following conditions:

∫
Du

ϕij
(

u1,u2;u
)
du= 1, ∀i, j = 1, . . . ,n, ∀u1,u2 ∈Du,

∫
Du

ϕijh
(

u1,u2,u3;u
)
du= 1, ∀i, j,h= 1, . . . ,n, ∀u1,u2,u3 ∈Du.

(2.17)

2.3. Evolution models. The above described microscopic interactions, corresponding to
two different types of modelling, generate two different types of evolution equations. The
mathematical model corresponding to localized interactions is the following:

∂ fi
∂t

(t,u)

=
n∑
j=1

∫
D2

u

ηi j
(

u1,u2
)
ϕij
(

u1,u2;u
)
fi
(
t,u1

)
f j
(
t,u2

)
du1du2

− fi(t,u)
n∑
j=1

∫
Du

ηi j
(

u,u2
)
f j
(
t,u2

)
du2

+
n∑
j=1

n∑
h=1

∫
D2

u

ηi jh
(

u1,u2,u3
)
ϕijh

(
u1,u2,u3;u

)
fi
(
t,u1

)
f j
(
t,u2

)
f j
(
t,u3

)
du1du2du3

− fi(t,u)
n∑
j=1

n∑
h=1

∫
D2

u

ηi jh
(

u,u2,u3
)
f j
(
t,u2

)
fh
(
t,u3

)
du2du3.

(2.18)

As already mentioned, an analogous analysis can be developed in the case of models
with long-range interactions, which have been proposed for different types of physical
systems, for example, multicellular systems [12], see also [18], or traffic flow modelling
[9]. The above model only takes into account binary interactions, their generalizations to
multiple interactions is certainly an interesting research perspective.

3. On the modelling of social systems

The mathematical structure proposed in Section 2 can be applied to model social dy-
namics for large systems of interacting populations. As already mentioned in Section 1,
some papers are already available in the literature. Specifically, we refer to the papers by
Lo Schiavo [28, 29] concerning the evolution of social states and political ideas. The same
type of physical systems are analyzed by Bertotti and Delitala [13] by means of discrete
states models. Simulations developed on individual-based models have been proposed by
Galam [20–22] with fascinating outputs on the prediction of political competitions.

It is worth mentioning that the above literature is based on short-interaction models,
and on binary interactions only. Discrete states models are derived under the assumption
that the microscopic state can attain only a finite number of discrete values. The system
is then described by a system of ordinary differential, rather than integro-differential,
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equations. On the other hand, models with multiple interactions are not yet developed
despite the fact that recent papers suggest to introduce multiple interactions in the theory
of games. An additional limitation of the existing literature is the fact that models are
confined to the case of scalar microscopic states even when a multidimensional variable
is necessary to a relatively more precise description of the microscopic state.

To complete the critical analysis of the existing literature, it is also worth mentioning,
with reference to the above quoted paper [13], that it has been shown how the discretiza-
tion of the microscopic states simplifies the computational complexity and, if compared
with continuous models, allows a relatively more refined analysis of existence and stabil-
ity properties of equilibrium points. An interesting aspect to be considered is indeed that
the above discretization should not be regarded as a way to simplify the model, but as a
consistent way to represent social classes grouped into a finite number of sets.

On the other hand, discretizing is the only meaningful procedure step when abstract
relations must be applied to real measures, since no outcome of any measurement is a
real number with infinitely many decimal digits not produced according to a previously
assigned rule.

In general, the line which is followed to develop specific models consists of the sequen-
tial steps listed below:

(1) assessment of the microscopic variable charged to describe the physical state of
individuals composing the large system;

(2) modelling microscopic interactions, namely the encounter rate and the transi-
tion probability density corresponding, as indicated in Section 2, to binary and
multiple interactions;

(3) derivation, following again Section 2, of the evolution equation and mathemati-
cal statement of problems corresponding to the application of the model;

(4) development of a qualitative and computational analysis of the mathematical
problems related to item 3, to obtain suitable information on the evolution of
the system in terms of both the moments and the whole distribution function.

The mathematical framework plotted in Section 2 offers a relatively broader environ-
ment for modelling social systems than the one which is offered by models available at
present in the literature. For instance, if one looks at the contents of [29] on political dy-
namics, it is reasonable to work with a multidimensional microscopic variable. Namely,
not only political collocation, but maybe at least economical rank and level of education
are also to be taken into account. Moreover, interactions may not be still limited to pair
interactions, for instance between two opposite parties. Triple interactions may be needed
to take into account the presence, nowadays unavoidable, of media which filter the dia-
logue between parties in competition. The need for multiple interactions seems to be
clear also in fields different from the ones considered in this paper as it will be discussed
in the last section.

