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We examine p-Lienard systems driven by the vector p-Laplacian differential operator and
having a multivalued nonlinearity. We consider Dirichlet systems. Using a fixed point
principle for set-valued maps and a nonuniform nonresonance condition, we establish
the existence of solutions.

1. Introduction

In this paper, we use fixed point theory to study the following multivalued p-Lienard
system:

(∥∥x′(t)∥∥p−2
x′(t)

)′
+

d

dt
∇G(x(t)

)
+F
(
t,x(t),x′(t)

)� 0 a.e. on T = [0,b],

x(0)= x(b)= 0, 1 < p <∞.

(1.1)

In the last decade, there have been many papers dealing with second-order multival-
ued boundary value problems. We mention the works of Erbe and Krawcewicz [5, 6],
Frigon [7, 8], Halidias and Papageorgiou [9], Kandilakis and Papageorgiou [11], Kyritsi
et al. [12], Palmucci and Papalini [17], and Pruszko [19]. In all the above works, with
the exception of Kyritsi et al. [12], p = 2 (linear differential operator), G= 0, and g = 0.
Moreover, in Frigon [7, 8] and Palmucci and Papalini [17], the inclusions are scalar (i.e.,
N = 1). Finally we should mention that recently single-valued p-Lienard systems were
studied by Mawhin [14] and Manásevich and Mawhin [13].

In this work, for problem (1.1), we prove an existence theorem under conditions of
nonuniform nonresonance with respect to the first weighted eigenvalue of the negative
vector ordinary p-Laplacian with Dirichlet boundary conditions [15, 20]. Our approach
is based on the multivalued version of the Leray-Schauder alternative principle due to
Bader [1] (see Section 2).

Copyright © 2004 Hindawi Publishing Corporation
Fixed Point Theory and Applications 2004:2 (2004) 71–80
2000 Mathematics Subject Classification: 34B15, 34C25
URL: http://dx.doi.org/10.1155/S1687182004310016

http://dx.doi.org/10.1155/S1687182004310016


72 Multivalued p-Lienard systems

2. Mathematical background

In this section, we recall some basic definitions and facts from multivalued analysis, the
spectral properties of the negative vector p-Laplacian, and the multivalued fixed point
principles mentioned in the introduction. For details, we refer to Denkowski et al. [3] and
Hu and Papageorgiou [10] (for multivalued analysis), to Denkowski et al. [2] and Zhang
[20] (for the spectral properties of the p-Laplacian), and to Bader [1] (for the multivalued
fixed point principle; similar results can also be found in O’Regan and Precup [16] and
Precup [18]).

Let (Ω,Σ) be a measurable space and X a separable Banach space. We introduce the
following notations:

Pf (c)(X)= {A⊆ X : nonempty, closed (and convex)
}

,

P(w)k(c)(X)= {A⊆ X : nonempty, (weakly) compact (and convex)
}
.

(2.1)

A multifunction F : Ω→ Pf (X) is said to be measurable if, for all x ∈ X , ω → d(x,
F(ω))= inf [‖x− y‖ : y ∈ F(ω)] is measurable. A multifunction F : Ω→ 2X\{∅} is said
to be “graph measurable” if GrF = {(ω,x) ∈ Ω×X : x ∈ F(ω)} ∈ Σ× B(X), with B(X)
being the Borel σ-field of X . For Pf (X)-valued multifunctions, measurability implies
graph measurability and the converse is true if Σ is complete (i.e., Σ= Σ̂= the universal σ-
field). Let µ be a finite measure on (Ω,Σ), 1≤ p ≤∞, and F : Ω→ 2X\{∅}. We introduce
the set S

p
F = { f ∈ Lp(Ω,X) : f (ω) ∈ F(ω) µ-a.e.}. This set may be empty. For a graph-

measurable multifunction, it is nonempty if and only if inf [‖y‖ : y ∈ F(ω)]≤ ϕ(ω) µ-a.e.
on Ω, with ϕ∈ Lp(Ω)+.

