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With the aid of the simplicial approximation property, we show that every admissible
multivalued map from a compact convex subset of a complete metric linear space into
itself has a fixed point. From this fact we deduce the fixed point property of a closed
convex set with respect to pseudocondensing admissible maps.

1. Introduction

The Schauder conjecture that every continuous single-valued map from a compact con-
vex subset of a topological vector space into itself has a fixed point was stated in [12, Prob-
lem 54]. In a recent year, Cauty [2] gave a positive answer to this question by a very com-
plicated approximation factorization. Very recently, Dobrowolski [3] established Cauty’s
proof in a more accessible form by using the fact that a compact convex set in a metric
linear space has the simplicial approximation property.

The aim in this paper is to obtain multivalued versions of the Schauder fixed point the-
orem in complete metric linear spaces. For this we consider three classes of multivalued
maps; that is, admissible maps introduced by Górniewicz [4], pseudocondensing maps
by Hahn [5], and countably condensing maps by Väth [15], respectively. These pseudo-
condensing or countably condensing maps are more general than condensing maps.

The main result is that every compact convex set in a complete metric linear space has
the fixed point property with respect to admissible maps. The proof is based on the sim-
plicial approximation property and its equivalent version due to Kalton et al. [9], where
the latter corresponds to admissibility of the involved set in the sense of Klee [10]; see
also [11]. More generally, we apply the main result to prove that every pseudocondensing
admissible map from a closed convex subset of a complete metric linear space into itself
has a fixed point. Finally, we present a fixed point theorem for countably condensing ad-
missible maps in Fréchet spaces. Here, the fact that we restrict ourselves to countable sets
is important in connection with differential and integral operators. The above results in-
clude the well-known theorems of Schauder [14], Kakutani [8], Bohnenblust and Karlin
[1], and Sadovskii [13].
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For a subset K of a topological vector space E, the closure, the convex hull, and the
closed convex hull of K in E are denoted by K , coK , and coK , respectively. By k(K) we
denote the collection of all nonempty compact subsets of K .

For topological spaces X and Y , a multivalued map F : X � Y is said to be upper
semicontinuous on X if, for any open set V in Y , the set {x ∈ X : Fx ⊂V} is open in X . F
is said to be compact if its range F(X) is contained in a compact subset of Y .

Definition 1.1. Given two topological spaces X and Y , an upper semicontinuous map
F : X → k(Y) is said to be admissible if there exist a topological space Z and continuous
functions p : Z → X and q : Z → Y with the following properties:

(1) ∅ �= q(p−1x)⊂ Fx for each x ∈ X ;
(2) p is proper; that is, the inverse image p−1(A) of any compact set A⊂ X is compact;
(3) for each x ∈ X , p−1x is an acyclic subspace of Z.

It is well known that an upper semicontinuous map F : X → k(Y) with acyclic val-
ues is admissible and the composition of two admissible maps is also admissible; see
[4, Theorem III.2.7].

Throughout this paper we assume that E is a topological vector space that is not neces-
sarily locally convex. E = (E,‖ · ‖) will be a metric linear space, where ‖ · ‖ is an F-norm
on E. Hence we have ‖x+ y‖ ≤ ‖x‖+‖y‖ and ‖tx‖ ≤ ‖x‖ for all x, y ∈ E and t ∈ [−1,1].
If E = (E,‖ · ‖) is a complete metric linear space, it is called an F-space. A locally convex
F-space is called a Fréchet space.

2. Admissible maps

With the aid of the simplicial approximation property, we extend Cauty’s fixed point
theorem to admissible multivalued maps.

We introduce the simplicial approximation property due to Kalton et al. [9] which is a
key tool of our main result.

Definition 2.1. A convex subset C of a metric linear space (E,‖ · ‖) has the simplicial
approximation property if, for every ε > 0, there exists a finite-dimensional compact con-
vex set Cε ⊂ C such that, if S is any finite-dimensional simplex in C, then there exists a
continuous map h : S→ Cε with ‖h(x)− x‖ < ε for all x ∈ S.

Dobrowolski recently obtained the following result; see [3, Lemma 2.2] and [3, Corol-
lary 2.6].

Lemma 2.2. Every compact convex set in a metric linear space has the simplicial approxi-
mation property.

The following equivalent formulation of the simplicial approximation property is
given in [9, Theorem 9.8].

Lemma 2.3. If K is an infinite-dimensional compact convex set in an F-space (E,‖ · ‖), then
the following statements are equivalent:

(1) K has the simplicial approximation property,
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(2) if ε > 0, there exist a simplex S inK and a continuous map h : K → S such that ‖h(x)−
x‖ < ε for all x ∈ K .

Now we can give a multivalued version of Cauty’s fixed point theorem [2]. The proof
is based on the simplicial approximation property, where we follow the basic line of the
proof in [7, Satz 4.2.5].

Theorem 2.4. Let K be a nonempty compact convex set in an F-space (E,‖ · ‖). Then any
admissible map F : K → k(K) has a fixed point.