The main problem to be properly analyzed, as we will see in the last section, is that
the attempt to increase the level of description necessarily affects the level of complexity
related to modelling. Waiting for the above announced analysis, we may observe that com-
plexity refers to predictive models which are supposed to be able to describe the evolution
of the system in future times. On the other hand, a relatively richer framework is useful



12 Modelling of sociopsychological systems: Jules and Jim

for explorative models which are such that different assumptions on microscopic interac-
tion design the scenarios of conceivable outputs. Then suitable political and economical
actions can be developed to obtain those microscopic interactions which are needed by
the output selected within the scenarios offered by the predictions.

Finally, it is worth emphasizing that the need of multiple interactions motivates the
attempt to extend the development of the qualitative analysis to the properties of solu-
tions of the class of models we are dealing with. At present, only the result proposed
in [1], concerning the existence of equilibrium solutions for models with local multiple
interactions, can be found in existing literature.

4. On the modelling of personal feelings

This section deals with an analysis, somehow analogous to that of the previous section,
related to the modelling of personal feelings. The mathematical structure proposed in
Section 2 has already been used to model the evolution of reciprocal feelings of two in-
teracting partners [16]. Additional developments have been proposed in [15].

The idea developed in [16], and technically improved in [15], consists in assuming that
encounters between partners modify their reciprocal feelings: attraction and/or hostility.
Encounters are interpreted statistically so that their overall amount allows to deal with
the two partners as two interacting populations. Although the above approach may be
criticized due to the strong correlations related to the above system, still it is an attractive
research topic to be accepted as an approximation of physical reality.

The above cited papers deal with binary encounters, while substantial differences have
to be taken into account in the case of multiple interactions. Considering that it is some-
how difficult to develop a general abstract approach, in addition to the one already given
in Section 2.2, some reasonings can be specifically related to the triangle offered by
Cathérine, Jules, and Jim with reference to the movie mentioned in Section 1.

We recall that Jules and Jim are two young men living in Paris in the first years of the
second decade of XX century. Though the former is Austrian and the latter is French,
they are dear friends. They meet Cathérine and are both attracted to her, though Jules
shows his psychologic attitude much more clearly than Jim, who seems at first to hide
with care his real feelings under the species of a simple friendship. Cathérine seems in
turn to became soon very fond of both of them, but perhaps to feel a bit of attraction
towards Jim. Nevertheless, she marries Jules, when this last proposes to her the marriage.
Little later, the First World War starts, and Jules must go back to Austria with Cathérine,
and the two friends find themselves fighting against each other. After the end of the war,
the three friends meet again in Paris and try to live and spend some time together as
before, but something is severely changed. In the last period of the story, Cathérine falls
into a deep crisis which leads her to kill herself together with Jim.

When dealing with a possible model of the psychologic interactions between
Cathérine, Jules, and Jim, we then find ourselves describing a system of three popula-
tions. Each of them has at each instant a microscopic state, and their states form the total
state of the system. For each person of the drama (population), we can consider the case
of a microscopic state identified by a scalar variable. Such a state has a different meaning
for each type of interaction.
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(i) For the relation between Jules and Jim, u denotes friendship. Essentially positive
values of the microscopic state should be taken into account considering that their rela-
tion never assumes a substantial hostility although the intensity of the friendship occa-
sionally decays to zero. However, a distribution over the whole real line will be dealt with,
considering that in any relation also negative aspects are always present.

(ii) The variable u denotes attraction right from the beginning for both relations be-
tween Cathérine and Jim, and between Cathérine and Jules. Therefore, one should again
assume only positive values of the microscopic variable.

However, it should be argued whether a scalar variable is sufficient to identify the emo-
tional state. In other words, one may pose the following question: can a friendship exist
without attraction? Apparently, not in the case of this movie. Therefore a description de-
livered by a scalar variable is simply to be regarded as an attempt to reduce the complexity
of the system we are dealing with. Moreover, we are not naive enough to think that such
a complex story can be constrained into a mathematical model. The story even includes
the First World War separating Jules and Jim, and later the onset of nazism at the same
time of the crisis of Cathérine.

Nevertheless we deem that some reasonings about reciprocal feelings of Julies, Jim,
and Cathérine can be developed with reference to the first part of the movie, that is, until
the marriage of Cathérine and Jules before the war. As an outcome of these reasonings,
we will mainly analyze the relevance of the role that multiple interactions can play in this
type of modelling.

Before developing the above outlined analysis, it is necessary to show how the mathe-
matical framework offered in Section 2 needs to be technically modified to deal with this
specific class of systems. Essentially, one has to identify precisely the variable describing
the microscopic state, and subsequently the distribution functions which may describe
the above complex relationships. Finally, the framework of Section 2 can be developed
towards the mathematical description.

