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Let D be an open subset of a real uniformly smooth Banach space E. Suppose T : D̄→
E is a demicontinuous pseudocontractive mapping satisfying an appropriate condition,
where D̄ denotes the closure ofD. Then, it is proved that (i) D̄ ⊆�(I + r(I −T)) for every
r > 0; (ii) for a given y0 ∈ D, there exists a unique path t→ yt ∈ D̄, t ∈ [0,1], satisfying
yt := tT yt + (1− t)y0. Moreover, if F(T) �= ∅ or there exists y0 ∈ D such that the set
K := {y ∈D : Ty = λy + (1− λ)y0 for λ > 1} is bounded, then it is proved that, as t→ 1−,
the path {yt} converges strongly to a fixed point of T . Furthermore, explicit iteration
procedures with bounded error terms are proved to converge strongly to a fixed point
of T .

1. Introduction

Let D be a nonempty subset of a real linear space E. A mapping T : D → E is called
a contraction mapping if there exists L ∈ [0,1) such that ‖Tx− Ty‖ ≤ L‖x− y‖ for all
x, y ∈D. If L= 1 then T is called nonexpansive. T is called pseudocontractive if there exists
j(x− y)∈ J(x− y) such that

〈
Tx−Ty, j(x− y)

〉≤ ‖x− y‖2, ∀x, y ∈ K , (1.1)

where J is the normalized duality mapping from E to 2E
∗

defined by

Jx := { f ∗ ∈ E∗ :
〈
x, f ∗

〉= ‖x‖2 = ∥∥ f ∗∥∥2}
. (1.2)

T is called strongly pseudocontractive if there exists k ∈ (0,1) such that

〈
Tx−Ty, j(x− y)

〉≤ k‖x− y‖2, ∀x, y ∈ K. (1.3)

Clearly the class of nonexpansive mappings is a subset of class of pseudocontractive map-
pings. T is said to be demicontinuous if {xn} ⊆ D and xn → x ∈ D together imply that
Txn⇀ Tx, where → and ⇀ denote the strong and weak convergences, respectively. We
denote by F(T) the set of fixed points of T .
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Closely related to the class of pseudocontractive mappings is the class of accretive map-
pings. A mappingA :D(A)⊆ E→ E is called accretive ifT := (I −A) is pseudocontractive.
If E is a Hilbert space, accretive operators are also called monotone. An operatorA is called
m-accretive if it is accretive and �(I + rA), the range of (I + rA), is E for all r > 0; and A
is said to satisfy the range condition if cl(D(A))⊆�(I + rA), for all r > 0, where cl(D(A))
denotes the closure of the domain of A.

Let z ∈D, then for each t ∈ (0,1), and for a nonexpansive map T , there exists a unique
point xt ∈D satisfying the condition,

xt = tTxt + (1− t)z (1.4)

since the mapping x→ tTx+ (1− t)z is a contraction. When E is a Hilbert space and T is
a self-map, Browder [1] showed that {xt} converges strongly to an element of F(T) which
is nearest to u as t→ 1−. This result was extended to various more general Banach spaces
by Reich [10], Takahashi and Ueda [11], and a host of other authors. Recently, Morales
and Jung [7] proved the existence and convergence of a continuous path to a fixed point
of a continuous pseudocontractive mapping in reflexive Banach spaces. More precisely,
they proved the following theorem.

Theorem 1.1 [7, Proposition 2(iv), Theorem 1]. Suppose D is a nonempty closed con-
vex subset of a reflexive Banach space E and T : D → E is a continuous pseudocontractive
mapping satisfying the weakly inward condition. Then for z ∈D, there exists a unique path
t→ yt ∈D, t ∈ [0,1), satisfying the following condition,

yt = tT yt + (1− t)z. (1.5)

Furthermore, suppose E is assumed to have a uniformly Gâteaux differentiable norm and
is such that every closed convex and bounded subset of D has the fixed point property for
nonexpansive self-mappings. If F(T) �= ∅ or there exists x0 ∈D such that the set K := {x ∈
D : Tx = λx+ (1− λ)x0 for λ > 1} is bounded, then as t→ 1−, the path converges strongly to
a fixed point of T .