Let Y , Z be Hausdorff topological spaces. A multifunction G : Y → 2Z\{∅} is said
to be “upper semicontinuous” (usc for short) if, for all C ⊆ Z closed, G−(C) = {y ∈ Y :
G(y)∩C �= ∅} is closed or equivalently for all U ⊆ Z open, G+{y ∈ Y : G(y) ⊆ U} is
open. If Z is a regular space, then a Pf (Z)-valued multifunction which is usc has a closed
graph. The converse is true if the multifunction G is locally compact (i.e., for every y ∈ Y ,
there exists a neighborhood U of y such that G(U) is compact in Z). A Pk(Z)-valued
multifunction which is usc maps compact sets to compact sets.

Consider the following weighted nonlinear eigenvalue problem in RN :

−(∥∥x′(t)∥∥p−2
x′(t)

)′ = λθ(t)
∥∥x(t)

∥∥p−2
x(t) a.e. on T = [0,b],

x(0)= x(b)= 0, 1 < p <∞, θ ∈ L∞(T),
∣∣{θ > 0}∣∣1 > 0, λ∈R.

(2.2)

Here by | · |1 we denote the 1-dimensional Lebesgue measure. The real parameters
λ, for which problem (2.3) has a nontrivial solution, are called eigenvalues of the neg-

ative vector p-Laplacian with Dirichlet boundary conditions denoted by (−p,W
1,p
0 (T ,

RN )), with weight θ ∈ L∞(T). The corresponding nontrivial solutions are known as
eigenfunctions. We know that the eigenvalues of problem (2.3) are the same as those of
the corresponding scalar problem [13]. Then from Denkowski et al. [2] and Zhang [20],
we know that there exist two sequences {λn(θ)}n≥1 and {λ−n(θ)}n≥1 such that λn(θ) > 0,
λn(θ)→ +∞ and λ−n(θ) < 0, λ−n(θ)→−∞ as n→∞. Moreover, if θ(t)≥ 0 a.e. on T with
strict inequality on a set of positive Lebesgue measure, then we have only the positive
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sequence {λn(θ)}n≥1. Also, for λ1(θ) > 0, we have the following variational characteriza-
tion:

λ1(θ)= inf

[ ‖x′‖pp∫ b
0 θ(t)

∥∥x(t)
∥∥pdt : x ∈W

1,p
0

(
T ,RN

)
, x �= 0

]
. (2.3)

The infimum is attained at the normalized principal eigenfunction u1 (λ1(θ) > 0 is
simple) and u1(t) �= 0 a.e. on T . Also, λ1(θ) is strictly monotone with respect to θ, namely,
if θ1(t)≤ θ2(t) a.e. on T with strict inequality on a set of positive measure, then λ1(θ2) <
λ1(θ1) (see (3.2)).

Finally we state the multivalued fixed point principle that we will use in the study of
problem (1.1). So let Y , Z be two Banach spaces and C ⊆ Y , D ⊆ Z two nonempty closed
and convex sets. We consider multifunctions G : C→ 2C\{∅} which have a decomposi-
tion G= K ◦N , satisfying the following: K : D→ C is completely continuous, namely, if
zn

w−→ z in D, then K(zn)→ K(z) in C and N : C→ Pwkc(D) is usc from C, furnished with
the strong topology into D, furnished with the weak topology.

Theorem 2.1. If C, D, and G = K ◦N are as above, 0 ∈ C, and G is compact (namely, G
maps bounded subsets of C into relatively compact subsets of D), then one of the following
alternatives holds:

(a) S= {y ∈ C : y ∈ µG(y) for some µ∈ (0,1)} is unbounded or
(b) G has a fixed point, that is, there exists y ∈ C such that y ∈G(y).

Remark 2.2. Evidently this is a multivalued version of the classical Leray-Schauder al-
ternative principle [2, page 206]. In contrast to previous multivalued extensions of the
Leray-Schauder alternative principal [4, page 61], Theorem 2.1 does not require G to
have convex values, which is important when dealing with nonlinear problems such as
(1.1).

3. Nonuniform nonresonance

In this section, we deal with problem (1.1) using a condition of nonuniform nonreso-
nance with respect to the first eigenvalue λ1(θ) > 0. Our hypotheses on the multivalued
nonlinearity F(t,x, y) are as follows.