The microscopic states should refer to all specific interchanges of feelings. Each person,
identified as a population, is a carrier of three feelings identified by a subscript (related to
the carrier) and a superscript (related to the object of the feeling). This entrains that the
whole microscopic state must be represented by a matrix

U=

⎛
⎜⎜⎝
u1

1 u2
1 u3

1

u1
2 u2

2 u3
2

u1
3 u2

3 u3
3

⎞
⎟⎟⎠ , (4.1)

with obvious meaning of terms uij . In particular, for any i, uii is a measure of self-feelings
of ith person that are taken here as needing to be explicitly considered, at least for the sake
of completeness.

Remark 4.1. Of course, since we have no reason to guess that self-feelings of Jules, Jim,
and Cathérine undergo significant changes, at least before the war, we could assume that
for any i∈ {1,2,3}, uii is constant on a whole time interval. This is however a very minor
remark at this stage.



14 Modelling of sociopsychological systems: Jules and Jim

Of course, each feeling is a random variable, and we agree to denote by f ij the prob-

ability density function associated with uij . On the other hand, another obvious way to
write the matrix U is

U=
⎛
⎜⎝

u1

u2

u3

⎞
⎟⎠ , (4.2)

which has the advantage of pointing out, for each interacting person, the whole com-
plex of its feelings towards itself and towards the other two. Thus, we can express the
state variables in vector form, as in the general scheme illustrated in Section 2 (and in
particular in the form given by system (2.18)), as well as in the matrix and in the scalar
form. To exploit the technical connections between these descriptions, we need to de-
fine the probability distributions over the states. To this aim, let us start with assuming
a time-dependent probability density function F : (U, t)∈R9×R→ F(U, t)∈ [0,+∞) to
be defined. Accordingly, if R is any nine-dimensional rectangle, that is, a subset of R9

defined by constraints

ai ≤ xi ≤ bi, ∀i∈ {1,2, . . . ,9}, (4.3)

then

P(U∈ R, t)=
∫
R
F(U, t)dU (4.4)

is the probability that the matrix variable U has a value in R at instant t. This is obviously
a joint probability density, which is to be written in general in the form

F(U, t)= f3
(

u3, t | u1,u2
)
f2
(

u2, t | u1
)
f1
(

u1, t
)
, (4.5)

where fi is always a probability density on R3 (i.e., on the set of values of the correspond-
ing row-vector variable ui), which is conditioned to the values of variables on the right of
vertical line (when there are). If we assume that the feelings of Jules, Jim, and Cathérine
are statistically independent, then

F(U, t)= f3
(

u3, t
)
f2
(

u2, t
)
f1
(

u1, t
)
. (4.6)

This assumption is acknowledged to be quite acceptable, and seems to fit real situations
very well: it is hard to claim that my love towards a friend can depend on whether he
loves or hates a woman I love. It can be reinforced or seriously quaked by an interaction
which makes me know about his feelings, but still, it is my behavior which is changed by
such interaction: I could keep loving my friend even when I should feel to be compelled
to stop meeting him.

This established, we note again that also each fi is a joint probability density, which,
under the simplified assumption of factorization, writes

fi
(

ui, t
)= f 3

i

(
u3
i , t | u1

i ,u2
i

)
f 2
i

(
u2
i , t | u1

i

)
f 1
i

(
u1
i , t
)
. (4.7)
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But we feel allowed to repeat almost word by word the above reasoning about the mu-
tual statistical independence of feelings of a person toward different individuals: just to
consider an example, there is no reason why the knowledge of my feelings towards my
mother, say, should modify an external observer’s estimate of probabilities of different
levels of my feelings towards, say, my father. Accordingly, we are led to assume that

fi
(

ui, t
)= f 3

i

(
u3
i , t
)
f 2
i

(
u2
i , t
)
f 1
i

(
u1
i , t
)
. (4.8)

In addition, it is important to note that once relation (4.2) has been assumed, then

∫ +∞

−∞
du

j
i

∫ +∞

−∞
∂ fi
(

ui, t
)

∂t
duki =

∂

∂t

∫ +∞

−∞
du

j
i

∫ +∞

−∞
fi
(

ui, t
)
duki =

[
∂ f hi
∂t

]
h 	= j
h 	=k

. (4.9)

Remark 4.2. As a matter of fact, it is possible to show—but, for the sake of simplicity,
we may give up this task as immaterial in our context—that relation (4.9) holds even if
statistical independence of feelings is not assumed.