From Theorem 1.1, one question arises quite naturally.

Question. Can the continuity of T be weakened to demicontinuity of T?

In connection with this, Lan and Wu [3] proved the following theorem in the Hilbert
space setting.

Theorem 1.2 [3, Theorems 2.3 and 2.5]. Let E be a Hilbert space. SupposeD is a nonempty
closed convex subset of E and T : D → E is a demicontinuous pseudocontractive mapping
satisfying the weakly inward condition. Then for z ∈D, there exists a unique path t→ yt ∈
D, t ∈ (0,1), satisfying the following condition:

yt = tT yt + (1− t)z. (1.6)

Moreover, if (i) D is bounded then F(T) �= ∅ and {yt} converges strongly to a fixed point
of T as t→ 1−; (ii) D is unbounded and F(T) �= ∅ then {yt} converges strongly to a fixed
point of T as t→ 1−.
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LetD be a nonempty open and convex subset of a real uniformly smooth Banach space
E. Suppose T : D̄→ E is a demicontinuous pseudocontractive mapping which satisfies

for some z ∈D, Tx− z �= λ(x− z) for x ∈ ∂D, λ > 1, (1.7)

where D̄ is the closure of D.
It is our purpose in this paper to give sufficient conditions to ensure that D̄ ⊆ (I +

r(I −T))(D̄) for every r > 0 and to prove the existence and convergence of a path to a
fixed point of a demicontinuous pseudocontractive mapping in spaces more general than
Hilbert spaces. More precisely, we prove that for a given y0 ∈D, there exists a unique path
t→ yt ∈ D̄, t ∈ (0,1), satisfying yt := tT yt + (1− t)y0. Moreover, if F(T) �= ∅ or there ex-
ists y0 ∈ D such that the set K := {y ∈ D : Ty = λy + (1− λ)y0 for λ > 1} is bounded,
then the path {yt} converges strongly to a fixed point of T . Furthermore, the sequence
{xn} generated from x1 ∈ K by xn+1 := (1− λn)xn + λnTxn− λnθn(xn− x1), for all integers
n ≥ 1, where {λn} and {θn} are real sequences satisfying appropriate conditions, con-
verges strongly to a fixed point of T . Our theorems provide an affirmative answer to the
above question in uniformly smooth Banach spaces and extend Theorem 1.2 to uniformly
smooth spaces provided that the interior of D, int(D), is nonempty.

2. Preliminaries

Let E be a real normed linear space of dimension ≥ 2. The modulus of smoothness of E is
defined by

ρE(τ) := sup
{‖x+ y‖+‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
, τ > 0. (2.1)

If there exist a constant c > 0 and a real number 1 < q <∞, such that ρE(τ) ≤ cτq, then
E is said to be q-uniformly smooth. Typical examples of such spaces are Lp and the Sobolev
spacesWm

p for 1< p <∞. A Banach space E is called uniformly smooth if limτ→0(ρE(τ)/τ)=
0. If E is a real uniformly smooth Banach space, then

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x)

〉
+ max

{‖x‖,1
}‖y‖b(‖y‖) (2.2)

holds for every x, y ∈ E where b : [0,∞)→ [0,∞) is a continuous strictly increasing func-
tion satisfying the following conditions:

(i) b(ct)≤ cb(t),∀c ≥ 1,
(ii) limt→0 b(t)= 0. (See, e.g., [8].)

Let D be a nonempty subset of a Banach space E. For x ∈D, the inward set of x, ID(x),
is defined by ID(x) := {x+ λ(u− x) : u∈D, λ≥ 1}. A mapping T :D→ E is called weakly
inward if Tx ∈ cl[ID(x)] for all x ∈D, where cl[ID(x)] denotes the closure of the inward
set. Every self-map is trivially weakly inward.

Let D ⊆ E be closed convex and let Q be a mapping of E onto D. A mapping Q of E
into E is said to be a retraction if Q2 =Q. If a mapping Q is a retraction, then Qz = z for
every z ∈ R(Q), range of Q. A subset D of E is said to be a nonexpansive retract of E if
there exists a nonexpansive retraction of E onto D. If E =H , the metric projection PD is a
nonexpansive retraction from H to any closed convex subset D of H .
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In what follows, we will make use of the following lemma and theorems.