(H(F)1) F : T ×RN ×RN → Pkc(RN ) is a multifunction such that
(i) for all x, y ∈RN , t→ F(t,x, y) is graph measurable;

(ii) for almost all t ∈ T , (x, y)→ F(t,x, y) is usc;
(iii) for every M > 0, there exists γM ∈ L1(T)+ such that, for almost all t ∈ T , all

‖x‖,‖y‖ ≤M, and all u∈ F(t,x, y), we have ‖u‖ ≤ γM(t);
(iv) there exists θ ∈ L∞(T), θ(t) ≥ 0 a.e. on T , with strict inequality on a set of

positive measure and

limsup
‖x‖→+∞

sup
[
(u,x)RN : u∈ F(t,x, y), y ∈RN

]
‖x‖p ≤ θ(t) (3.1)

uniformly for almost all t ∈ T and λ1(θ) > 1.
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Remark 3.1. Hypothesis (H(F)1)(iv) is the nonuniform nonresonance condition. In the
literature [15, 20], we encounter the condition θ(t) ≤ λ1 a.e. on T with strict inequality
on a set of positive measure. Here λ1 > 0 is the principal eigenvalue corresponding to the
unit weight θ = 1 (i.e., λ1 = λ1(1)). Then by virtue of the strict monotonicity property,
we have λ1(λ1)= 1 < λ1(θ), which is the condition assumed in hypothesis (H(F)1)(iv).

(H(G)1) G∈ C2(RN ,R).

Given h∈ L1(T ,RN ), we consider the following Dirichlet problem:

−(∥∥x′(t)∥∥p−2
x′(t)

)′ = h(t) a.e. on T = [0,b],

x(0)= x(b)= 0.
(3.2)

From Manásevich and Mawhin [13, Lemma 4.1], we know that problem (3.3) has a
unique solution K(h)∈ C1

0(T ,RN )= {x ∈ C1(TRN ) : x(0)= x(b)= 0}. So we can define
the solution map K : L1(T ,RN )→ C1

0(T ,RN ).

Proposition 3.2. K : L1(T ,RN )→ C1
0(T ,RN ) is completely continuous, that is, if hn

w−→ h
in L1(T ,RN ), then K(hn)→ K(h) in C1

0(T ,RN ).

Proof. Let hn
w−→ h in L1(T ,RN ) and set xn = K(hn), n≥ 1. We have

−(∥∥x′n(t)
∥∥p−2

x′n(t)
)′ = hn(t) a.e. on T , xn(0)= xn(b)= 0, n≥ 1. (3.3)

Taking the inner product with xn(t), integrating over T , and performing integration
by parts, we obtain

∥∥x′n∥∥pp ≤ ∥∥hn∥∥1

∥∥xn∥∥∞ ≤ c1
∥∥x′n∥∥p for some c1 > 0 and all n≥ 1. (3.4)

Here we have used Hölder and Poincare inequalities. It follows that

{
x′n
}
n≥1 ⊆ Lp

(
T ,RN

)
is bounded (since p > 1)

=⇒ {xn}n≥1 ⊆W
1,p
0

(
T ,RN

)
is bounded (by the Poincare inequality).

(3.5)

So from (3.22) we infer that

{∥∥x′n∥∥p−2
x′n
}
n≥1 ⊆W1,q(T ,RN

)( 1
p

+
1
q
= 1
)

is bounded

=⇒ {∥∥x′n∥∥p−2
x′n
}
n≥1 ⊆ C

(
T ,RN

)
is relatively compact

(3.6)

(recall that W1,q(T ,RN ) is embedded compactly in C(T ,RN )). The map ϕp : RN → RN ,
defined by ϕp(y) = ‖y‖p−2y, y ∈ RN\{∅}, and ϕp(0) = 0, is a homeomorphism and
so ϕ̂p

−1 : C(T ,RN ) → C(T ,RN ), defined by ϕ̂p
−1(y)(·) = ϕ−1

p (y(·)), is continuous and
bounded. Thus it follows that{

x′n
}
n≥1 ⊆ C

(
T ,RN

)
is relatively compact

=⇒ {xn}n≥1 ⊆ C1
0

(
T ,RN

)
is relatively compact.