When using the scalar representation, and in view of Remark 4.1, we need a system
of six evolution equations. For the sake of simplicity, we agree to use instead the vector
notation and write down three scalar evolution equations dealing with the three densities:

fh :
(
t,uh

)∈R×R3 −→ fh
(
t,uh

)∈R+, (4.10)

rather than with the six densities:

f bh :
(
t,ubh

)∈R×R−→ f bh
(
t,ubh

)∈R+ (h 	= b). (4.11)

The evolution system is then as follows:

∂ fh
∂t

(t,vh)=
3∑
i=1

∫∫
R3
ηih
(

ui,uh
)
ϕih
(

ui,uh;vh
)
fi
(
t,ui

)
fh
(
t,uh

)
duiduh

− fh
(
t,vh

) 3∑
i=1

∫∫
R3
ηih
(

ui,vh
)
fi
(
t,ui

)
dui

+
∫∫
R3
η
(

u1,u2,u3
)
ϕh
(

u1,u2,u3;vh
)

× f1
(
t,u1

)
f2
(
t,u2

)
f3
(
t,u3

)
du1du2du3

− fh
(
t,vh

) 3∑
i=1

∑
k 	=i

∫∫
R3
η∗ fi

(
t,ui

)
fk
(
t,uk

)
duiduk,

(4.12)

where
(1) η∗ ≡ η((1− δh1 )u1 + δh1 vh, (1− δh2 )u2 + δh2 vh, (1− δh3 )u3 + δh3 vh);
(2) for any couple of indexes i and j, δij is the classical Kronecker’s symbol;
(3) we have adopted the convention to denote by uh the state of hth person before an

interaction in the gain term (in which vh must denote the state after the interac-
tion), and after the interaction in the loss term (where vh must be the state before
the interaction);
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(4) since in the third integral the transition probability density is conditioned by
the states of all the persons of the system, simultaneously interacting, we have
deemed it right to affect it by only one index;

(5) the reason of the above choice is the same for which the rate of triple encounters
is not affected by indexes, there is only one kind of triple interactions;

(6) finally, as it is quite obvious, dui ≡ du1
i du

2
i du

3
i for any i∈ {1,2,3}.

Remark 4.3. If self-feelings were acknowledged to influence the reciprocal feelings, then
the present scheme should be considered a simple approximation confined to the period
before the war. Nevertheless, the correlation of feelings is a matter of discussion.

The above formulation of the evolution system, together with relation (4.9), shows
that one should choose the vector or the scalar representation according to the way in
which the transition probabilities ϕih and ϕihk are defined. More precisely, let us recall
that

(i) ϕ(ui,uh;vh) is the probability (density) that the state of the hth person is turned
from uh to vh provided that

(a) while being in the state uh, it had an interaction with the ith person,
(b) at the moment of interaction, the ith person was in the state ui.

Accordingly, its nature of a joint probability allows us to write

ϕih
(

ui,uh;vh
)= ϕ

prs
ih

(
ui,uh;v

p
h | vrh,vsh

)
ϕrs
ih

(
ui,uh;vrh | vsh

)
ϕs
ih

(
ui,uh;vsh

)
, (4.13)

where
(i) the third factor at the right-hand side is the probability (density) that the state

uh is transformed by the interaction in any state having vsh as sth component;
(ii) the second factor at the right-hand side is the probability (density) that the state

uh is transformed by the interaction in any state having vrh as rth component,
provided that its sth component is vsh;

(iii) the first factor at the right-hand side is the probability (density) that the state
uh is transformed by the interaction in any state having v

p
h as pth component,

provided that its rth component is vrh and its sth component is vsh.
As it is well-known, (p.r.s) can be an arbitrary permutation of (1,2,3), so that we are

allowed to conclude that for any s∈ {1,2,3}

ϕs
ih

(
ui,uh;vsh

)=
∫ +∞

−∞
dv

p
h

∫ +∞

−∞
ϕih
(

ui,uh;vh
)
dvrh (p 	= s, r 	= s), (4.14)

obviously, the above argument may be repeated word by word for the transition proba-
bility density associated with triple interactions, so that we can also write

ϕs
h

(
u1,u2,u3;vsh

)=
∫ +∞

−∞
dv

p
h

∫ +∞

−∞
ϕh
(

u1,u2,u3;vh
)
dvrh (p 	= s, r 	= s). (4.15)

Relations (4.14) and (4.15), together with (4.9), show that solving system (4.12) is quite
equivalent to solving the system of six equations we would have obtained if we had argued
on the densities f bh . More precisely, the true criteria to choose as unknown functions the
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three densities fh or the six (or nine) densities f bh are furnished by the way in which
the conditional transition probability densities have been assigned (either prescribing the
integrals or assigning the functional form of integrands in both (4.14)-(4.15)).