Lemma 2.1 [2]. Let {λn}, {γn}, and {αn} be sequences of nonnegative numbers satisfying∑∞
1 αn =∞ and γn/αn→ 0, as n→∞. Let the recursive inequality

λn+1 ≤ λn− 2αnψ
(
λn
)

+ γn, n= 1,2, . . . , (2.3)

be given where ψ : [0,∞) → [0,∞) is a nondecreasing function such that it is positive on
(0,∞) and ψ(0)= 0. Then λn→ 0, as n→∞.

Theorem 2.2 [6]. Let E be a uniformly smooth Banach space and let D be an open subset
of E. Suppose T : D̄ → E is a demicontinuous strongly pseudocontractive mapping which
satisfies

for some z ∈D : Tx− z �= λ(x− z) for x ∈ ∂D, λ > 1. (2.4)

Then T has a unique fixed point in D̄.

Remark 2.3. We observe that, in Theorem 2.2, if, in addition,D is convex, then any weakly
inward map satisfies condition (2.4).

Theorem 2.4 (Reich [10]). Let E be uniformly smooth. Let A ⊂ E× E be accretive with
cl(D(A)) convex. Suppose A satisfies the range condition. Let Jt := (I + tA)−1, t > 0 be the
resolvent of A and assume that A−1(0) is nonempty. Then, for each x ∈ �(I + rA)(D̄),
limt→∞ Jtx = Px ∈ A−1(0), where P is the sunny nonexpansive retraction of cl(D(A)) onto
A−1(0).

Remark 2.5. From the proof of Theorem 2.4, we observe that we may replace the as-
sumption that A−1(0) �= ∅ with the assumption that xt = Jtx is bounded, for each x ∈
�(I + tA) and t > 0.

3. Main results

We first prove the following results which will be used in the sequel.

Proposition 3.1. Let D be an open subset of a real uniformly smooth Banach space E
and let T : D̄→ E be a demicontinuous pseudocontractive mapping which satisfies condition
(2.4). Let AT : D̄→ E be defined by AT := I + r(I −T) for any r > 0. Then D̄ ⊆ AT[D̄].

Proof. Let z ∈ D̄. Then it suffices to show that there exists x ∈ D̄ such that z = AT(x).
Define g : D̄→ E by g(x) := (1/(1 + r))(rT(x) + z) for some r > 0. Then clearly g is demi-
continuous and for x, y ∈ D̄ we have that 〈g(x)− g(y), j(x− y)〉 ≤ (r/(1 + r))‖x− y‖2.
Thus, g is a strongly pseudocontractive mapping which satisfies condition (2.4). There-
fore, by Theorem 2.2, there exists x ∈ D̄ such that g(x)= x, that is, z = AT(x). The proof
is complete. �

Corollary 3.2. Let E be a real uniformly smooth Banach space and let A : E→ E be demi-
continuous accretive mapping. Then A is m-accretive.
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Proof. Set T := (I −A). Then, we obtain that T is a demicontinuous pseudocontractive
self-map of E. Clearly, condition (2.4) is satisfied. The conclusion follows from
Proposition 3.1. �

Corollary 3.2 was proved by Minty [5] in a Hilbert space setting for continuous accre-
tive mappings and this was extended to general Banach spaces by Martin [4].

We now prove the following theorems.

Theorem 3.3. Let D be an open and convex subset of a real uniformly smooth Banach space
E. Let T : D̄→ E be a demicontinuous pseudocontractive mapping satisfying condition (2.4).
Then for a given y0 ∈D, there exists a unique path t→ yt ∈ D̄, t ∈ (0,1), satisfying

yt = tT yt + (1− t)y0. (3.1)

Furthermore, if F(T) �= ∅ or there exists z ∈ D such that the set K := {y ∈ D : Ty = λy +
(1− λ)z for λ > 1} is bounded, then the path {yt} described by (3.1) converges strongly to a
fixed point of T as t→ 1−.