(3.7)
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Therefore we may assume that xn → x in C1
0(T ,RN ). Also {‖x′n‖p−2x′n}n≥1 ⊆W1,q(T ,

RN ) is bounded and so we may assume that ‖x′n‖p−2x′n
w−→ u in W1,q(T ,RN ) and

‖x′n‖p−2x′n → u in C(T ,RN ) (because W1,q(T ,RN ) is embedded compactly in C(T ,RN )).
It follows that u= ‖x′‖p−2x′. Hence if in (3.22) we pass to the limit as n→∞, we obtain

− (∥∥x′(t)∥∥p−2
x′(t)

)′ = h(t) a.e. on T = [0,b], x(0)= x(b)= 0

=⇒ K(h)= x.
(3.8)

Since every subsequence of {xn}n≥1 has a further subsequence which converges to x in
C1

0(T ,RN ), we conclude that the original sequence converges too. This proves the com-
plete continuity of K . �

Let NF : C1
0(T ,RN )→ 2L

1(T ,RN ) be the multivalued Nemitsky operator corresponding
to F, that is,

NF(x)= {u∈ L1(T ,RN
)

: u(t)∈ F
(
t,x(t),x′(t)

)
a.e. on T

}
. (3.9)

Also let N : C1
0(T ,RN )→ 2L

1(T ,RN ) be defined by

N(x)= d

dx
∇G(x(·))+NF(x). (3.10)

This multifunction has the following structure.

Proposition 3.3. If hypotheses (H(F)1) and (H(G)1) hold, thenN has values in Pwkc(L1(T ,
RN )) and it is usc from C1

0(T ,RN ) with the norm topology into L1(T ,RN ) with the weak
topology.

Proof. Clearly N has closed, convex values which are uniformly integrable (see hypoth-
esis (H(F)1)(iii)). Therefore for every x ∈ C1

0(T ,RN ), N(x) is convex and w-compact in
L1(T ,RN ). What is not immediately clear is that N(x) �= ∅, since hypotheses (H(F)1)(i)
and (ii) in general do not imply the graph measurability of (t,x, y)→ F(t,x, y) [10, page
227]. To see that N(x) �= ∅, we proceed as follows. Let {sn}n≥1, {rn}n≥1 be step func-
tions such that sn → x and rn → x′ a.e. on T and ‖sn(t)‖ ≤ ‖x(t)‖, ‖rn(t)‖ ≤ ‖x′(t)‖ a.e.
on T , n ≥ 1. Then by virtue of hypothesis (H(F)1)(i), for every n ≥ 1, the multifunc-
tion t→ F(t,sn(t),rn(t)) is measurable and so by the Yankon-von Neumann-Aumann se-
lection theorem [10, page 158], we can find un : T → RN a measurable map such that
un(t)∈ F(t,sn(t),rn(t)) for all t ∈ T . Note that ‖sn‖∞, ‖rn‖∞ ≤M1 for some M1 > 0 and
all n≥ 1. So ‖un(t)‖ ≤ γM1 (t) a.e. on T , with γM1 ∈ L1(T)+ (see hypothesis (H(F)1)(iii)).
Thus by virtue of the Dunford-Pettis theorem, we may assume that un

w−→ u in L1(T ,RN )
as n→∞. From Hu and Papageorgiou [10, page 694], we have

u(t)∈ conv limsup
n→∞

F
(
t,sn(t),rn(t)

)⊆ F
(
t,x(t),x′(t)

)
a.e. on T , (3.11)

with the last inclusion being a consequence of hypothesis (H(F)1)(ii). So we have u ∈
S
q
F(·,x(·),x′(·)), hence N(x) �= ∅.
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Next we check the upper semicontinuity of N into L1(T ,RN )w (L1(T ,RN )w equals
the Banach space L1(T ,RN ) furnished with the weak topology). Because of hypothesis
(H(F)1)(iii), N is locally compact into L1(T ,RN )w (recall that uniformly integrable sets
are relatively compact in L1(T ,RN )w). Also on weakly compact subsets of L1(T ,RN ),
the relative weak topology is metrizable. Therefore to check the upper semicontinuity
of N , it suffices to show that GrN is sequentially closed in C1

0(T ,RN )× L1(T ,RN )w (see
Section 2). To this end, let (xn, fn) ∈ GrN, n ≥ 1, and suppose that xn → x in C1

0(T ,RN )
and fn

w−→ f in L1(T ,RN ). For every n≥ 1, we have

fn(t)= d

dt
∇G(xn(t)

)
+un(t) a.e. on T , with un ∈ S1

F(·,xn(·),x′n(·)). (3.12)

Because of hypothesis (H(F)1)(iii), we may assume (at least for a subsequence) that
un

w−→ u in L1(T ,RN ). As before, from Hu and Papageorgiou [10, page 694], we have

u(t)∈ conv limsup
n→∞

F
(
t,xn(t),x′n(t)

