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We provide a new result of existence of equilibria of a single-valued Lipschitz function
f on a compact set K of Rn which is locally the epigraph of a Lipschitz functions (such
a set is called epilipschitz set). Equivalently this provides existence of fixed points of the
map x �→ x− f (x). The main point of our result lies in the fact that we do not impose that
f (x) is an “inward vector” for all point x of the boundary of K . Some extensions of the
existence of equilibria result are also discussed for continuous functions and set-valued
maps.

1. Introduction

This paper is devoted to the following result.

Theorem 1.1. Let K be an epilipschitz compact subset of Rn; f : Rn �→ Rn be a (locally)
Lipschitz function. Assume that Ks is closed and that the Euler characteristic χ(Ks) is well
defined.

If χ(K) �= χ(Ks) then there exists an equilibria in K that is a point x ∈ K such that
f (x)= 0.

In the above Theorem 1.1, the set Ks (or Ks( f )) is the set of elements x of the boundary
of K such that the solution to the Cauchy problem

x′(t)= f
(
x(t)

)
, t ≥ 0, x(0)= x, (1.1)

leaves K immediately (that is there exists σ > 0 such that (x((0,σ))∩K =∅)). Epilips-
chitz sets are sets which are locally the epigraph of a Lipschitz function (an equivalent
formulation is given in [25]).

It is worth pointing out that when f (x) is “inward” for any x ∈ ∂K , we have that K is
invariant by the differential equation

x′(t)= f
(
x(t)

)
, t ≥ 0, (1.2)
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and consequently Ks =∅. So our theorem, contains for example the famous fixed point
Brouwer theorem, viewed as an existence result for equilibria of the map x �→ x− g(x) for
convex compact closed sets. It contains also several results of existence of equilibria which
impose inwardness conditions of the type

∀x ∈ ∂K , f (x)∈ CK (x) (1.3)

where CK (x) denotes Clarke’s tangent cone.
Since pioneering results of Fan and Browder [5, 15], several theorems have been ob-

tained in this direction [10, 12, 13, 19, 18, 23, 22], among them we wish to quote one of
the most recent result (in a version adapted for single valued map).

Proposition 1.2 [11, Corollary 4.1]. If f continuous, K is a compact epilipschitz subset of
Rn with χ(K) �= 0 and if (1.3) holds true, then there is an equilibria of f in K .

We also wish to underline that more general results with condition (1.3) have been ob-
tained for set-valued maps and for normed spaces more general than Rn (cf. for instance
for L retracts in normed spaces).

We are mainly interested to weaken the condition (1.3) for a class of epilischitz sets
of Rn which is large enough because it contains for instance convex sets with nonempty
interiors, C1 submanifolds with boundary.

Our approach is mainly based on properties of trajectories of the differential equation
associated with f . Indeed the set Ks appears in the so called topological Ważewski prin-
ciple, which gives sufficient conditions for existence of trajectories of (1.2) remaining in
K (cf. [16]). We also would like to mention the approach of [21] for regular sets by using
Conley index theory.

We explain how the paper is organized. In the preliminary section we present some
relevant tools (differential equations and degree theories) for proving our main theorem.
The next section is devoted to proof of our main result. In the last section, we discuss
some extensions for a quite large class of f (but still for compact epilipschitz sets of Rn).

2. Preliminaries

We denote by cl(A) the closure of a set A, int(A) its interior, co(A) its closed convex hull,
∂A its boundary and by x �→ dA(x) the distance function to A. The unit closed ball ofRn is
denoted by B, S is the unit sphere. The number χ(A) denotes the Euler characteristics of
A. The set of elements of A which are not in B is denoted by A\B. For a closed set K ⊂Rn,
and x ∈ K we denote

CK (x) :=
{
v ∈Rn | lim

h→0+,y∈K→x

dK (y +hv)
h

= 0
}

(2.1)

Clarke’s tangent cone, NK (x) := (CK (x))− the corresponding Clarke’s normal cone and
the following contingent (Bouligand’s) cone:

TK (x) :=
{
v ∈Rn | liminf

h→0+

dK (x+hv)
h

= 0
}
. (2.2)
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Definition 2.1. A nonempty closed subset K ⊂Rn is epilipschitz if and only if the interior
int(CK (x)) of the Clarke tangent cone is nonempty for any x ∈ K (or equivalently iff the
normal cone does not contain straight lines).