Proof. For each t ∈ (0,1) the mapping Tt defined by Ttx := tT(tn)x + (1− t)y0 is demi-
continuous and strongly pseudocontractive. By Theorem 2.2, it has a unique fixed point
yt in D̄, that is, for each t ∈ (0,1) there exists yt ∈ D̄ satisfying (3.1). Continuity of yt fol-
lows as in [7]. Now we show the convergence of {yt} to a fixed point of T . Let A := I −T .
Then A is accretive and by Proposition 3.1, D̄ ⊆ (I + rA)(D̄) for all r > 0 and hence A sat-
isfies the range condition. Moreover, from (3.1), yt + (t/(1− t))Ayt = y0. But this implies
that yt = (I + (t/(1− t))A)−1y0 = J(t/(1−t))y0. Furthermore, since A−1(0) �= ∅ or the fact
that K is bounded implies that {yt} is bounded (see, e.g., [7]), we have by Theorem 2.4
that yt → y∗ ∈ A−1(0) and hence yt → y∗ ∈ F(T) as t→ 1−. This completes the proof of
the theorem. �

Remark 3.4. We note that, in Theorem 3.3, the requirement that T satisfies condition
(2.4) may be replaced with the weakly inward condition. Furthermore, Theorem 3.3
extends [3, Theorems 2.3 and 2.5] to the more general Banach spaces which include
lp,Lp,Wm

p ,1 < p <∞, spaces, provided that int(D) is nonempty.

For our next theorem and corollary, {λn}, {θn}, and {cn} are real sequences in [0,1]
satisfying the following conditions:

(i) limn→∞ θn = 0;
(ii)

∑∞
n=1 λnθn =∞, limn→∞(b(λn)/θn)= 0;

(iii) limn→∞((θn−1/θn− 1)/λnθn)= 0, cn = o(λnθn).

Theorem 3.5. Let D be an open and convex subset of a real uniformly smooth Banach space
E. Suppose T : D̄ → E is a bounded demicontinuous pseudocontractive mapping satisfying
condition (2.4). Suppose D̄ is a nonexpansive retract of E with Q as the nonexpansive retrac-
tion. Let a sequence {xn} be generated from x0 ∈ E by

xn+1 =Q
((

1− λn
)
xn + λnTxn− λnθn

(
xn− x0

)− cn(xn−un)), (3.2)
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for all positive integers n, where {un} is a sequence of bounded error terms. If either F(T) �= ∅
or the set K := {x ∈ D : Tx = λx + (1− λ)x0 for λ > 1} is bounded, then there exists d > 0
such that whenever λn ≤ d and cn/λnθn,b(λn)/θn ≤ d2 for all n≥ 0, {xn} converges strongly
to a fixed point of T .

Proof. By Theorem 3.3, F(T) �= ∅. Let x∗ ∈ F(T). Let r > 1 be sufficiently large such that
x0 ∈ Br/2(x∗).

Claim 3.6. {xn} is bounded.

It suffices to show by induction that {xn} belongs to B = Br(x∗) for all positive inte-
gers. Now, x0 ∈ B by assumption. Hence we may assume that xn ∈ B and set M := 2r +
sup{‖(I −T)xi‖+‖xi−ui‖, for i≤ n}. We prove that xn+1 ∈ B. Suppose xn+1 is not in B.
Then ‖xn+1− x∗‖ > r and thus from (3.2) we have that ‖xn+1− x∗‖≤‖xn− x∗ − λn((I −
T)xn + θn(xn− x0))− cn(xn−un)‖≤‖xn− x∗‖+ λn‖(I −T)xn + θn(xn− x0)+(cn/λn)(xn−
un)‖ ≤ r +M. Moreover, from (3.2) and inequality (2.2), and using the fact that θn ≤ 1,
we get that

∥∥xn+1− x∗
∥∥2 = ∥∥Q((1− λn)xn + λnTxn− λnθn

(
xn− x0

)− cn(xn−un))− x∗∥∥
≤ ∥∥xn− x∗ − λn((I −T)xn + θn

(
xn− x0

))− cn(xn−un)
∥∥2

≤ ∥∥xn− x∗∥∥2− 2λn
〈

(I −T)xn, j
(
xn− x∗

)〉
− 2λnθn

〈
xn− x0, j

(
xn− x∗

)〉− 2cn
〈
xn−un, j

(
xn− x∗

)〉

+ max
{∥∥xn− x∗∥∥,1

}
λn

∥∥∥∥(I −T)xn + θn
(
xn− x0

)
+
cn
λn

(
xn−un

)∥∥∥∥
× b
(
λn

∥∥∥∥(I −T)xn + θn
(
xn− x0

)
+
cn
λn

(
xn−un

)∥∥∥∥
)