)⊆ F
(
t,x(t),x′(t)

)
a.e. on T (3.13)

(again the last inclusion follows from hypothesis (H(F)1)(ii)). So u ∈ S1
F(·,x(·),x′(·)). Also

by virtue of hypothesis (H(G)1), we have

d

dt
∇G(xn(t)

)=G′′
(
xn(t)

)
x′n(t)−→G′′

(
x(t)

)
x′(t)= d

dt
∇G(x(t)

)
, ∀t ∈ T

=⇒ d

dt
∇G(xn(·))−→ d

dt
∇G(x(·)) in L1(T ,RN

)
(by the dominated convergence theorem).

(3.14)

So in the limit as n→∞, we have

f = d

dt
∇G(x(·))+u with u∈NF(x)

=⇒ (x, f )∈GrN .
(3.15)

This proves the desired upper semicontinuity of N . �

Proposition 3.4. There exists ξ > 0 such that, for all x ∈W
1,p
0 (T ,RN ),

‖x′‖pp−
∫ b

0
θ(t)

∥∥x(t)
∥∥pdt ≥ ξ‖x′‖pp. (3.16)

Proof. Let η : W
1,p
0 (T ,RN )→R be the functional defined by

η(x)= ‖x′‖pp−
∫ b

0
θ(t)

∥∥x(t)
∥∥pdt. (3.17)

From the variational characterization of λ1(θ) > 1, we see that η(x) > 0 for all x ∈
W

1,p
0 (T ,RN ), x �= 0. Suppose that the proposition was not true. Then by virtue of the p-

homogeneity of η, we can find {xn}n≥1 ⊆W
1,p
0 (T ,RN ) such that ‖x′n‖p = 1 and η(xn) ↓ 0.
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By the Poincare inequality, the sequence {xn}n≥1 ⊆W
1,p
0 (T ,RN ) is bounded and so we

may assume that

xn
w−−→ x in W

1,p
0

(
T ,RN

)
, xn −→ x in C0

(
T ,RN

)
. (3.18)

Also exploiting the weak lower semicontinuity of the norm functional in a Banach
space, we obtain

‖x′‖pp ≤
∫ b

0
θ(t)

∥∥x(t)
∥∥pdt =⇒ λ1(θ)≤ 1, (3.19)

a contradiction to our hypothesis that λ1(θ) > 1. �

We introduce the set

S= {x ∈ C1
0

(
T ,RN

)
: x ∈ λKN(x), 0 < λ < 1

}
. (3.20)

Proposition 3.5. If hypotheses (H(F)1) and (H(G)1) hold, then S⊆ C1
0(T ,RN ) is bounded.

Proof. Let x ∈ S. We have

1
λ
x ∈ KN(x) with 0 < λ < 1

=⇒ 1
λp−1

(∥∥x′(t)∥∥p−2
x′(t)

)′
+

d

dt
∇G(x(t)

)
+u(t)= 0 a.e. on T , with u∈ S1

F(·,x(·),x′(·))

=⇒ (∥∥x′(t)∥∥p−2
x′(t)

)′
+ λp−1 d

dt
∇G(x(t)

)
+ λp−1u(t)= 0 a.e. on T.

(3.21)

Taking the inner product with x(t), integrate over T , and perform integration by parts,
we obtain

−‖x′‖pp− λp−1
∫ b

0

(∇G(x(t)
)
,x′(t)

)
RN dt+ λp−1

∫ b

0

(
u(t),x(t)

)
RN dt = 0. (3.22)

Remark that

∫ b

0

(∇G(x(t)
)
,x′(t)

)
RN dt =

∫ b

0

d

dt
G
(
x(t)

)
dt =G

(
x(b)

)−G
(
x(0)

)= 0. (3.23)

By virtue of hypotheses (H(F)1)(iii) and (iv), given ε > 0, we can find γε ∈ L1(T)+ such
that for almost all t ∈ T , all x, y ∈RN , and all u∈ F(t,x, y), we have

(u,x)RN ≤ (θ(t) + ε
)‖x‖p + γε(t). (3.24)

So we have

∫ b

0

(
u(t),x(t)

)
RN dt ≤

∫ b

0
θ(t)

