CONVERGENCE THEOREMS FOR A COMMON FIXED POINT OF A FINITE FAMILY OF NONSELF NONEXPANSIVE MAPPINGS

C. E. CHIDUME, HABTU ZEGEYE, AND NASEER SHAHZAD

Received 10 September 2003 and in revised form 6 July 2004

Let K be a nonempty closed convex subset of a reflexive real Banach space E which has a uniformly Gâteaux differentiable norm. Assume that K is a sunny nonexpansive retract of E with Q as the sunny nonexpansive retraction. Let $T_i: K \to E$, i = 1, ..., r, be a family of nonexpansive mappings which are weakly inward. Assume that every nonempty closed bounded convex subset of K has the fixed point property for nonexpansive mappings. A strong convergence theorem is proved for a common fixed point of a family of nonexpansive mappings provided that T_i , i = 1, 2, ..., r, satisfy some mild conditions.

1. Introduction

Let K be a nonempty closed convex subset of a real Banach space E. A mapping $T: K \to E$ is called *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in K$. Let $T: K \to K$ be a nonexpansive self-mapping. For a sequence $\{\alpha_n\}$ of real numbers in (0,1) and an arbitrary $u \in K$, let the sequence $\{x_n\}$ in K be iteratively defined by $x_0 \in K$,

$$x_{n+1} := \alpha_{n+1}u + (1 - \alpha_{n+1})Tx_n, \quad n \ge 0.$$
 (1.1)

Halpern [5] was the first to study the convergence of the algorithm (1.1) in the framework of Hilbert spaces. Lions [6] improved the result of Halpern, still in Hilbert spaces, by proving strong convergence of $\{x_n\}$ to a fixed point of T if the real sequence $\{\alpha_n\}$ satisfies the following conditions:

- (i) $\lim_{n\to\infty} \alpha_n = 0$;
- (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (iii) $\lim_{n\to\infty}((\alpha_n-\alpha_{n-1})/\alpha_n^2)=0.$

It was observed that both Halpern's and Lions' conditions on the real sequence $\{\alpha_n\}$ excluded the natural choice, $\alpha_n := (n+1)^{-1}$. This was overcome by Wittmann [12] who proved, still in Hilbert spaces, the strong convergence of $\{x_n\}$ if $\{\alpha_n\}$ satisfies the following conditions:

- (i) $\lim_{n\to\infty} \alpha_n = 0$;
- (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$; (iii) $*\sum_{n=0}^{\infty} |\alpha_{n+1} \alpha_n| < \infty$.

Copyright © 2005 Hindawi Publishing Corporation Fixed Point Theory and Applications 2005:2 (2005) 233-241 DOI: 10.1155/FPTA.2005.233

Reich [9] extended this result of Wittmann to the class of Banach spaces which are uniformly smooth and have weakly sequentially continuous duality maps. Moreover, the sequence $\{\alpha_n\}$ is required to satisfy conditions (i) and (ii) and to be decreasing (and hence also satisfying (iii)*). Subsequently, Shioji and Takahashi [10] extended Wittmann's result to Banach spaces with uniformly Gâteaux differentiable norms and in which each nonempty closed convex subset of K has the fixed point property for nonexpansive mappings and $\{\alpha_n\}$ satisfies conditions (i), (ii), and (iii)*.

Xu [13] showed that the results of Halpern holds in *uniformly smooth Banach spaces* if $\{\alpha_n\}$ satisfies the following conditions:

- (i) $\lim_{n\to\infty} \alpha_n = 0$;
- (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$;

(iii)**
$$\lim_{n\to\infty}((\alpha_n-\alpha_{n-1})/\alpha_n)=0.$$

As has been remarked in [13], conditions (iii) and (iii)* are not comparable. Also conditions (iii)* and (iii)** are not comparable. However, condition (iii) does not permit the natural choice $\alpha_n := (n+1)^{-1}$ for all integers $n \ge 0$. Hence, conditions (iii)* and (iii)** are preferred.

In [2], Chidume et al. extended the results of Xu to Banach spaces which are more general than uniformly smooth spaces.

Next consider r nonexpansive mappings $T_1, T_2, ..., T_r$. For a sequence $\{\alpha_n\} \subseteq (0,1)$ and an arbitrary $u_0 \in K$, let the sequence $\{x_n\}$ in K be iteratively defined by $x_0 \in K$,

$$x_{n+1} := \alpha_{n+1}u + (1 - \alpha_{n+1})T_{n+1}x_n, \quad n \ge 0, \tag{1.2}$$

where $T_n = T_{n(\text{mod }r)}$.