Proof. Suppose that F : K → k(K) is an admissible map. Since K is a compact convex set
and coF(K) ⊂ K , it follows that the set C := coF(K) is compact and convex. By Lemma
2.2, C has the simplicial approximation property. Let ε > 0 be given. Lemma 2.3 implies
that there exist a simplex S inC and a continuous map hε : C→ S such that ‖hε(x)− x‖ < ε
for all x ∈ C.

The composition of F and hε, hε ◦ F|S : S→ k(S), is an admissible compact map on S.
Notice that every admissible compact multivalued map with compact values defined on
an acyclic absolute neighborhood retract has a fixed point; see [4]. Since the simplex S is
an acyclic absolute retract, there exists a point xε of S such that xε ∈ (hε ◦F)xε. Then there
is a point yε ∈ Fxε(⊂ C) such that

xε = hε
(
yε
)
,

∥
∥hε
(
yε
)− yε

∥
∥ < ε. (2.1)

By the compactness of C we may assume, without loss of generality, that the net (yε)
converges to some point x in C. Hence it follows that the net (xε) also converges to x.
Since F is an upper semicontinuous multivalued map with compact values and so F has
a closed graph, we conclude that x ∈ Fx. This completes the proof. �

3. Condensing maps

Using a fixed point theorem for admissible maps given in Section 2, we prove that the
fixed point property holds for pseudocondensing or countably condensing admissible
maps.

In order to generalize the concept of condensing maps in a reasonable way, we need a
c-measure of noncompactness introduced by Hahn [5, 6].

Definition 3.1. Let E be a topological vector space, K a nonempty closed convex subset of
E, and � a collection of nonempty subsets of K with the property that, for any M ∈�,
the sets coM,M,M ∪{x0} (x0 ∈ K), and every subset of M belong to �. Let c be a real
number with c ≥ 1. A function ψ : �→ [0,∞) is said to be a c-measure of noncompactness
on K provided that the following conditions hold for any M ∈�:

(1) ψ(M)= ψ(M);
(2) if x0 ∈ K , then ψ(M∪{x0})= ψ(M);
(3) if N ⊂M, then ψ(N)≤ ψ(M);
(4) ψ(coM)≤ cψ(M).

The c-measure of noncompactness is said to be regular provided that ψ(M) = 0 if and
only if M is precompact. In particular, if c = 1, then ψ is called a measure of noncompact-
ness on K .
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Definition 3.2. Let K be a closed convex subset of a topological vector space E, Y a
nonempty subset of K , and ψ a c-measure of noncompactness on K . An upper semicon-
tinuous map F : Y → k(K) is said to be pseudocondensing on Y provided that, if X is any
subset of Y such that ψ(X)≤ cψ(F(X)), then F(X) is relatively compact. In particular, if
c = 1, F is called condensing.

In [5] it is shown that the Kuratowski function is a c-measure of noncompactness on
a subset of a paranormed space under certain conditions. An example of a pseudocon-
densing map in the nonlocally convex topological vector space S(0,1) is given in [6].

First we give the following fundamental property of a pseudocondensing map.

Lemma 3.3. Let K be a closed convex subset of a topological vector space E, Y a nonempty
subset ofK , and ψ a c-measure of noncompactness onK . If F : Y → k(K) is a pseudocondens-
ing map, then there exists a closed convex subset C of K with C∩Y �= ∅ such that F(C∩Y)
is a relatively compact subset of C.

Proof. Choose a point x0 ∈ Y and let

Σ := {A⊂ K : A= coA, x0 ∈ A, F(A∩Y)⊂A}. (3.1)

Then Σ is nonempty because K ∈ Σ. Set C := ⋂A∈ΣA and C1 := co(F(C ∩ Y)∪ {x0}).
Since C ∈ Σ, we have C1 ⊂ C and so F(C1∩Y)⊂ F(C∩Y)⊂ C1, therefore C1 ∈ Σ. Hence
it follows from definition of C that C = co(F(C∩Y)∪{x0}). Since ψ is a c-measure of
noncompactness on K , we have

ψ(C∩Y)≤ cψ(F(C∩Y)∪ {x0
})= cψ(F(C∩Y)

)
. (3.2)

Since F is pseudocondensing, F(C∩Y) is a relatively compact subset ofC. This completes
the proof. �

Now we can prove a fixed point theorem for pseudocondensing admissible maps in
F-spaces.

Theorem 3.4. Let K be a nonempty closed convex set in an F-space E and ψ a regular c-
measure of noncompactness onK . Then any pseudocondensing admissible map F : K → k(K)
has a fixed point.

Proof. Let F : K → k(K) be a pseudocondensing admissible map. By Lemma 3.3, there ex-
ists a nonempty closed convex subset B of K such that F(B) is a relatively compact subset
of B. Note that C := coF(B) is compact and C ⊂ B. In fact, since ψ is regular and c ≥ 1,
it follows from ψ(coF(B))≤ cψ(F(B)) that ψ(coF(B))= 0 which implies that coF(B) is
precompact. Hence the closed set C is obviously compact in the complete metric space E.
The restriction of F to the compact convex set C, G := F|C : C→ k(C), is an admissible
map. Theorem 2.4 implies that G has a fixed point. We conclude that F has a fixed point.
This completes the proof. �

Corollary 3.5. Let K be a nonempty closed convex set in an F-space E. Then any compact
admissible map F : K → k(K) has a fixed point.
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Proof. For any subset X of K , since F(K) is relatively compact, F(X) is also relatively
compact. This means that every compact map F is pseudocondensing. Now Theorem 3.4
is applicable. �

Remark 3.6. The more concrete case of a pseudocondensing map F : K → k(K) with con-
vex values which has a fixed point can be found in [6, Theorem 3], where K = {x ∈
S(0,1) : |x(t)| ≤ 1/2 for all t ∈ [0,1]} is a subset of the F-space S(0,1) and ψ is the Kura-
towski function on K .