∥∥x(t)
∥∥pdt+ ε‖x‖pp +

∥∥γε∥∥1. (3.25)
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Using (3.24) and (3.27) in (3.23), we obtain

‖x′‖pp ≤
∫ b

0
θ(t)

∥∥x(t)
∥∥pdt+ ε‖x‖pp +

∥∥γε∥∥1

=⇒ ξ‖x′‖pp− ε

λ1
‖x′‖pp ≤

∥∥γε∥∥1

(3.26)

(see Proposition 3.5 and recall that λ1‖x‖pp ≤ ‖x′‖pp, λ1 = λ1(1)).
Choose ε > 0 so that ε < λ1ξ. Then from the last inequality, we infer that

{x′}x∈S ⊆ Lp
(
T ,RN

)
is bounded

=⇒ S⊆W
1,p
0

(
T ,RN

)
is bounded (by Poincare’s inequality)

=⇒ S⊆ C0
(
T ,RN

)
is relatively compact.

(3.27)

Also we have
∥∥(∥∥x′(t)∥∥p−2

x′(t)
)′∥∥

≤ ∥∥G′′(x(t)
)∥∥

�

∥∥x′(t)∥∥+
∥∥u(t)

∥∥ a.e. on T

≤M2
(∥∥x′(t)∥∥+ θ(t) + ε+ γε(t)

)
a.e. on T for some M2 > 0 (see (3.25))

=⇒ {‖x′‖p−2x′
}
x∈S ⊆W1,1(T ,RN

)
is bounded

=⇒ {‖x′‖p−2x′
}
x∈S ⊆ C

(
T ,RN

)
is bounded(

since W1,1(T ,RN
)

is embedded continuously but not compactly in C
(
T ,RN

))
=⇒ {x′}x∈S ⊆ C

(
T ,RN

)
is bounded.

(3.28)

From (3.28) and (3.29), we conclude that S⊆ C1
0(T ,RN ) is bounded. �

Propositions 3.2, 3.3, and 3.5 permit the use of Theorem 2.1. So we obtain the follow-
ing existence result for problem (1.1).

Theorem 3.6. If hypotheses (H(F)1) and (H(G)1) hold, then problem (1.1) has a solution
x ∈ C1

0(T ,RN ) with ‖x′‖p−2x′ ∈W1,1(T ,RN ).

As an application of this theorem, we consider the following system:

(∥∥x′(t)∥∥p−2
x′(t)

)′
+
∥∥x(t)

∥∥p−2
Ax(t) +F

(
t,x(t)

)� e(t) a.e. on T = [0,b],

x(0)= x(b)= 0, e ∈ L1(T ,RN
)
.

(3.29)

Our hypotheses on the data of problem (3.29) are the following.

(H(A)) A is an N ×N matrix such that for all x ∈ RN we have (Ax,x)RN ≤ θ‖x‖2 with
θ < (πρ/b)p.

Remark 3.7. The quantity πp is defined by πp = 2(p− 1)1/p
∫ 1

0 (1/(1− t)1/p)dt = 2(p−
1)1/p((π/p)/ sin(π/p)). If p = 2, then π2 = π. Recall that the eigenvalues of (−p,W

1,p
0 (T ,

RN )) are λn = (nπp/b)p, n≥ 1 [13]. So in hypothesis (H(A)), we have θ < λ1.
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(H(F)′1) F : T ×RN → Pkc(RN ) is a multifunction such that
(i) for all x ∈RN , t→ F(t,x) is graph measurable;

(ii) for almost all t ∈ T , x→ F(t,x) is usc;
(iii) for every M > 0, there exists γM ∈ L1(T)+ such that for almost all t ∈ T , all

‖x‖ ≤M, and all u∈ F(t,x), we have ‖u‖ ≤ γM(t);
(iv) lim‖x‖→∞((u,x)RN /‖x‖p)= 0 uniformly for almost all t ∈ T and all u∈ F(t,x).

Invoking Theorem 3.6, we obtain the following existence result for problem (3.29).

Theorem 3.8. If hypotheses (H(A)) and (H(F)′1) hold, then for every e ∈ L1(T ,RN ), prob-
lem (3.29) has a solution x ∈ C1

0(T ,RN ) with ‖x′‖p−2x′ ∈W1,1(T ,RN ).

Remark 3.9. Theorem 3.8 extends Theorem 7.1 of Manásevich and Mawhin [13].
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