In 1996, Bauschke [1] defined and studied the iterative process (1.2) in Hilbert spaces with conditions in (i), (ii), and (iii)* on the parameter $\{\alpha_n\}$.

Recently, Takahashi et al. [11] extended Bauschke's result to uniformly convex Banach spaces. More precisely, they proved the following result.

Theorem 1.1 [11]. Let K be a nonempty closed convex subset of a uniformly convex Banach space E which has a uniformly Gâteaux differentiable norm. Let $T_i: K \to K$, i = 1, ..., r, be a family of nonexpansive mappings with $F := \bigcap_{i=1}^r F(T_i) \neq \emptyset$ and $\bigcap_{i=1}^r F(T_i) = F(T_rT_{r-1}\cdots T_1) = F(T_1T_r\cdots T_2) = \cdots = F(T_{r-1}T_{r-2}\cdots T_1T_r)$. For given $u, x_0 \in K$, let $\{x_n\}$ be generated by the algorithm

$$x_{n+1} := \alpha_{n+1}u + (1 - \alpha_{n+1})T_{n+1}x_n, \quad n \ge 0, \tag{1.3}$$

where $T_n := T_{n(\text{mod}r)}$ and $\{\alpha_n\}$ is a real sequence which satisfies the following conditions: (i) $\lim_{n\to\infty} \alpha_n = 0$; (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$, and (iii)* $\sum_{n=1}^{\infty} |\alpha_{n+r} - \alpha_n| < \infty$. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_1, T_2, ..., T_r\}$. Further, if $Px_0 = \lim_{n\to\infty} x_n$ for each $x_0 \in K$, then P is a sunny nonexpansive retraction of K onto F.

More recently, O'Hara et al. [8] proved the following complementary result to Bauschke's theorem [1] with condition (iii)* replaced with (iii)** $\lim_{n\to\infty} ((\alpha_{n+r} - \alpha_n)/\alpha_{n+r}) = 0$ (or equivalently, $\lim_{n\to\infty} (\alpha_n/\alpha_{n+r}) = 1$).

THEOREM 1.2 [8]. Let K be a nonempty closed convex subset of a Hilbert space H and let $T_i: K \to K$, i = 1, ..., r, be a family of nonexpansive mappings with $F := \bigcap_{i=1}^r F(T_i) \neq \emptyset$ and $\bigcap_{i=1}^r F(T_i) = F(T_r T_{r-1} \cdots T_1) = F(T_1 T_r \cdots T_2) = \cdots = F(T_{r-1} T_{r-2} \cdots T_1 T_r)$. For given $u, x_0 \in K$, let $\{x_n\}$ be generated by the algorithm

$$x_{n+1} := \alpha_{n+1}u + (1 - \alpha_{n+1})T_{n+1}x_n, \quad n \ge 0, \tag{1.4}$$

where $T_n := T_{n(\text{mod}r)}$ and $\{\alpha_n\}$ is a real sequence which satisfies the following conditions: (i) $\lim_{n\to\infty} \alpha_n = 0$; (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$, and (iii)** $\lim_{n\to\infty} (\alpha_n/\alpha_{n+r}) = 1$. Then $\{x_n\}$ converges strongly to Pu, where P is the projection of K onto F.

In the above work, the mappings $T_1, T_2, ..., T_r$ remain self-mappings of a nonempty closed convex subset K either of a Hilbert space or a uniformly convex space. If, however, the domain of $T_1, T_2, ..., T_r, D(T_i) = K, i = 1, 2, ..., r$, is a proper subset of E and T_i maps E into E, then the iteration process (1.4) may fail to be well defined (see also (1.3)).

It is our purpose in this paper to define an algorithm for nonself-mappings and to obtain a strong convergence theorem to a fixed point of a family of nonself nonexpansive mappings in Banach spaces more general than the spaces considered by Takahashi et al. [11] with $\{\alpha_n\}$ satisfying conditions (i), (ii), and (iii)*. We also show that our result holds if $\{\alpha_n\}$ satisfies conditions (i), (ii), and (iii)**. Our results extend and improve the corresponding results of O'Hara et al. [8], Takahashi et al. [11], and hence Bauschke [1] to more general Banach spaces and to the class of *nonself*-maps.

2. Preliminaries

Let *E* be a real Banach space with dual E^* . We denote by *J* the normalized duality mapping from *E* to 2^{E^*} defined by

$$Jx := \left\{ f^* \in E^* : \langle x, f^* \rangle = ||x||^2 = ||f^*||^2 \right\},\tag{2.1}$$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. It is well known that if E^* is strictly convex, then J is single valued. In the sequel, we will denote the single-valued normalized duality map by j.