We recall some well-known facts about epilipschitz sets in the following.

Lemma 2.2 (cf. for instance [11]). Let K ⊂Rn be closed epilipschitz. Then K = cl(int(K)),
the set valued maps x �→ CK (x) x �→ int(CK (x)) are lower semicontinuous with nonempty
closed convex values, the map x �→NK (x)∩ S is upper semicontinuous with nonempty com-
pact values and TK (x)⊃ CK (x) for any x ∈ K .

Recall also that for any x ∈ ∂K , CK (x) �=Rn and NK (x) �= {0}.
We shall need a suitable definition of the degree of a mapping on closed sets which are

the closure of their interior and for set-valued maps. For such a definition we refer the
reader to [9]. Also there are many algebraic topology books with definition of the Euler
characteristics (cf. [14] for instance), but we want to stress that—for regular sets—the
Euler characteristic is also the degree of the field of normals [20]. One recent statement
of this fact can be find in [11, Theorem 4.1].

Lemma 2.3. Let K be compact epilipschitz, F be an upper semicontinuous set-valued map
with nonempty convex compact values such that

0 /∈ F(x), F(x)∩CK (x) �= ∅, ∀x ∈ ∂K. (2.3)

Then χ(K)= deg(−F,K ,0).

Also we recall in an adapted version the following well-known fact for differential
inclusions (cf. for instance [1] or [24]).

Lemma 2.4. Let K be a closed set, O be an open set, F be an upper semicontinuous set-valued
map with nonempty convex compact values. The two following properties are equivalent:

∀x ∈ ∂K ∩O, F(x)∩TK (x) �= ∅. (2.4)

For any initial condition x0 ∈ K ∩O, there exists at least one trajectory of x′(t)∈ F(x(t))
starting from x0 remaining in K for all t ≥ 0 until it possibly leaves O.

3. Proof of the main result

Throughout this section Ks is assumed to be closed and k is the lipschitz constant of f in
K +B.

3.1. About properties of epilipschitz sets and of the setKs. First we state a lemma which
easily follows from the lower semicontinuity of the Clarke tangent cone for epilipschitz
set.

Lemma 3.1. Let K ⊂Rn be epilipschitz compact and g be a continuous function. If for some
set A

g(y)∈ int
(
CK (y)

)
, ∀y ∈ K ∩A, (3.1)
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then there exists an open neighborhood V of A and an α > 0 such that

g(y) +αdK\V (y)B ⊂ int
(
CK (y)

)
, ∀y ∈ K ∩V. (3.2)

Lemma 3.2. Let K ⊂Rn be epilipschitz compact. There exists a continuous map g :Rn �→Rn

such that

0 �= g(x)∈ int
(
CK (x)

)
, ∀x ∈ ∂K. (3.3)

Proof. With any x ∈ K we can associate a vector 0 �= lx ∈ int(CK (x)). By Michael’s selec-
tion theorem [2, Theorem 9.1.2] there exists a continuous map y �→ gx(y) with

gx(x)= lx, gx(y)∈ CK (y), ∀y ∈ K. (3.4)

By virtue of Lemma 3.1, there exists αx > 0 and Vx an open neighborhood of x such that

gx(y) +αxB ⊂ CK (y), ∀y ∈Vx ∩K. (3.5)

By compactness of K we can extract finite covering (Vxi)
N
i=1 of K . Let consider λi an asso-

ciated partition of unity. Define the continuous function

y ∈ K �−→ g(y) :=
N∑
i=1

λi(y)gxi(y). (3.6)