Some reasonings about the identification of the terms η and ϕ in the specific case can
be now proposed, looking once more at the movie, which goes right from the beginning
along this mathematical effort. It is not an easy task, although our analysis will be con-
fined to the first period before the war. Maybe, the feelings are not so extreme as in the
second part, but still the intensity induced by new discoveries plays a fascinating role,
while it appears impossible to approach, by mathematical equations, an event as a war
(that war!) and the consequent separation of human beings.

Bearing all the above in mind, let us identify the persons as follows:

i= 1, Jules, i= 2, Jim, i= 3, Cathérine. (4.16)

It is plain that the reasonings reported in what follows are derived from a personal inter-
pretation of the authors, while any different interpretation can be expected from different
people. So far, some ideas can be put forward, though simply with the aim to open a dis-
cussion about this matter.

(i) On the encounter rates The modelling is based on the simplification that the en-
counter rates do not depend on the personal feelings. Indeed, the three persons have
frequent systematic encounters related to their friendships.

(a) The binary encounter rate between Jules and Jim decays in time being replaced by
a triple encounter rate:

t ↑=⇒ η12 = η21 ↓ . (4.17)

(b) The binary encounter rate between Jules and Cathérine may be described as slowly
decaying in time, being (partially) replaced by a triple encounter rate:

t ↑=⇒ η13 = η31 ↓ . (4.18)

(c) The binary encounter rate between Jim and Cathérine is negligible, considering
that before the war, no personal relation occurs between the two persons: η23 =
η32 = 0.

(d) The triple encounter rate reaches very rapidly a constant (in time) value, as soon
as Jules introduces Cathérine to Jim.

(e) Relatively more complex is the modelling of the rate of self-interactions related
to the intensity of personal feelings. However, a personal opinion of the authors
is that Jules examines himself more than the other two on his personal feelings.

The above qualitative indications have not been translated into analytic expressions.
The reader interested in some simulations may exploit to this aim simple functions with
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monotonicity properties with respect to their arguments, while condition (4.17) is equiv-
alent to requiring that

∫ +∞

−∞
dv1

1

∫ +∞

−∞
ϕ21
(

u2,u1;v1
)
dv3

1 = δ
(
u2

1− v2
1

)
,

∫ +∞

−∞
dv2

1

∫ +∞

−∞
ϕ12
(

u1,u2;v2
)
dv3

1 = δ
(
u1

2− v1
2

)
,

(4.19)

as we could easily show bearing in mind the meaning of the encounter rates ηih. Similar
relations hold in the case of other encounters with negligible rates.

Analogous reasonings can be applied to the transition probability densities. For in-
stance, one can think of densities identified by a variance and a most probable value,
which may be denoted by the symbol mb

ih for each binary encounter and by the symbol
mb

ijh for each repetition of the triple interaction. The indications which follow simply
refer to these variables that now must depend on the microscopic states of interacting
persons. The modelling of encounters with zero rate, such as those considered in item (c)
of (i), are not taken into account.

(ii) On the binary transition probability densities
(a) Binary encounters between Jules and Jim do not modify their friendship: this is

expressed by relations (4.19), which are equivalent to the conditions η12 = η21 =
0, for all t ≥ 0.

(b) Binary encounters between Jules and Cathérine do not modify the attraction of
Jules towards Cathérine:

∫ +∞

−∞
dv1

1

∫ +∞

−∞
ϕ31
(

u3,u1;v1
)
dv2

1 = δ
(
u3

1− v3
1

)
, (4.20)

this is equivalent to stating that η13 = η31 = 0, for all t ≥ 0, while Cathérine’s feel-
ings are modified by triple interactions. Assuming that only these latter are able
to modify her feeling means that

∫ +∞

−∞
dv2

3

∫ +∞

−∞
ϕ13
(

u1,u3;v3
)
dv3

3 = δ
(
u1

3− v1
3

)
. (4.21)

Actually, a slow decay of the attraction of Cathérine toward Jules can be observed: this
is conveniently expressed by the condition that m1

3 slowly decays in time.
This delicate aspect is worthy to be discussed before passing to the analysis of triple in-

teractions. Indeed, the feelings of Cathérine towards Jules appear somehow oscillating, at
least after she has been introduced to Jim. According to what appears from the movie, she
is deeply fond of Jules, but is attracted to Jim. Our guess is that her feelings are modified
by triple interactions.
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(iii) On the triple encounters transition probability densities
(a) Triple encounters do not modify the friendship between Jules and Jim:

∫ +∞

−∞
dv1

1

∫ +∞

−∞
ϕ1
(

u1,u2,u3;v1
)
dv3

1 = δ
(
u2

1− v2
1

)
,

∫ +∞

−∞
dv2

2

∫ +∞

−∞
ϕ2
(

u1,u2,u3;v2
)
dv3

2 = δ
(
u1

2− v1
2

)
.