≤ ∥∥xn− x∗∥∥2− 2λn
〈

(I −T)xn, j
(
xn− x∗

)〉
− 2λnθn

〈
xn− x0, j

(
xn− x∗

)〉− 2cn
〈
xn−un, j

(
xn− x∗

)〉
+ (r + 1)λnMb

(
λnM

)
.

(3.3)

Since T is pseudocontractive and x∗ ∈ F(T), we have 〈(I −T)xn, j(xn− x∗)〉 ≥ 0. Hence
(3.3) gives

∥∥xn+1− x∗
∥∥2 ≤ ∥∥xn− x∗∥∥2− 2λnθn

〈
xn− x0, j

(
xn− x∗

)〉
+ 2cn

∥∥xn−un∥∥ ·∥∥xn− x∗∥∥+ (r + 1)λnM2b
(
λn
)
.

(3.4)

Choose L > 0 sufficiently small such that L ≤ r2/(2
√
D∗ + 2M)2, where D∗ = (r + 1)M2.

Set d := √L. Then since ‖xn+1 − x∗‖ > ‖xn − x∗‖ by our assumption, from (3.4) we get
that 2λnθn〈xn− x0, j(xn− x∗)〉 ≤ (r + 1)M2λnb(λn) + 2cnMr which gives 〈xn− x0, j(xn−
x∗)〉 ≤ D∗L, since cn/λnθn,b(λn)/θn ≤ L = d2, for all n ≥ 1 by our assumption.
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Now adding 〈x0− x∗, j(xn− x∗)〉 to both sides of this inequality, we get that

∥∥xn− x∗∥∥2 ≤ LD∗ +
〈
x0− x∗, j

(
xn− x∗

)〉

≤ LD∗ +
∥∥x0− x∗

∥∥∥∥xn− x∗∥∥≤ LD∗ +
r

2

∥∥xn− x∗∥∥. (3.5)

Solving this quadratic inequality for ‖xn − x∗‖ and using the estimate
√
r2/16 +LD∗ ≤

r/4 +
√
LD∗, we obtain that ‖xn − x∗‖ ≤ r/2 +

√
LD∗. But in any case, ‖xn+1 − x∗‖ ≤

‖xn − x∗‖ + λn‖(I − T)xn + θn(xn − x0) + (cn/λn)(xn − un)‖ so that ‖xn+1 − x∗‖ ≤ r/2 +√
LD∗ + λnM ≤ r, by the original choices of L and λn, and this contradicts the assumption

that xn+1 is not in B. Therefore, xn ∈ B for all positive integers n. Thus {xn} is bounded.
Now we show that xn→ x∗. Let {yn} be a subsequence of {yt : t ∈ [0,1)}, such that yn :=
ytn , tn = 1/(1 + θn). Then from (3.2) and inequality (2.2) and using the fact that yn ∈ D̄
for all n≥ 0, we get

∥∥xn+1− yn
∥∥2 = ∥∥Q((1− λn)xn + λnTxn− λnθn

(
xn− x0

)− cn(xn−un))− yn
∥∥2

≤ ∥∥xn− yn− λn
(
(I −T)xn + θn

(
xn− x0

))− cn(xn−un)∥∥2

≤ ∥∥xn− yn
∥∥2− 2λn

〈
(I −T)xn + θn

(
xn− x0

)
, j
(
xn− yn

)〉
− 2cn

〈
xn−un, j

(
xn− yn

)〉

+ max
{∥∥xn− yn

∥∥,1
}
λn

∥∥∥∥(I −T)xn + θn
(
xn− x0

)
+
cn
λn

(
xn−un

)∥∥∥∥
× b
(
λn

∥∥∥∥(I −T)xn + θn
(
xn− x0

)
+
cn
λn

(
xn−un

)∥∥∥∥
)