The norm is said to be *uniformly Gâteaux differentiable* if for each $y \in S_1(0) := \{x \in E : ||x|| = 1\}$, $\lim_{t \to 0} ((||x + ty|| - ||x||)/t)$ exists uniformly for $x \in S_1(0)$. It is well known that L_p spaces, 1 , have uniformly Gâteaux differentiable norm (see, e.g., [4]). Furthermore, if <math>E has a uniformly Gâteaux differentiable norm, then the duality map is norm-to- w^* uniformly continuous on bounded subsets of E.

A Banach space *E* is said to be *strictly convex* if $\|(x+y)/2\| < 1$ for $x, y \in E$ with $\|x\| = \|y\| = 1$ and $x \neq y$. In a strictly convex Banach space *E*, we have that if $\|x\| = \|y\| = \|\lambda x + (1-\lambda)y\|$, for $x, y \in E$ and $\lambda \in (0,1)$, then x = y.

Let K be a nonempty subset of a Banach space E. For $x \in K$, the *inward set* of x, $I_K(x)$, is defined by $I_K(x) := \{x + \lambda(u - x) : u \in K, \lambda \ge 1\}$. A mapping $T : K \to E$ is called *weakly inward* if $Tx \in \text{cl}[I_K(x)]$ for all $x \in K$, where $\text{cl}[I_K(x)]$ denotes the closure of the inward set. Every self-map is trivially weakly inward.

Let $K \subseteq E$ be closed convex and Q a mapping of E onto K. Then Q is said to be sunny if Q(Qx+t(x-Qx))=Qx for all $x\in E$ and $t\geq 0$. A mapping Q of E into E is said to be a retraction if $Q^2=Q$. If a mapping Q is a retraction, then Qz=z for every $z\in R(Q)$, range of Q. A subset E of E is said to be a sunny nonexpansive retract of E if there exists a sunny nonexpansive retraction of E onto E onto E and it is said to be a nonexpansive retract of E if there exists a nonexpansive retraction of E onto E

In the sequel, we will make use of the following lemma.

Lemma 2.1. Let $\{a_n\}$ be a sequence of nonnegative real numbers satisfying the relation

$$a_{n+1} \le (1 - \alpha_n)a_n + \sigma_n, \quad n \ge 0, \tag{2.2}$$

where (i) $0 < \alpha_n < 1$; (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$. Suppose, either (a) $\sigma_n = o(\alpha_n)$, or (b) $\sum_{n=1}^{\infty} \sigma_n < \infty$, or (c) $\limsup_{n \to \infty} \sigma_n \le 0$. Then $a_n \to 0$ as $n \to \infty$ (see, e.g., [13]).

We will also need the following results.

LEMMA 2.2 (see, e.g., [7]). Let E be a real Banach space. Then the following inequality holds. For each $x, y \in E$,

$$||x+y||^2 \le ||x||^2 + 2\langle y, j(x+y)\rangle \quad \forall j(x+y) \in J(x+y).$$
 (2.3)

Theorem 2.3 [7, Theorem 1, Proposition 2(v)]. Let K be a nonempty closed convex subset of a reflexive Banach space E which has a uniformly Gâteaux differentiable norm. Let T: $K \to E$ be a nonexpansive mapping with $F(T) \neq \emptyset$. Suppose that every nonempty closed convex bounded subset of K has the fixed point property for nonexpansive mappings. Then there exists a continuous path $t \to z_t$, 0 < t < 1, satisfying $z_t = tu + (1 - t)Tz_t$, for arbitrary but fixed $u \in K$, which converges strongly to a fixed point of T. Further, if $Pu = \lim_{t\to 0} z_t$ for each $u \in K$, then P is a sunny nonexpansive retraction of K onto F(T).

3. Main results

We now prove the following theorem.