Let y ∈ K and λj , j ∈ J ⊂ [1,N] the non zero terms of the partition evaluated in y. For
any j ∈ J , we have

gxj (y) +αB ⊂ CK (y), (3.7)

where α=min{αj| j ∈ J}. So by convexity of the Clarke cone

g(y) +αB =
∑
j∈J

λ j
(
gxj (y) +αB

)⊂ CK (y). (3.8)

This complete the proof if one notices that g cannot take value 0 on ∂K . Indeed, sup-
pose, contrary to our claim, that g(x) = 0 for some x ∈ ∂K . Then 0 ∈ int(CK (x)). Be-
cause CK (x) is a closed convex cone, we infer CK (x) = Rn. Consequently x ∈ int(K) a
contradiction. �

Now we need a more precise property of f on the relative boundary of ∂KKs of Ks in K .

Lemma 3.3. Let K ⊂Rn be epilipschitz compact and let x0 ∈ ∂KKs. Then

R f (x0)∩ int
(
CK (x0)

)=∅. (3.9)
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Proof. Note that the solution to (1.2) starting from x0 must leave K immediately so
f (x0) �= 0. We prove the lemma by contradiction, if the wished claim is false then either
f (x0)∈ intCK (x0) or − f (x0)∈ intCK (x0).
Case a ( f (x0)∈ intCK (x0)). From Lemma 3.1 there exist α,η positive numbers such that

f (x) +αB ⊂ CK (x), ∀x ∈ x0 +ηB. (3.10)

This implies that f (x)∈ TK (x) for all x ∈ x0 + ηB. So by the local viability theorems (cf.
Lemma 2.4), the trajectory of (1.2) starting from x0 remains in K for a small time. This is
a contradiction with x0 ∈ Ks.
Case b (− f (x0) ∈ intCK (x0)). From Lemma 3.1 there exist α,η positive numbers such
that

− f (x) +αB ⊂ CK (x), ∀x ∈ x0 +ηB. (3.11)

Fix x ∈ ((x0 + ηB)∩ ∂K))\Ks. From (3.11) one can easily deduce that there exist τ > 0
small enough such that

x+ [0,τ]
(
− f (x) +

(
α

2

)
B
)
⊂ K ,

(
x+ [0,τ]

(
− f (x) +

(
α

2

)
B
))
∩Ks =∅.

(3.12)

An easy estimation for the solutions to the differential equation

y′(t)=− f
(
y(t)

)
, t ≥ 0 (3.13)

will provide the existence of some τ′ > 0 small enough such that any solution y(·) of
(3.13) starting from x satisfies the following estimation

y(t)∈ x+ [0,τ]
(
− f (x) +

(
α

4

)
B
)
⊂ K , ∀t ∈ [0,τ′]. (3.14)

Fix z ∈ (x0 + κB)\K and

0 < κ < min
{
τ′
(
α

4

)
e−kτ

′
, dist

(
Ks,x+ [0,τ]

(
− f (x) +

(
α

2

)
B
))}

. (3.15)

By Lipschitz continuous dependence result of the solution of a differential eqution with
respect to the initial data, one obtains that the solution z(·) of (3.13) with z(0)= z satisfies

∀t ∈ [0,τ′], ‖y(t)− z(t)‖ ≤ ‖y− z‖ekt. (3.16)

In view of (3.12)–(3.14), we obtain z(τ′)∈ K and z([0,τ′])∩Ks =∅. Hence the function
t �→ z(τ′ − t) is a trajectory to (1.2) starting from a point of K and leaving K before the
time τ′ without crossing Ks. This is a contradiction with the very definition of Ks. �
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Proposition 3.4. Assume that K ⊂Rn is epilipschitz compact, Ks is closed and that there is
no equilibrium point of f on the boundary of K . Then there exists an upper semicontinuous
(multi-valued) map Ψ : ∂K �→Rn with nonempty convex valued compact values such that

(i) Ψ(x)= f (x), for all x ∈ ∂K\Ks

(ii) Ψ(x)∩CK (x) �= ∅, for all x ∈ ∂K
(iii) 0 /∈Ψ(x), for all x ∈ ∂K .