≤ (1− 2λnθn
)∥∥xn− yn

∥∥2− 2λn
〈

(I −T)xn + θn
(
yn− x0

)
, j
(
xn− yn

)〉
+ 2cn

∥∥xn−un∥∥ ·∥∥xn− yn
∥∥

+ max
{∥∥xn− yn

∥∥,1
}
λn

∥∥∥∥(I −T)xn + θn
(
xn− x0

)
+
cn
λn

(
xn−un

)∥∥∥∥
× b
(
λn

∥∥∥∥(I −T)xn + θn
(
xn− x0

)
+
cn
λn

(
xn−un

)∥∥∥∥
)
.

(3.6)

Since Tyn = yn + θn(yn− x0) and T is pseudocontractive, we get that 〈(I −T)xn + θn(yn−
x0), j(xn− yn)〉 ≥ 0. Moreover, since {xn}, {yn}, and hence {Txn}, are bounded, there ex-
ists M0 > 0 such that max{‖xn− yn‖,1,‖xn− yn‖ · ‖xn− un‖,‖(I −T)xn + θn(xn− x0) +
(cn/λn)(xn−un)‖} ≤M0. Therefore, (3.6) with property of b gives

∥∥xn+1− yn
∥∥2 ≤ (1− 2λnθn

)∥∥xn− yn
∥∥2

+M0λnb
(
λn
)

+ cnM0. (3.7)

On the other hand, by the pseudocontractivity of T and the fact that θn(yn− x0) + (yn−
Tyn)= 0, we have that

∥∥yn−1− yn
∥∥≤

∥∥∥∥yn−1− yn +
1
θn

(
(I −T)yn−1− (I −T)yn

)∥∥∥∥

≤ θn−1− θn
θn

(∥∥yn−1
∥∥+‖z‖)=

(
θn−1

θn
− 1
)(∥∥yn−1

∥∥+‖z‖).
(3.8)
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However,

∥∥xn− yn
∥∥2 ≤ ∥∥xn− yn−1

∥∥2
+
∥∥yn−1− yn

∥∥(∥∥yn−1− yn
∥∥+ 2

∥∥yn−1− xn
∥∥). (3.9)

Therefore, these estimates with (3.7) give that

∥∥xn+1− yn
∥∥2 ≤ (1− 2λnθn

)∥∥xn− yn−1
∥∥2

+M1

(
θn−1

θn
− 1
)

+M1λnb
(
λn
)

+ cnM1, (3.10)

for some M1 > 0. Thus, by Lemma 2.1, xn+1− yn → 0. Hence, since yn → x∗ by Theorem
3.3, we have that xn→ x∗, this completes the proof of the theorem. �

With the help of Remark 2.3 and Theorem 3.5 we obtain the following corollary.

Corollary 3.7. Let D be an open and convex subset of a real uniformly smooth Banach
space E. Suppose T : D̄→ E is a bounded demicontinuous pseudocontractive mapping satis-
fying the weakly inward condition. Suppose D̄ is a nonexpansive retract of E with Q as the
nonexpansive retraction. Let a sequence {xn} be generated from x0 ∈ E by

xn+1 =Q
((

1− λn
)
xn + λnTxn− λnθn

(
xn− x0

)− cn(xn−un)), (3.11)

for all positive integers n, where {un} is a sequence of error terms. If either F(T) �= ∅ or the
set K := {x ∈D : Tx = λx+ (1− λ)x0 for λ > 1} is bounded then, there exists d > 0 such that
whenever λn ≤ d and cn/λnθn,b(λn)/θn ≤ d2 for all n≥ 0, {xn} converges strongly to a fixed
point of T .

Remark 3.8. For the case where E is q-uniformly smooth, where q > 1, and t ≤M for
some M > 0, the function b in (2.2) is estimated by b(t)≤ ctq−1 for some c > 0 (see [9]).
Thus, we have the following corollary.