Theorem 3.1. Let K be a nonempty closed convex subset of a reflexive real Banach space E which has a uniformly Gâteaux differentiable norm. Assume that K is a sunny nonexpansive retract of E with Q as the sunny nonexpansive retraction. Assume that every nonempty closed bounded convex subset of K has the fixed point property for nonexpansive mappings. Let $T_i: K \to E$, $i=1,\ldots,r$, be a family of nonexpansive mappings which are weakly inward with $F:=\bigcap_{i=1}^r F(T_i) \neq \emptyset$ and $\bigcap_{i=1}^r F(QT_i) = F(QT_rQT_{r-1}\cdots QT_1) = F(QT_1QT_r\cdots QT_2) = \cdots = F(QT_{r-1}QT_{r-2}\cdots QT_1QT_r)$. For given $u,x_0\in K$, let $\{x_n\}$ be generated by the algorithm

$$x_{n+1} := \alpha_{n+1}u + (1 - \alpha_{n+1})QT_{n+1}x_n, \quad n \ge 0, \tag{3.1}$$

where $T_n := T_{n(\text{mod }r)}$ and $\{\alpha_n\}$ is a real sequence which satisfies the following conditions: (i) $\lim_{n\to\infty} \alpha_n = 0$; (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$; and either (iii)* $\sum_{n=1}^{\infty} |\alpha_{n+r} - \alpha_n| < \infty$, or (iii)** $\lim_{n\to\infty} ((\alpha_{n+r} - \alpha_n)/\alpha_{n+r}) = 0$. Then $\{x_n\}$ converges strongly to a common fixed point

of $\{T_1, T_2, ..., T_r\}$. Further, if $Pu = \lim_{n \to \infty} x_n$ for each $u \in K$, then P is a sunny nonexpansive retraction of K onto F.

Proof. For $x^* \in F$, one easily shows by induction that $||x_n - x^*|| \le \max\{||x_0 - x^*||, ||u - x^*||\}$, for all integers $n \ge 0$, and hence $\{x_n\}$ and $\{QT_{n+1}x_n\}$ are bounded. But this implies that $||x_{n+1} - QT_{n+1}x_n|| = \alpha_{n+1}||u - QT_{n+1}x_n|| \to 0$ as $n \to \infty$. Now we show that

$$||x_{n+r} - x_n|| \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$
 (3.2)

From (3.1), we get that

$$\begin{aligned} ||x_{n+r} - x_n|| &= ||(\alpha_{n+r} - \alpha_n) (u - QT_n x_{n-1}) + (1 - \alpha_{n+r}) (QT_{n+r} x_{n+r-1} - QT_n x_{n-1})|| \\ &= ||(\alpha_{n+r} - \alpha_n) (u - QT_n x_{n-1}) + (1 - \alpha_{n+r}) (QT_n x_{n+r-1} - QT_n x_{n-1})|| \\ &\leq (1 - \alpha_{n+r}) ||x_{n+r-1} - x_{n-1}|| + |\alpha_{n+r} - \alpha_n| M, \end{aligned}$$
(3.3)

for some M > 0. We consider two cases.

Case 1. Condition (iii)* is satisfied. Then,

$$||x_{n+r} - x_n|| \le (1 - \alpha_{n+r})||x_{n+r-1} - x_{n-1}|| + \sigma_n, \tag{3.4}$$

where $\sigma_n := M |\alpha_{n+r} - \alpha_n|$ so that $\sum_{n=1}^{\infty} \sigma_n < \infty$.

Case 2. Condition (iii)** is satisfied. Then,

$$||x_{n+r} - x_n|| \le (1 - \alpha_{n+r})||x_{n+r-1} - x_{n-1}|| + \sigma_n,$$
 (3.5)

where $\sigma_n := \alpha_{n+r}\beta_n$ and $\beta_n := (|\alpha_{n+r} - \alpha_n|M/\alpha_{n+r})$ so that $\sigma_n = o(\alpha_{n+r})$.

In either case, by Lemma 2.1, we conclude that $\lim_{n\to\infty} \|x_{n+r} - x_n\| = 0$. Next we prove that

$$\lim_{n \to \infty} ||x_n - QT_{n+r} \cdot \cdot \cdot QT_{n+1}x_n|| = 0.$$
 (3.6)

In view of (3.2), it suffices to show that $\lim_{n\to\infty} \|x_{n+r} - QT_{n+r} \cdots QT_{n+1}x_n\| = 0$. Since $\|x_{n+r} - QT_{n+r}x_{n+r-1}\| = \alpha_{n+r}\|u - QT_{n+r}x_{n+r-1}\|$ and $\lim_{n\to\infty} \alpha_n = 0$, we have that $x_{n+r} - QT_{n+r}x_{n+r-1} \to 0$. From