Proof. Consider g obtained in Lemma 3.2. Define Ψ as follows:

Ψ(x)=



f (x), ∀x ∈ ∂K\Ks,

g(x), ∀x ∈ Ks\∂KKs,

[ f (x),g(x)], ∀x ∈ ∂KKs.

(3.17)

Clearly Ψ is upper semicontinuous with nonempty convex compact values. By [2, Theo-
rem 4.1.9], and by the very construction of g, statements (i) and (ii) are obtained.

For obtaining (iii), we have to prove that 0 /∈ [ f (x),g(x)] if x ∈ ∂KKs which is a direct
consequence of Lemma 3.3. �

3.2. Construction of the set Wm. We shall construct an epilipschitz subset Wm of K
which has the same Euler characteristic that Ks. This construction will be made under the
following supposition:

∀x ∈ K\Ks, f (x)∈ int
(
CK (x)

)
. (3.18)

Before doing this we recall that if Ks is closed then the function

τK (x0) := inf
{
t > 0,x(t,x0) /∈ K

}
(3.19)

is continuous (where x(·,x0) denotes the unique solution to (1.1) (see [1, Lemma 4.2.2]
and [16, Lemma 1.8]).

Fix a positive integer m sufficiently large. Observe that Ks is contained in the interior
(with respect to K) of the set

Um+1 :=
{
x ∈ K , τK (x)≤ 1

m+ 1

}
. (3.20)

Choose ZKs an open neighborhood of Ks with

Ks ⊂ ZKs ⊂ cl(ZKs)⊂Um+1. (3.21)

By compactness of cl(ZKs), and continuous dependance of the solution to a differential
inclusion with respect to the right-hand side and the initial condition, there exists some
η > 0, some open neighborhood U of cl(ZKs) such that all trajectories of the differential
inclusion

x′(t)∈ f
(
x(t)

)
+ηB (3.22)
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starting from points in U , leave K in a time smaller than 1/m. From condition (3.18) and
Lemma 3.1 (applied to A = K\ZKs and g = f ), there exists α > 0 such that for all x with
dZKs

(x) < η we have

f (x) +αdZKs
(x)B ⊂ CK (x), ∀x ∈ ∂K\ZKs . (3.23)

Define then the Lipschitz set-valued map

Fm(x) := f (x) +
α

2
dZKs

(x)B, (3.24)

and SFm(x0) the set of—absolutely continuous—solutions to

x′(t)∈ Fm
(
x(t)

)
, t ≥ 0, x(0)= x0. (3.25)

We claim that Ks is both
(a) the set of all points x0 ∈ ∂K such that all solutions to (3.25) leave K immediately;
(b) the set of all points x0 ∈ ∂K such that there exists at least one solution to (3.25)

leaving K immediately.
We prove our claim. Fix x0 ∈ ∂K . We consider the two following cases.

Case I (x0 ∈ ∂K\ZKs). From (3.23), we know that any trajectory to (3.25) starting from
x0 enters in K .
Case II (x0 ∈ ∂K ∩ZKs). In this—set relatively open in ∂K—we have Fm = f . By the very
definition of Ks we know that a solution to (3.25) starting from x0 (which is locally also a
solution to (1.2) because Fm = f on the open set ZKs) leaves K immediately if and only if
x0 belongs to Ks.

This ends the proof of our claim.
Once again by [1, Lemma 4.2.2] and [16, Lemma 1.8], the function

τm(x0) := sup
x(·)∈SFm (x0)

inf
{
t > 0, x(t) /∈ K

}
(3.26)

is continuous on K

Wm :=
{
x0 ∈ K , τm(x0) <

1
m

}
. (3.27)

Lemma 3.5. Assume that (3.18) holds true. Then
(i) the set cl(Wm) is epilipschitz and it contains cl(ZKs),

(ii) χ(cl(Wm))= χ(Ks).