Corollary 3.9. Let D be an open and convex subset of a real q-uniformly smooth Banach
space E. Suppose T : D̄→ E is a bounded demicontinuous pseudocontractive mapping satis-
fying condition (2.4). Suppose D̄ is a nonexpansive retract of E with Q as the nonexpansive
retraction and let {λn}, {θn}, and {cn} be real sequences in (0,1] satisfying the following
conditions:

(i) limn→∞ θn = 0;
(ii)

∑∞
n=1 λnθn =∞, limn→∞(λ

(q−1)
n /θn)= 0;

(iii) limn→∞((θn−1/θn− 1)/λnθn)= 0, cn = o(λnθn).

Let a sequence {xn} be generated from x0 ∈ E by

xn+1 =Q
((

1− λn
)
xn + λnTxn− λnθn

(
xn− x0

)− cn(xn−un)), (3.12)

for all positive integers n, where {un} is a bounded sequence of error terms. If either F(T) �= ∅
or the set K := {x ∈ D : Tx = λx + (1− λ)x0 for λ > 1} is bounded, then there exists d > 0

such that whenever λn ≤ d and cn/λnθn,λ
(q−1)
n /θn ≤ d2 for all n≥ 0, {xn} converges strongly

to a fixed point of T .
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Remark 3.10. Examples of sequences {λn} and {θn} satisfying conditions of Corollary 3.9
are as follows: λn = 2(n+ 1)−a, θn = 2(n+ 1)−b, and cn = 2(n+ 1)−1 with 0 < b < a and
a+ b < 1 if 2≤ q <∞, and with 0 < b < a(q− 1) and a+ b(q− 1) < 1 if 1 < q < 2.

If in Theorem 3.5, T is a self-map of D̄, then the projection operatorQ is replaced with
I , the identity map on E. Moreover, T satisfies condition (2.4). As a consequence, we have
the following corollaries.

Corollary 3.11. Let D be an open and convex subset of a real uniformly smooth Ba-
nach space E. Suppose T : D̄→ D̄ is a bounded demicontinuous pseudocontractive mapping.
Suppose {λn}, {θn}, and {cn} are real sequences in (0,1] satisfying conditions (i)–(iii) of
Theorem 3.5 and λn(1 + θn) + cn ≤ 1,∀n≥ 0. Let a sequence {xn} be generated from x0 ∈ E
by

xn+1 =
(
1− λn

)
xn + λnTxn− λnθn

(
xn− x0

)− cn(xn−un), (3.13)

for all positive integers n, where {un} is a sequence of bounded error terms. If either F(T) �= ∅
or the set K := {x ∈ D : Tx = λx + (1− λ)x0 for λ > 1} is bounded, then there exists d > 0
such that whenever λn ≤ d and cn/λnθn,b(λn)/θn ≤ d2 for all n≥ 0, {xn} converges strongly
to a fixed point of T .

Proof. The conditions on λn, θn, and cn imply that the sequence {xn} is well defined.
Thus, the proof follows from Theorem 3.5. �

If in Theorem 3.5, D is assumed to be bounded, then the conditions λn ≤ d and
cn/λnθn,b(λn)/θn ≤ d2 for some d > 0 which guarantee the boundedness of the sequence
{xn} are not needed. In fact, we have the following corollary.

Corollary 3.12. Let D be an open convex and bounded subset of a real uniformly smooth
Banach space E. Suppose T : D̄→ E is a bounded demicontinuous pseudocontractive map-
ping satisfying the weakly inward condition. Suppose D̄ is a nonexpansive retract of E with
Q as the nonexpansive retraction and let {λn}, {θn}, and {cn} be real sequences in (0,1)
satisfying conditions (i)–(iii) of Theorem 3.5. Let a sequence {xn} be generated from x0 ∈ E
by

xn+1 =Q
((

1− λn
)
xn + λnTxn− λnθn

(
xn− x0

)− cn(xn−un)), (3.14)

for all positive integers n, where {un} is a sequence of error terms. Then {xn} converges
strongly to a fixed point of T .