$$\begin{aligned} ||x_{n+r} - QT_{n+r}QT_{n+r-1}x_{n+r-2}|| &\leq ||x_{n+r} - QT_{n+r}x_{n+r-1}|| \\ &+ ||QT_{n+r}x_{n+r-1} - QT_{n+r}QT_{n+r-1}x_{n+r-2}|| \\ &\leq ||x_{n+r} - QT_{n+r}x_{n+r-1}|| + ||x_{n+r-1} - QT_{n+r-1}x_{n+r-2}|| \\ &= ||x_{n+r} - QT_{n+r}x_{n+r-1}|| + \alpha_{n+r-1}||u - QT_{n+r-1}x_{n+r-2}||, \end{aligned}$$

$$(3.7)$$

we also have $x_{n+r} - QT_{n+r}QT_{n+r-1}x_{n+r-2} \to 0$. Similarly, we obtain the conclusion. Let $z_t^n \in K$ be a continuous path satisfying

$$z_t^n = tu + (1-t)QT_{n+r}QT_{n+r-1}\cdots QT_{n+1}z_t^n$$
(3.8)

guaranteed by Theorem 2.3. Also by Theorem 2.3, $z_t^n o Pu$ as $t o 0^+$, where P is the sunny nonexpansive retraction of K onto $\bigcap_{i=1}^r F(QT_i)$ (notice $\bigcap_{i=1}^r F(QT_i) = F(QT_{n+r}QT_{n+r-1}...QT_{n+1})$) and hence as T_i , i=1,...,r, is weakly inward by [2, Remark 2.1], $Pu \in F = \bigcap_{i=1}^r F(T_i)$. Let $a=\limsup_{n\to\infty} \langle u-Pu, j(x_n-Pu)\rangle$. Now we show that $a \le 0$. We can find a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $a=\lim_{n\to\infty} \langle u-Pu, j(x_{n_i}-Pu)\rangle$. We assume that $n_i \equiv k \pmod{r}$ for some $k \in \{1,2,...,r\}$. Using Lemma 2.2, we have that

$$\begin{aligned} ||z_{t}^{k} - x_{n_{i}}||^{2} &= ||t(u - x_{n_{i}}) + (1 - t)(QT_{n_{i}+r}QT_{n+r-1} \cdots QT_{n_{i}+1}z_{t}^{k} - x_{n_{i}})||^{2} \\ &\leq (1 - t)^{2}||QT_{n_{i}+r}QT_{n_{i}+r-1} \cdots QT_{n_{i}+1}z_{t}^{k} - x_{n_{i}}||^{2} + 2t\langle u - x_{n_{i}}, j(z_{t}^{k} - x_{n_{i}})\rangle \\ &\leq (1 - t)^{2}(||QT_{n_{i}+r}QT_{n_{i}+r-1} \cdots QT_{n_{i}+1}z_{t}^{k} - QT_{n_{i}+r}QT_{n_{i}+r-1} \cdots QT_{n_{i}+1}x_{n_{i}}||)^{2} \\ &+ ||QT_{n_{i}+r}QT_{n_{i}+r-1} \cdots QT_{n_{i}+1}x_{n_{i}} - x_{n_{i}}||)^{2} \\ &+ 2t(||z_{t}^{k} - x_{n_{i}}||^{2} + \langle u - z_{t}^{k}, j(z_{t}^{k} - x_{n_{i}})\rangle) \\ &\leq (1 + t^{2})||z_{t} - x_{n_{i}}||^{2} + ||QT_{n_{i}+r}QT_{n_{i}+r-1} \cdots QT_{n_{i}+1}x_{n_{i}} - x_{n_{i}}||) \\ &\times (2||z_{t}^{k} - x_{n_{i}}|| + ||QT_{n_{i}+r}QT_{n_{i}+r-1} \cdots QT_{n_{i}+1}x_{n_{i}} - x_{n_{i}}||) \\ &+ 2t\langle u - z_{t}^{k}, j(z_{t}^{k} - x_{n_{i}})\rangle, \end{aligned} \tag{3.9}$$

and hence,

$$\langle u - z_t^k, j(x_{n_i} - z_t^k) \rangle \leq \frac{t}{2} ||z_t^k - x_{n_i}||^2 + \frac{||QT_{n_i+r}QT_{n_i+r-1} \cdots QT_{n_i+1}x_{n_i} - x_{n_i}||}{2t} \times (2||z_t^k - x_{n_i}|| + ||QT_{n_i+r}QT_{n_i+r-1} \cdots QT_{n_i+1}x_{n_i} - x_{n_i}||).$$
(3.10)