Proof. Remark that the choice of α and η implies cl(ZKs)⊂Wm.

Proof of (i). We claim that cl(Wm)\Ks is—locally in time—invariant by trajectories of
the differential inclusion (3.25).

Indeed, let x0 ∈ cl(Wm)\Ks and x(·) ∈ SFm(x0). One can easily remark that for every
t ∈ [0,τm(x0)] and y(·)∈ SFm(x(t)),

inf
{
s > 0, y(s) /∈ K

}≤ τm
(
x(t)

)
+ t ≤ τm(x0)≤ 1

m
. (3.28)

So x(t)∈ cl(Wm) for any t ∈ [0,τm(x0)]. Because τm(x0) �= 0 our claim is proved.



274 Fixed point without invariance

Now we know that for any element v of the continuous convex map Fm, there ex-
ists a C1 solution x(·) ∈ SFm(x0) with x′(0) = v (this can be viewed as a consequence
of Michael selection theorem, see also [1, Corollary 5.3.2]). Because such a solution re-
mains in cl(Wm) for small time, we have

∀x ∈ cl
(
Wm

)\Ks, f (x)∈ Fm(x)⊂ Tcl(Wm)(x). (3.29)

Because (3.29) is valid for points in ∂Wm\cl(ZKs), by [2, Theorem 4.1.9]

Fm(x)⊂ liminf
y→x,x∈∂Wm

Tcl(Wm)(y)⊂ Ccl(Wm)(x). (3.30)

So int(CK (x0)) �= ∅ for any x ∈ ∂Wm\cl(ZKs) because for such an x, the set Fm(x) has a
nonempty interior.

Consider x ∈ ∂Wm∩ cl(ZKs)∩ ∂K . By the very definition of Wm, we have

((
ZKs ∩ ∂K

)
+ rB

)∩K ⊂Wm (3.31)

for r > 0 small enough. Hence CK (x) ⊂ Ccl(Wm)(x), these sets have nonempty interiors
because K is epilipschitz.

Thus int(Ccl(Wm)(x)) �= ∅ for any x ∈ ∂Wm. Hence cl(Wm) is epilipschitz, this com-
pletes the proof of (i).

Proof of (ii). For doing this we follow the same lines that in the proof of [16, Theorem A].
Define the following (multivalued) homotopy H :

cl
(
Wm

)× [0,1] �−→ cl
(
Wm

)
,

(
x0, t

)−→H
(
x0, t

)
:=

⋃
x(·)∈SFm (x0)

x
(
tθ(x(·)) (3.32)

where for any absolutely continuous function x(·), we denote

θ
(
x(·)) := inf

{
s > 0, x(s) /∈ K

}
. (3.33)

Clearly for any x ∈ Ks we have H(x,1) = x and H(·,0) is the identity map. Moreover
H is an admissible map, in the sense or Gorniewicz [18] (cf. also [16]). So the Cech
homology groups of Ks and cl(Wm) do coincide, so χ(cl(Wm)) = χ(Ks). This completes
the proof. �

Remark 3.6. In the above proof, we have shown that the Euler characteristics of Ks and
cl(Wm) do coincide when characteristics are defined through Cech homology. We underline
that epilipschitz set (as K and cl(Wm)) are absolute neighborhood retracts [4] and con-
sequently Cech (co)homology and Singular homology are the same for these sets, hence
so are Euler characteristics defined by Singular or Cech homologies.
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3.3. Degree of f on K . We are now ready to prove the following crucial result.

Proposition 3.7. Let K be epilipschitz compact. Assume that Ks is closed and that

f (x) �= 0, ∀x ∈ ∂K. (3.34)

Then

deg(− f ,K ,0)= χ(K)− χ
(
Ks
)
. (3.35)

Clearly our main result Theorem 1.1 is a direct consequence of the above proposition
because if deg(− f ,K ,0) �= 0 then f has an equilibrium point in K (cf. for instance [11]).