Proof. Since D, and hence D̄, is bounded we have that {xn} is bounded. Thus the conclu-
sion follows from Theorem 3.5. �

Corollary 3.13. Let D be an open convex and bounded subset of a real uniformly smooth
Banach space E. Suppose T : D̄→ D̄ is a bounded demicontinuous pseudocontractive map-
ping. Let {λn}, {θn}, and {cn} be real sequences in (0,1] satisfying conditions (i)–(iii) of
Theorem 3.5 and λn(1 + θn) + cn ≤ 1,∀n≥ 0. Let a sequence {xn} be generated from x0 ∈ E
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by

xn+1 =
(
1− λn

)
xn + λnTxn− λnθn

(
xn− x0

)− cn(xn−un), (3.15)

for all positive integers n, where {un} is a sequence of error terms. Then {xn} converges
strongly to a fixed point of T .

Remark 3.14. If in Theorem 3.5, D is bounded, T is a self-map, and cn ≡ 1 for all n≥ 1,
that is, the error term is ignored, then the following corollary holds.

Corollary 3.15. Let D be an open convex and bounded subset of a real uniformly smooth
Banach space E. Suppose T : D̄→ D̄ is a bounded demicontinuous pseudocontractive map-
ping. Let {λn} and {θn} be real sequences in (0,1] satisfying conditions (i)–(iii) of Theorem
3.5 with cn ≡ 0 for all n≥ 1 and λn(1 + θn)≤ 1, for all n≥ 0. Let a sequence {xn} be gener-
ated from x0 ∈ E by

xn+1 =
(
1− λn

)
xn + λnTxn− λnθn

(
xn− x0

)
, (3.16)

for all positive integers n. Then {xn} converges strongly to a fixed point of T .

The following convergence theorem is for the approximation of solution of demicon-
tinuous accretive mappings.

Theorem 3.16. Let D be an open and convex subset of a real uniformly smooth Banach
space E. Suppose A : D̄→ E is a bounded demicontinuous accretive mapping which satisfies,
for some x0 ∈D,Ax �= t(x− x0) for all x ∈ ∂D and t < 0. Suppose D̄ is a nonexpansive retract
of E with Q as the nonexpansive retraction and let {λn}, {θn}, and {cn} be real sequences in
(0,1] satisfying conditions (i)–(iii) of Theorem 3.5. Let a sequence {xn} be generated from
x0 ∈ E by

xn+1 =Q
(
xn− λn

(
Axn + θn

(
xn− x0

))− cn(xn−un)), (3.17)

for all positive integers n, where {un} is a sequence of bounded error terms. Suppose ei-
ther N(A) �= ∅ (N(A) is the null space of A)or the set K := {x ∈ D : (I − A)x = λx +
(1− λ)x0 for λ > 1} is bounded. Then there exists d > 0 such that whenever λn ≤ d and
cn/λnθn,b(λn)/θn ≤ d2 for all n≥ 0, {xn} converges strongly to a zero of A.

Proof. Set T := (I −A). Then, we have that for some x0 ∈ D, (I − T)x �= t(x − x0) for
x ∈ ∂D and t < 0. This implies thatTx− x0 = λ(x− x0) for all x ∈ ∂D and λ > 1. Moreover,
F(T) �= ∅ or the set K = {x ∈ D : Tx = λx + (1− λ)x0, for λ = (1− t) > 1} is bounded.
Therefore, by Theorem 3.5, {xn} converges strongly to x∗ ∈ F(T). But F(T) = N(A).
Hence, {xn} converges strongly to x∗ ∈N(A). The proof of the theorem is complete. �

The following corollary follows from Theorem 3.16.

Corollary 3.17. Let E be a real uniformly smooth Banach space and suppose A : E→ E is
a bounded demicontinuous accretive mapping. Let {λn}, {θn}, and {cn} be real sequences in
(0,1] satisfying conditions (i)–(iii) of Theorem 3.5. Let a sequence {xn} be generated from
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x0 ∈ E by

xn+1 = xn− λn
(
Axn + θn

(
xn− x0

))− cn(xn−un), (3.18)

for all positive integers n, where {un} is a sequence of bounded error terms. If either N(A) �=
∅ or the set K := {x ∈ E : (I −A)x = λx+ (1− λ)x0 for λ > 1} is bounded, then there exists
d > 0 such that whenever λn ≤ d and cn/λnθn,b(λn)/θn ≤ d2 for all n ≥ 0, {xn} converges
strongly to a point of N(A).
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