Since $\{x_{n_i}\}$ is bounded, we have that $\{QT_{n+r}QT_{n_i+r-1}\cdots QT_{n_i+1}x_{n_i}\}$ is bounded and by (3.6), $\|x_{n_i} - QT_{n_i+r}QT_{n_i+r-1}\cdots QT_{n_i+1}x_{n_i}\| \to 0$ as $i \to \infty$, then it follows from the last inequality that

$$\limsup_{t \to 0^+} \limsup_{i \to \infty} \langle u - z_t^k, j(x_{n_i} - z_t^k) \rangle \le 0.$$
 (3.11)

Moreover, j is norm-to- w^* uniformly continuous on bounded subsets of E. Thus, we obtain from (3.11) that

$$\limsup_{i\to\infty} \langle u - Pu, j(x_{n_i} - Pu) \rangle \le 0, \tag{3.12}$$

and hence $\limsup_{n\to\infty} \langle u - Pu, j(x_n - Pu) \rangle \le 0$. Furthermore, from (3.1), we have $x_{n+1} - Pu = \alpha_{n+1}(u - Pu) + (1 - \alpha_{n+1})(QT_{n+1}x_n - Pu)$. Thus using Lemma 2.2, we obtain that

$$||x_{n+1} - Pu||^{2} \le (1 - \alpha_{n+1})^{2} ||QT_{n+1}x_{n} - Pu||^{2} + 2\alpha_{n+1} \langle u - Pu, j(x_{n+1} - Pu) \rangle$$

$$\le (1 - \alpha_{n+1}) ||x_{n} - Pu||^{2} + \sigma_{n+1},$$
(3.13)

where $\sigma_{n+1} := \alpha_{n+1}\beta_{n+1}$ and $\limsup_{n\to\infty} \sigma_{n+1} \le 0$, for $\beta_{n+1} := \langle u - Pu, j(x_{n+1} - Pu) \rangle$. Thus, by Lemma 2.1, $\{x_n\}$ converges strongly to a common fixed point Pu of $\{T_1, T_2, ..., T_r\}$. The proof is complete.

If in Theorem 3.1, T_i , i = 1,...,r, are self-mappings then the projection operator Q is replaced with I, the identity map on E. Moreover, each T_i for $i \in \{1,2,...,r\}$ is weakly inward. Thus, we have the following corollary.

COROLLARY 3.2. Let K be a nonempty closed convex subset of a reflexive real Banach space E which has a uniformly Gâteaux differentiable norm. Assume that every nonempty closed bounded convex subset of K has the fixed point property for nonexpansive mappings. Let $T_i: K \to K$, i = 1, ..., r, be a family of nonexpansive mappings with $\bigcap_{i=1}^r F(T_i) \neq \emptyset$ and $\bigcap_{i=1}^r F(T_i) = F(T_r T_{r-1} \cdots T_1) = F(T_1 T_r \cdots T_2) = \cdots = F(T_{r-1} T_{r-2} \cdots T_1 T_r)$. For given $u, x_0 \in K$, let $\{x_n\}$ be generated by the algorithm

$$x_{n+1} := \alpha_{n+1}u + (1 - \alpha_{n+1})T_{n+1}x_n, \quad n \ge 0, \tag{3.14}$$

where $T_n := T_{n(\text{mod}r)}$ and $\{\alpha_n\}$ is a real sequence which satisfies the following conditions: (i) $\lim_{n\to\infty}\alpha_n = 0$; (ii) $\sum_{n=1}^{\infty}\alpha_n = \infty$; and either (iii)* $\sum_{n=1}^{\infty}|\alpha_{n+r} - \alpha_n| < \infty$, or (iii)** $\lim_{n\to\infty}((\alpha_{n+r} - \alpha_n)/\alpha_{n+r}) = 0$. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_1, T_2, \ldots, T_r\}$. Further, if $Pu = \lim_{n\to\infty}x_n$ for each $u \in K$, then P is a sunny nonexpansive retraction of K onto F.

In the sequel, we will use the following lemma.

LEMMA 3.3. Let K be a nonempty closed convex subset of a strictly convex real Banach space E. Assume that K is a sunny nonexpansive retract of E with Q as the sunny nonexpansive retraction. Let $T_i: K \to E$, i = 1, ..., r, be a family of nonexpansive mappings which are weakly inward with $\bigcap_{i=1}^r F(T_i) \neq \emptyset$. Let $S_i: K \to E$, i = 1, ..., r, be a family of mappings defined by $S_i:=(1-\lambda_i)I+\lambda_iT_i$, $0 < \lambda_i < 1$ for each i = 1,2,...,r. Then $\bigcap_{i=1}^r F(T_i) = \bigcap_{i=1}^r F(S_i) = \bigcap_{i=1}^r F(QS_i)$ and $\bigcap_{i=1}^r F(S_i) = F(QS_rQS_{r-1} \cdots QS_1) = F(QS_1QS_r \cdots QS_2) = \cdots = F(QS_{r-1}QS_{r-2} \cdots QS_1QS_r)$.