(4.22)

(b) Triple encounters do not modify the love of Jules for Cathérine:

∫ +∞

−∞
dv1

1

∫ +∞

−∞
ϕ1
(

u1,u2,u3;v1
)
dv2

1 = δ
(
u3

1− v3
1

)
. (4.23)

On the other hand, these encounters produce an oscillating behavior in the
attraction of Cathérine towards Jules. In other words, m1

312 is oscillating.
(c) Triple encounters increase the attraction of Jim towards Cathérine and vice versa;

this is equivalent to stating that m3
213 and m2

321 are monotone increasing.

Remark 4.4. There is another way to express the oscillating character of the transition
probability density of feelings of Cathérine, in terms of its conditional parameters (ex-
pected value and variance as functions of the triple of states at encounters). In any case,
the (stochastically) oscillating behavior of the variable u1

3 may be expressed by assuming
the existence of a threshold value v∗1

3 such that for any v1
3 < v∗1

3 ,

∫ v1
3

−∞
du1

3

∫ +∞

−∞
du2

3

∫ +∞

−∞
ϕ1

123

(
u3,u1,u2;v1

3

)
du3

3

<
∫ +∞

v1
3

du1
3

∫ +∞

−∞
du2

3

∫ +∞

−∞
ϕ1

123

(
u3,u1,u2;v1

3

)
du3

3,

(4.24)

while, for any v1
3 > v∗1

3 ,

∫ v1
3

−∞
du1

3

∫ +∞

−∞
du2

3

∫ +∞

−∞
ϕ1

123

(
u3,u1,u2;v1

3

)
du3

3

>
∫ +∞

v1
3

du1
3

∫ +∞

−∞
du2

3

∫ +∞

−∞
ϕ1

123

(
u3,u1,u2;v1

3

)
du3

3.

(4.25)

Remark 4.5. The very special system above is such that triple encounters play the most
relevant role in the evolution (or storm) of feelings, while binary encounters become ever
less effective as time increases. Therefore, the asymptotic behavior of the solution can be
analyzed by equations involving only triple encounters.

Remark 4.6. The evolution of the system, and hence its asymptotic behavior, is obtained
as a solution of the initial value problem. The mathematical structure of the equations is
essentially the same as that analyzed in [13]. Therefore, a technically analogous method
can be applied to show existence and uniqueness of solutions in the positive cone of a
suitable space of integrable functions endowed with an L1 norm.
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5. Complexity analysis

The preceding sections have shown how certain mathematical structures can be used to
model the evolution of both social behaviors and personal feelings. The approach appears
to be, in the authors’ opinion, quite interesting although the contents of the literature in
the field is still far from having proposed robust models. On the other hand, the topics
dealt with in this paper are so fascinating that it is worth continuing along this research
line, looking forward to relatively more advanced models.

The first step in dealing with the above matter may be a critical analysis related to the
specific contents of this paper. So far, bearing in mind various definitions and interpreta-
tions of what is called complexity, we will concentrate our attention on the link between
complexity problems related to modelling and the computational effort needed to deal
with the application of models to the interpretation of physical systems. The existing lit-
erature reports various valuable contributions on this topic, for instance, an interesting
paper by Vicsek [34]. The following general definitions of complexity are given with ref-
erence to living systems.

Collective behavior is: the way in which an individual unit’s activity is dominated by its
neighbors so that all units simultaneously alter their behavior to a common pattern.

The laws that describe the behavior of a complex system are qualitatively different from
those that govern its units.

Let us now be a little more precise on this point and identify by � the dimension
of a model. In more details, � may be related to the number of equations which are
necessary to provide a consistent model. Moreover, let us indicate by � a quantity suitable
to measure the computational time needed to deal with �–model.

The definition of complexity which is here proposed is the following.
Computational complexity occurs when the growth of � with respect to � is greater

than the linear growth. As an extreme case, � may grow exponentially with �.
The above definition can be used supposing that models with growing complexity are

always available. This is indeed the case of modelling the dynamics of classical particles.
The equations of the particle dynamics can be derived on the basis of classical mechanics
(Newton) without technical difficulty when the number of particles increases. On the
other hand, the computational time increases first linearly and then exponentially when
the number of particles and hence of differential equations increases.

The above situation does not apply to all physical systems. For instance, in some cases,
increasing the number of variables to describe a certain physical system may increase
the difficulty of deriving the mathematical model. Suppose that one is able to provide a
measure � to the above effort, which can be regarded as an “experimental effort,” then an
additional definition can be given.

Modelling complexity occurs when the growth of experimental effort � with respect to
� is greater than the linear growth. As an extreme, case � may grow exponentially with
�.