We present another fixed point theorem for condensing admissible maps in Fréchet
spaces which includes that of Sadovskii [13].

Theorem 3.7. Let K be a nonempty closed convex set in a Fréchet space E and ψ a measure
of noncompactness on K . Then any condensing admissible map F : K → k(K) has a fixed
point.

Proof. Let F : K → k(K) be a condensing admissible map. Applying Lemma 3.3 with c = 1,
there exists a nonempty closed convex subset B of K such that F(B) is a relatively com-
pact subset of B. Hence C := coF(B) is compact, noting that the closed convex hull of a
compact set in a Fréchet space is compact. The restriction G := F|C : C→ k(C) is an ad-
missible map. Theorem 2.4 implies thatG has a fixed point and so does F. This completes
the proof. �

Corollary 3.8 (Sadovskii [13]). If K is a nonempty closed, bounded, and convex subset
of a Banach space E, and ψ is the Kuratowski measure of noncompactness on E, then every
condensing single-valued map f : K → K has a fixed point.

Next we introduce a concept of a countably condensing map due to Väth [15] which
is more general than that of a condensing map. The fact that we restrict ourselves to
countable sets in the definition is important in connection with differential and integral
operators.

Definition 3.9. Let K be a closed convex subset of a topological vector space E, Y a
nonempty subset of K , and ψ a measure of noncompactness on K . An upper semicontin-
uous map F : Y → k(K) is said to be countably condensing on Y provided that if X is any
countable subset of Y such that ψ(X)≤ ψ(F(X)), then X is relatively compact.

The following result of Väth says that the theory of countably condensing maps re-
duces to that of compact maps; see [15, Corollary 2.1] or [16, Corollary 3.1].

Lemma 3.10. Let K be a closed convex subset of a Fréchet space E and Y a nonempty closed
subset of K . If F : Y → k(K) is a countably condensing map, then there exists a closed convex
set C in K such that F(C∩Y) is a subset of C and coF(C∩Y) is compact.

Finally, we present the following fixed point theorem for countably condensing admis-
sible maps in Fréchet spaces.

Theorem 3.11. Let K be a nonempty closed convex set in a Fréchet space E and ψ a measure
of noncompactness on K . Then any countably condensing admissible map F : K → k(K) has
a fixed point.
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Proof. Let F : K → k(K) be a countably condensing admissible map. Then by Lemma
3.10, there exists a closed convex subset B of K such that F(B) is a subset of B and coF(B)
is a compact subset of K . The map G := F|B : B → k(B) is a compact admissible map.
Applying Corollary 3.5,G has a fixed point which is also a fixed point of F. This completes
the proof. �

Corollary 3.12. If K is a nonempty closed convex set in a Fréchet space E, then every
countably condensing single-valued map f : K → K has a fixed point.

Remark 3.13. In addition, if ψ is a regular measure of noncompactness on a closed convex
set K in a Fréchet space E, then an upper semicontinuous map F : K → k(K) is count-
ably condensing if and only if F(X) is relatively compact for any countable subset X
of K such that ψ(X) ≤ ψ(F(X)). In this situation, Theorem 3.7 is a particular form of
Theorem 3.11.

References

[1] H. F. Bohnenblust and S. Karlin, On a theorem of Ville, Contributions to the Theory of
Games, Annals of Mathematics Studies, no. 24, Princeton University Press, New Jersey,
1950, pp. 155–160.

[2] R. Cauty, Solution du problème de point fixe de Schauder [Solution of Schauder’s fixed point prob-
lem], Fund. Math. 170 (2001), no. 3, 231–246 (French).

[3] T. Dobrowolski, Revisiting Cauty’s proof of the Schauder conjecture, Abstr. Appl. Anal. 2003
(2003), no. 7, 407–433.
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lokalkonvexen topologischen vektorräumen [Fixed point theorems for ultimately compact set-
valued mappings in not necessarily locally convex topological vector spaces], Comment. Math.
Univ. Carolin. 27 (1986), no. 1, 189–204 (German).

[7] T. Jerofsky, Zur Fixpunkttheorie mengenwertiger Abbildungen, Doctoral dissertation, TU Dres-
den, Dresden, 1983.

[8] S. Kakutani, A generalization of Brouwer’s fixed point theorem, Duke Math. J. 8 (1941), 457–459.
[9] N. J. Kalton, N. T. Peck, and J. W. Roberts, An F-Space Sampler, London Mathematical Society

Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984.
[10] V. Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296.
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