Proof. We note that, since T_i for each $i \in \{1, 2, ..., r\}$ is weakly inward, then by [3, Remark 3.3], S_i , is weakly inward. Moreover, by [2, Remark 2.1], $F(QS_i) = F(S_i)$. Furthermore, one easily shows that $F(S_i) = F(T_i)$ for each i = 1, 2, ..., r. Now we show that $\bigcap_{i=1}^r F(S_i) = F(QS_rQS_{r-1} \cdots QS_1) = F(QS_1QS_r \cdots QS_2) = \cdots = F(QS_{r-1}QS_{r-2} \cdots QS_1QS_r)$. For simplicity, we prove for r = 2. It is clear that $F(S_1) \cap F(S_2) \subseteq F(QS_2QS_1)$. Now, we show that $F(QS_2QS_1) \subseteq F(S_1) \cap F(S_2)$. Let $z \in F(QS_2QS_1)$ and $w \in F(S_1) \cap F(S_2) = F(T_1) \cap F(T_2)$. Then,

$$||z - w|| = ||QS_{2}QS_{1}z - w||$$

$$\leq ||(1 - \lambda_{2})Q[(1 - \lambda_{1})z + \lambda_{1}T_{1}z] + \lambda_{2}T_{2}(Q[(1 - \lambda_{1})z + \lambda_{1}T_{1}z]) - w||$$

$$\leq (1 - \lambda_{2})||(1 - \lambda_{1})z + \lambda_{1}T_{1}z - w|| + \lambda_{2}||(1 - \lambda_{1})z + \lambda_{1}T_{1}z - w||$$

$$= ||(1 - \lambda_{1})(z - w) + \lambda_{1}(T_{1}z - w)||$$

$$\leq (1 - \lambda_{1})||z - w|| + \lambda_{1}||T_{1}z - w|| \leq ||z - w||.$$
(3.15)

Thus from the preceding inequalities and strict convexity of E, we obtain that $z - w = T_1z - w$ and $T_2(Q[(1 - \lambda_1)z + \lambda_1T_1z]) - w = z - w$. Therefore, we obtain that $z = T_1z = T_2z$. This completes the proof.

Theorem 3.4. Let K be a nonempty closed convex subset of a strictly convex reflexive real Banach space E which has a uniformly Gâteaux differentiable norm. Assume that K is a sunny nonexpansive retract of E with Q as the sunny nonexpansive retraction. Assume that every nonempty closed bounded convex subset of K has the fixed point property for nonexpansive mappings. Let $T_i: K \to E$, i = 1, ..., r, be a family of nonexpansive mappings which are weakly inward with $\bigcap_{i=1}^r F(T_i) \neq \emptyset$. Let $S_i: K \to E$, i = 1, ..., r, be a family of mappings defined by $S_i: = (1 - \lambda_i)I + \lambda_i T_i$, $0 < \lambda_i < 1$ for each i = 1, 2, ..., r. For given $u, x_0 \in K$, let $\{x_n\}$ be generated by the algorithm

$$x_{n+1} := \alpha_{n+1} u + (1 - \alpha_{n+1}) Q S_{n+1} x_n, \quad n \ge 0,$$
(3.16)

where $S_n := S_{n(\bmod r)}$ and $\{\alpha_n\}$ is a real sequence which satisfies the following conditions: (i) $\lim_{n\to\infty}\alpha_n=0$; (ii) $\sum_{n=1}^{\infty}\alpha_n=\infty$; and either (iii)* $\sum_{n=1}^{\infty}|\alpha_{n+r}-\alpha_n|<\infty$, or (iii)** $\lim_{n\to\infty}((\alpha_{n+r}-\alpha_n)/\alpha_{n+1})=0$. Then, $\{x_n\}$ converges strongly to a common fixed point of $\{T_1,T_2,\ldots,T_r\}$. Further, if $Pu=\lim_{n\to\infty}x_n$ for each $u\in K$, then P is a sunny nonexpansive retraction of K onto F.