The analysis of the above complexity problems can be properly developed only with
reference to specific models validated as reliable and robust. An effort to deal with the
above problems will be developed in this section with reference to the applications pro-
posed in Section 3.
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Considering the technical difficulty related to such a problem, only some specific as-
pects are discussed in details:

(i) complexity problems induced by the selection of the variables suitable to identify
the microscopic state;

(ii) complexity problems induced by multiple interactions;
(iii) finalization of the model and selection of the structure of the mathematical equa-

tions related to the type of microscopic interactions.
The above topics are treated in the sections which follow. Possibly an answer, however

limited, to each of the above topics may give a contribution to improving the validity of
the class of models dealt with in this paper.

5.1. On the selection of the microscopic state variable. The microscopic state of inter-
acting individuals is identified, as we have seen, by a variable

u∈Du ⊆Rm, (5.1)

which refers to the specific sociopolitical (or also personal feelings) state of each micro-
scopic entity, the description of the whole system being given by the distribution function

f = f (t,u) : [0,T]×Du −→R+, (5.2)

which has to be regarded as the dependent variable.
Consider first models with localized only binary interactions—multiple interactions

are considered in the next section. The actual computation of � can be obtained by rea-
soning along the discretization scheme proposed in [13], which essentially means dis-
cretizing the set Du into a suitable finite number of states ui as follows:

Iu =
{

u1, . . . ,ui, . . . ,un
}

, (5.3)

and then deriving an evolution equation for the densities fi(t)= fi(t,ui).
The structure of the evolution equation is then, still according to [13], the following

system of p ordinary differential equations with quadratic-type nonlinearities:

dfi
dt
=

n∑
h=1

n∑
k=1

ηhkA
i
hk fh fk − fi

n∑
k=1

ηik fk, (5.4)

for i= 1, . . . ,n and where the terms Ai
hk denote the probability density that an individual

with state h falls into the state i due to the encounter with an individual with state k. The
encounter rates are identified by the terms ηhk and ηik. Ai

hk has the structure of a discrete
probability density:

∀h, k :
n∑
i=1

Ai
hk = 1. (5.5)

From the above reasoning, one may argue that the measure of � can be related to n.
Moreover, if q is the number of collocation points needed to discretize each component
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of u, and s is the number of components of u, then the number of equations is n =
q× s. Hence the computational complexity to deal with q× s equations may soon grow
exponentially. Such a complexity may possibly be controlled by selecting, with physical
arguments, a lower number n of discrete values.

The above ideas can be used also to analyze the complexity related to modelling. In-
deed, the measure of � can be related to the number of experiments needed to identify
the interaction terms. Referring to the encounter rate, one has n×n terms which include
also the self-interactions introduced in [16]. Otherwise, excluding the above artificial self-
encounters, their number would be simply n× (n− 1). Similarly for the transition rates,
one has n× n× n terms. Therefore, the modelling complexity grows more rapidly than
the number of equations.

Then we may conclude that a predictive model can be practically handled only if the
dimension of the microscopic variable is sufficiently small. However, this matter needs to
be discussed further taking into account the effective finalization of the last subsection.

5.2. Dealing with multiple interactions. The reasoning proposed in Section 5.1 can be
generalized, with reference to computational complexity, to the case of models with mul-
tiple interactions simply by observing that the number of ordinary differential equations
is not modified by the presence of multiple interactions. The only technical difference is
that each equation is now somehow relatively stiffer.

The structure of the discrete equation can be written as follows:

dfi
dt
=

n∑
h=1

n∑
k=1

n∑
�=1

ηhk�T
i
hk� fh fk f� +

n∑
h=1

n∑
k=1

ηhkA
i
hk fh fk − fi

n∑
k=1

ηik fk − fi

n∑
k=1

n∑
�=1

ηik� fk f� ,

(5.6)

for i= 1, . . . ,n, and where the terms Ti
hk� denote the probability density that an individual

with state h falls into the state i due to the encounter with two individuals with states k
and �, respectively, while the encounter rates related to binary and triple encounters are
identified by the terms ηhk and ηhk� , respectively.

As above, Ti
hk� has the structure of a discrete probability density:

∀h, k,� :
n∑
i=1

Ai
hk� = 1. (5.7)

An additional complexity source, already documented in Section 4, is that the num-
ber of variables describing the microscopic state increases with the increasing number of
interacting individuals: a square matrix, rather than a string, is needed to identify their
state. This type of complexity may be not important in the case of large population where
binary interactions play the relevant role, while it may be significant in a small system
such as the one analyzed in this paper.