Proof of Proposition 3.7. We shall argue in two separate case.
Case 1. We assume here that condition (3.18) holds true. Let m be large enough such that

0 �= f (x), ∀x ∈ ∂Wm. (3.36)

Let consider Ψ given by Proposition 3.4. By defining Ψ(x) = f (x) for x ∈ K\ int(Wm),
one obtains an upper semicontinuous map with convex compact nonempty values which
can be extended on K (cf. [8]) in a multivalued map denoted Ψ̂ with the same regularity.
Thus

deg(−Ψ̂,K ,0)= deg
(− Ψ̂,K\cl

(
Wm

)
,0
)

+ deg
(− Ψ̂, cl

(
Wm

)
,0
)
. (3.37)

By [11, Theorem 4.1] (or Lemma 2.3), Proposition 3.4 does imply

χ(K)= deg
(− Ψ̂,K ,0

)
. (3.38)

The construction of Wm and (3.29) enables us to obtain

Ψ̂(x)∩Ccl(Wm)(x) �= ∅, ∀x ∈ ∂Wm. (3.39)

Thus by the same argument (Lemma 2.3) applied to the epilipschitz set cl(Wm), we obtain
χ(cl(Wm))= deg(−Ψ̂, cl(Wm),0). Lemma 3.5 yields

χ
(

cl
(
Wm

))= χ
(
Ks
)= deg

(− Ψ̂, cl
(
Wm

)
,0
)
. (3.40)

Moreover, since f = Ψ̂ on ∂(K\cl(Wm)) and because f has no equilibria on cl(Wm)

deg
(− Ψ̂,K\cl

(
Wm

)
,0
)= deg

(− f ,K\cl
(
Wm

)
,0
)= deg(− f ,K ,0). (3.41)

In view of (3.37)–(3.41) we obtain (3.35).
Case 2. General case: f (x)∈ CK (x) for any x ∈ K\Ks. Consider g as given in Lemma 3.2.
There exists ε̄ > 0 small enough such that

0 /∈ f (x) + [0, ε̄]
(
g(x)− f (x)

)
, ∀x ∈ ∂K. (3.42)
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Define the following continuous function:

f̄ (x) := f (x) + min
{
ε̄,dKs(x)

}(
g(x)− f (x)

)
. (3.43)

Thus deg(− f ,K ,0)= deg(− f̄ ,K ,0).
Because for x ∈ ∂K\Ks, f (x) ∈ CK (x),g(x) ∈ int(CK (x)) and CK (x) is convex, then

f̄ (x) ∈ int(CK (x)). Since f = f̄ on Ks then Ks( f ) = Ks( f̄ ), so we can apply the Case 1
for completing the proof. �

Remark 3.8. It is worth pointing out that in order to apply our main theorem, one has to
check that Ks is closed. Note that Ks cannot, in general be described through geometric
conditions but it is only defined through the behavior of trajectories of (1.2). But for
instance, Ks can be approached by formulas like the following one:

K⇒ ⊂ Ks ⊂ K⇒, (3.44)

where K⇒ := {x ∈ ∂K | f (x) /∈ TK (x)}. This approximation together with other more
precise formulas were used and studied in [6, 16] (cf. [7] for the proofs).

Nevertheless, when K is more smooth, one can expect an analytic description of Ks in
several cases. Suppose that K = {x ∈Rn | ϕ(x)≤ 0} where ϕ :Rn �→Rn is of class C2 with
nonvanishing gradient on points x where ϕ(x)= 0. If the following condition holds true

[
ϕ(x)= 0 and

〈∇ϕ(x), f (x)
〉= 0

] =⇒ [〈∇2ϕ(x) f (x), f (x)
〉
> 0
]
, (3.45)

then one can easily check that Ks is closed and

Ks =
{
x ∈Rn | ϕ(x)= 0 and

〈∇ϕ(x), f (x)
〉≥ 0

}
. (3.46)