Proof. By Lemma 3.3, $\bigcap_{i=1}^r F(T_i) = \bigcap_{i=1}^r F(S_i) = \bigcap_{i=1}^r F(QS_i)$ and $\bigcap_{i=1}^r F(QS_i) = F(QS_rQS_{r-1}\cdots QS_1) = F(QS_1QS_r\cdots QS_2) = \cdots = F(QS_{r-1}QS_{r-2}\cdots QS_1QS_r)$. Thus, as in the proof of Theorem 3.1, $x_n \to x^* \in \bigcap_{i=1}^r F(T_i)$. The proof is complete.

If in Theorem 3.4, T_i , i = 1, ..., r, are self-mappings, the following corollary follows.

COROLLARY 3.5. Let K be a nonempty closed convex subset of a strictly convex reflexive real Banach space E which has a uniformly Gâteaux differentiable norm. Assume that every nonempty closed bounded convex subset of K has the fixed point property for nonexpansive mappings. Let $T_i: K \to K$, i = 1, ..., r, be a family of nonexpansive mappings with $\bigcap_{i=1}^r F(T_i) \neq \emptyset$. Let $S_i: K \to K$, i = 1, ..., r, be a family of mappings defined by $S_i:=(1-\lambda_i)I+\lambda_iT_i$, $0<\lambda_i<1$ for each i=1,2,...,r. For given $u,x_0\in K$, let $\{x_n\}$ be generated by the algorithm

$$x_{n+1} := \alpha_{n+1}u + (1 - \alpha_{n+1})S_{n+1}x_n, \quad n \ge 0, \tag{3.17}$$

where $S_n := S_{n(\text{mod}r)}$ and $\{\alpha_n\}$ is a real sequence which satisfies the following conditions: (i) $\lim_{n\to\infty} \alpha_n = 0$; (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$; and either (iii)* $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, or (iii)** $\lim_{n\to\infty} ((\alpha_{n+1} - \alpha_n)/\alpha_{n+r}) = 0$. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_1, T_2, \dots, T_r\}$. Further, if $Pu = \lim_{n\to\infty} x_n$ for each $u \in K$, then P is a sunny nonexpansive retraction of K onto F.

Remark 3.6. Corollaries 3.2 and 3.5 are improvements of Theorems 1.1 and 1.2 to more general Banach spaces (having a uniformly Gâteaux differentiable norm) than uniformly convex spaces. Moreover, If *E* is a Hilbert space, Corollary 3.2 reduces to the result of Bauschke [1].

Acknowledgments.

This work was done while the authors Habtu Zegeye and Naseer Shahzad were visiting the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, the first as

a Postdoctoral Fellow and the second as a Junior Associate. They would like to thank the Centre for hospitality and financial support. The authors also thank the referee for valuable remarks.

References

- H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996), no. 1, 150–159.
- C. E. Chidume, N. Shahzad, and H. Zegeye, Strong convergence theorem for nonexpansive map-[2] pings in arbitrary Banach spaces, submitted to Nonlinear Anal.
- [3] C. E. Chidume and H. Zegeye, Strong convergence theorems for a finite family of nonexpansive mappings in Banach spaces, Comm. Appl. Nonlinear Anal., 11 (2004), no. 2, 25-32.
- I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its Applications, vol. 62, Kluwer Academic, Dordrecht, 1990.
- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957–961. [5]
- P.-L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Paris Sér. A-B 284 [6] (1977), no. 21, A1357-A1359 (French).
- C. H. Morales and J. S. Jung, Convergence of paths for pseudocontractive mappings in Banach [7] spaces, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3411-3419.
- [8] J. G. O'Hara, P. Pillay, and H.-K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 54 (2003), no. 8, 1417–1426.
- [9] S. Reich, Approximating fixed points of nonexpansive mappings, Panamer. Math. J. 4 (1994), no. 2, 23–28.
- [10] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641–3645.
- W. Takahashi, T. Tamura, and M. Toyoda, Approximation of common fixed points of a family of [11] finite nonexpansive mappings in Banach spaces, Sci. Math. Jpn. 56 (2002), no. 3, 475–480.
- [12] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. (Basel) 58 (1992), no. 5, 486-491.
- [13] H.-K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), no. 1, 240-256.
- C. E. Chidume: Mathematics Section, The Abdus Salam International Centre for Theoretical Physics, 34014 Trieste, Italy

E-mail address: chidume@ictp.trieste.it

Habtu Zegeye: Mathematics Section, The Abdus Salam International Centre for Theoretical Physics, 34014 Trieste, Italy

E-mail address: habtuzh@yahoo.com

Naseer Shahzad: Department of Mathematics, Faculty of Sciences, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

E-mail address: nshahzad@kau.edu.sa