The above reasoning related to computational complexity follows, while the complex-
ity related to modelling is noticeably increased with respect to the models with binary
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interactions only. Still multiple interactions cannot be neglected for some specific physi-
cal systems, as discussed in Section 4.

5.3. On the selection of the structure of mathematical equations. This paper has been
devoted to a complexity analysis related to a class of sociobiological systems. Actually, the
use of the term complexity, or complex systems, can often be recovered in the scientific lit-
erature with different meanings related to different objects: physical systems, mathemat-
ical models, mathematical problems, and so on. In principle, all real systems are complex
in the sense that only an infinite number of variables may possibly capture all the inner
features of the model. On the other hand, a mathematical model can capture only a finite
number of variables. Therefore, modelling is always a path to reducing the complexity of
real world.

Increasing the number of variables should, at least in principle, bring the description
of the model closer to physical reality. However, the counterpoint is that increasing the
number of variables generally increases the computational time to obtain a careful so-
lution of the mathematical problems related to the application of the model. Referring
specifically to the class of problems we are dealing with, one can recognize that com-
plexity is an inner feature of the system itself. In fact, the description of the individuals’
behavior definitively needs a large, in principle infinite, number of variables. Moreover,
interactions not only increase the number of equations to take into account the number
of individuals, but may even need an enlargement of the variables necessary to iden-
tify the state of each individual. The above modelling approach has to be regarded as a
conceivable way to deal with the complexity of the system and the related models and
problems.

The above analysis should be related to the finalization of the model. Indeed, it is
worth distinguishing between the following two types of models:

(i) predictive models which should describe the future behavior of the system given
suitable initial conditions;

(ii) explorative models which should investigate conceivable future behaviors of the
system given suitable initial conditions and samples of microscopic interactions.

In both cases, the computational complexity is the same. On the other hand, we have
seen that modelling complexity increases more rapidly than the computational one. This
is true in the case of predictive models, while the explorative ones may be used on the
basis of suitable a priori assumptions on microscopic interactions. The model is used to
outline the scenarios of events, thus identifying (and operating towards) those micro-
scopic interactions which are needed to obtain the desired events.

The selection of the type of evolution equations corresponding to short-range or long-
range interactions is related to the actual physics of the system. In some cases, as discussed
in Section 4, both types of interactions are consistent, for instance, local interactions for
binary encounters and mean-field for triple ones. In the case of explorative models, both
types should be investigated.

It is plain that a crucial aspect of complexity is somehow related to the joint presence,
in the mathematical model, of mechanistic and organized, possibly even intelligent, behav-
iors. The term mechanistic behavior refers to the general framework of classical mechan-
ics, say force equilibrium, conservation of mass, momentum, and energy. On the other
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hand, the term organized behavior is used to identify dynamical rules induced by the
sociobiological or thinking behaviors of the various individuals belonging to the system
which has been put into the framework of a mathematical model.

It is a delicate problem—indeed an interesting research perspective—arising in fields
different from the one dealt with in this paper, where interacting individuals modify the
dynamics of the system due to their reasoning or organized behavior. In this case, the
modelling must go far beyond the description given in this paper, taking advantage of
the whole variety of models of the mathematical kinetic theory: an interesting analysis is
proposed in [35], where some suggestions to develop new mathematical structures could
be found.

Finally, let us mention that a closely related problem is the derivation of macroscopic
equations from the microscopic ones by a suitable asymptotic theory. This is a classical
topic for models of the mathematical kinetic theory, as documented in various papers
(among others [11, 27]), while various recent papers have been oriented to derive macro-
scopic models for active particles [5, 6, 19, 23, 26], however confined to binary interac-
tions. It is a challenging mathematical topic, and certainly worthy to be studied at least in
the case of the dynamics of populations of active particles.
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[19] F. Filbet, P. Laurençot, and B. Perthame, Derivation of hyperbolic models for chemosensitive move-
ment, Journal of Mathematical Biology 50 (2005), no. 2, 189–207.

[20] S. Galam, Modelling rumors: the no plane Pentagon French hoax case, Physica A: Statistical Me-
chanics and Its Applications 320 (2003), no. 1–4, 571–580.

[21] , Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”, Phys-
ica A: Statistical Mechanics and Its Applications 333 (2004), no. 1–4, 453–460.

[22] , Sociophysics: a personal testimony, Physica A: Statistical and Theoretical Physics 336
(2004), no. 1-2, 49–55.

[23] K. P. Hadeler, T. Hillen, and F. Lutscher, The Langevin or Kramers approach to biological modeling,
Mathematical Models & Methods in Applied Sciences 14 (2004), no. 10, 1561–1583.

[24] D. Helbing, Traffic and related self-driven many-particle systems, Reviews of Modern Physics 73
(2001), no. 4, 1067–1141.
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