4. Further extensions

Throughout this section K ⊂Rn is epilipschitz compact.
One can expect that previous results could be extended to continuous functions and

set-valued maps. In fact these two cases are related because Cauchy problem (1.1) can
have more that one solution. We indicate several way of extensions of our results. For a
set valued map F :Rn �→Rn upper semicontinuous with convex compact values, define

Ks(F) := {x0 ∈ ∂K , ∀x(·)∈ SF(x0), ∃σ > 0, x
(
(0,σ]

)∩K =∅},

Ke(F) := {x0 ∈ ∂K , ∃x(·)∈ SF(x0), ∃σ > 0, x
(
(0,σ]

)∩K =∅}. (4.1)

The first set is the set of initial position such that all solutions of the differential inclusion
leave K immediately while the second set is the set of intial conditions such that at least
one solution leaves K immediately. Clearly these two sets reduces to Ks when F is single-
valued Lipschitz.

Proposition 4.1. Let f :Rn �→Rn be a continuous function. Suppose that Ks( f ) is closed.
If χ(Ks( f )) �= χ(K) then an equilibrium of f exists in K .
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Proof. Suppose that f has no equilibrium in ∂K (else the proof is finished). For any x0 ∈
∂K\Ks( f ) athere exists a solution remaining locally in K (i.e., a solution x(·) to (1.2) and
x(0)= x0 such that there exists s > 0 with x[0,s]⊂ K). So f (x0)∈ CK (x0) (same argument
that (3.30)). Consider g given in Lemma 3.2. Pose

f̃ (x)= f (x) + δdKs( f )(x)
(
f (x)− g(x)

)
(4.2)

for δ > 0 sufficiently small such that f̃ has no equilibrium in a neighborhood of ∂K (so it
has the same degree that f in K). One can deduce from [2, Theorem 4.1.9] as in Section 1,
that

f̃ (x)∈ int
(
CK (x)

)
, ∀x ∈ ∂K\Ks( f ). (4.3)

So the sets Ks( f̃ ), Ke( f̃ ), and Ks( f ) are equal. (This point is crucial. It allows to prove
as in [16] that functions τK , τm are continuous.) One can deduce using same arguments
that in Section 3 that

deg(− f ,K ,0)= deg
(− f̃ ,K ,0

)= χ(K)− χ
(
Ks
(
f̃
))
. (4.4)

�

Proposition 4.2. Let F : Rn �→ Rn be a continuous set valued map with convex compact
nonempty values. Suppose that Ks(F) is closed and equal to Ke(F). If χ(Ks(F)) �= χ(K), then
there exists an equilibrium point x of F in K (namely x ∈ K with 0∈ F(x)).

Proof. For any continuous selection f of F, we have easily Ks( f )= Ks(F). By Proposition
4.1, f has an equilibrium in K , consequently so does F. �

Note that the above theorem is false without the assumption Ks(F)= Ke(F) as shown
in the following.

Example 4.3. In R2 we consider the constant set-valued map F(x, y) = {1} × [−1,+1].
Consider

K = {(x, y)∈R2|0≤ y ≤ 4, |x| ≤ y ≤ |x|+ 1
}
. (4.5)

Then one easily obtains Ks(F)= ([−4,−3]×{4})∪ ([3,4]×{4}). So χ(Ks)= 2 �= χ(K)=
1. But obviously there is no equilibria of F in K .

Remark 4.4. WhenKs(F) �= Ke(F) one could expect to find a selection f of F withKs( f )=
Ke(F). This seems be difficult without assuming more regularity assumptions on the
boundary of K , moreover this is out of the scope of the present paper devoted to epilips-
chitz compact sets. We refer the reader to [7] for a detailed study of this question for very
smooth sets.

Remark 4.5. Surprisingly, we do not need the epilipschitz assumption on K when Ks =
∂K ; but in this case the approach is rather different (this case is studied in [17]).
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