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1. Introduction

Throughout this paper, the standard notations and terminologies in nonlinear analysis
(see [14, 15]) are used. For the convenience of the reader we recall some of them.

Let (X ,d) be a metric space. By ˜B(x0,r) we denote the closed ball centered in x0 ∈ X
with radius r > 0.

Also, we will use the following symbols:

P(X) := {Y ⊂ X | Y is nonempty
}

, Pcl(X) := {Y ∈ P(X) | Y is closed
}

,

Pb(X) := {Y ∈ P(X) | Y is bounded
}

, Pb,cl(X) := Pcl(X)∩Pb(X).
(1.1)

Let A and B be nonempty subsets of the metric space (X ,d). The gap between these
sets is

D(A,B)= inf
{

d(a,b) | a∈A, b ∈ B
}

. (1.2)

In particular, D(x0,B) = D({x0},B) (where x0 ∈ X) is called the distance from the
point x0 to the set B.



2 Fixed Point Theory and Applications

The Pompeiu-Hausdorff generalized distance between the nonempty closed subsets A
and B of the metric space (X ,d) is defined by the following formula:

H(A,B) :=max

{

sup
a∈A

inf
b∈B

d(a,b), sup
b∈B

inf
a∈A

d(a,b)

}

. (1.3)

If A,B ∈ Pb,cl(X), then one denotes

δ(A,B) := sup
{

d(a,b) | a∈ A, b ∈ B
}

. (1.4)

The symbol T : X → P(Y) denotes a set-valued operator from X to Y . We will denote
by Graph(T) := {(x, y) ∈ X × Y | y ∈ T(x)} the graph of T . Recall that the set-valued
operator is called closed if Graph(T) is a closed subset of X ×Y .

For T : X → P(X) the symbol Fix(T) := {x ∈ X | x ∈ T(x)} denotes the fixed point set
of the set-valued operator T , while SFix(T) := {x ∈ X | {x} = T(x)} is the strict fixed
point set of T .

If (X ,d) is a metric space, T : X → Pcl(X) is called a multivalued a-contraction if a∈
]0,1[ and H(T(x1),T(x2))≤ a ·d(x1,x2), for each x1,x2 ∈ X .

In the same setting, an operatorT : X → Pcl(X) is a multivalued weakly Picard operator
(briefly MWP operator) (see [15]) if for each x ∈ X and each y ∈ T(x) there exists a
sequence (xn)n∈N in X such that

(i) x0 = x, x1 = y,
(ii) xn+1 ∈ T(xn), for all n∈N,

(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .
Any multivalued a-contraction or any multivalued Reich-type operator (see Reich

[10]) are examples of MWP operators. For other examples and results, see Petruşel [9].
Also, let us mention that a sequence (xn)n∈N in X satisfying the condition (ii) from the

previous definition is called the sequence of successive approximations of T starting from
x0 ∈ X .

The following result was proved in the work of Feng and Liu (see [5]).

Theorem 1.1 (Feng, Liu). Let (X ,d) be a complete metric space, T : X → Pcl(X) and q > 1.
Consider Sq(x) := {y ∈ T(x) | d(x, y)≤ q ·D(x,T(x))}. Suppose that T satisfies the follow-
ing condition:

(1.1) there is a < 1/q such that for each x ∈ X there is y ∈ Sq(x) satisfying

D
(

y,T(y)
)≤ a ·d(x, y). (1.5)

Also, suppose that the function p : X →R, p(x) :=D(x,T(x)) is lower semicontinuous.
Then FixT �= ∅.

The purpose of this paper is to study the existence and data dependence of the fixed
points and strict fixed points for some self and nonself multivalued operators satisfying
to some generalized Feng-Liu-type conditions.

Our results are in connection with the theory of MWP operators (see [9, 15]) and they
generalize some fixed point and strict fixed point principles for multivalued operators
given in [3–5, 7, 8, 10–13].



C. Chifu and G. Petruşel 3

2. Fixed points

Let (X ,d) be a metric space, T : X → Pcl(X) a multivalued operator, and q > 1. Define
Sq(x) := {y ∈ T(x) | d(x, y)≤ q ·D(x,T(x))}. Obviously Sq(x) �= ∅, for each x ∈ X and
Sq is a multivalued selection of T .

Our first main result is the following theorem.

Theorem 2.1. Let (X ,d) be a complete metric space, x0 ∈ X , r > 0, q > 1, and T : X →
Pcl(X) a multivalued operator. Suppose that

(i) there exists a∈R+ with aq < 1 such that for each x ∈ ˜B(x0,r) there exists y ∈ Sq(x)
having the property

D
(

y,T(y)
)≤ a ·d(x, y), (2.1)

(ii) T is closed or the function p : X →R+, p(x) :=D(x,T(x)) is lower semicontinuous,
(iii) D(x0,T(x0))≤ ((1− aq)/q) · r.
Then Fix(T)∩ ˜B(x0,r) �= ∅.

Proof. From (i) and (iii) there is x1 ∈ T(x0) such that d(x0,x1) ≤ qD(x0,T(x0)) < (1−
aq)r and D(x1,T(x1)) ≤ ad(x0,x1) ≤ aqD(x0,T(x0)). Hence x1 ∈ ˜B(x0,r). Next, we can
find x2 ∈ T(x1) such that d(x1,x2) ≤ qD(x1,T(x1)) ≤ aqd(x0,x1) < aq(1− aq) · r and
D(x2,T(x2))≤ ad(x1,x2)≤ aqD(x1,T(x1))≤ (aq)2D(x0,T(x0)). As a consequence, d(x0,
x2)≤ d(x0,x1) +d(x1,x2)≤ (1− aq)r + aq(1− aq)r = (1− (aq)2)r and so x2 ∈ ˜B(x0,r).

Inductively we get a sequence (xn)n∈N having the following properties:
(a) xn+1 ∈ T(xn), n∈N;
(b) d(xn,xn+1)≤ (aq)nd(x0,x1), d(x0,xn)≤ (1− (aq)n)r, n∈N;
(c) D(xn,T(xn))≤ (aq)n ·D(x0,T(x0)), n∈N.

From (b) we have that (xn)n∈N converges to x∗ ∈ ˜B(x0,r).
From (a) and the fact that GraphT is closed we obtain x∗ ∈ FixT .
From (c) and the fact that p is lower semicontinuous we have p(xn)≤ (aq)n · p(x0), for

each n∈N. Since aq < 1, we immediately deduce that the sequence (p(xn)) is convergent
to 0, as n→ +∞. Then 0 ≤ p(x∗) ≤ liminfn→+∞ p(xn) = 0. So, p(x∗) = 0 and then x∗ ∈
T(x∗). �

Remark 2.2. The above result is a local version of the main result in [5, Theorem 3.1] see
Theorem 1.1. In particular, Theorem 1.1 follows from Theorem 2.1 by taking r := +∞.
Theorem 2.1 also extends some results from [3, 4, 7–9], and so forth.

As for application, a homotopy result can be proved.

Theorem 2.3. Let (X ,d) be a complete metric space, U an open subset of X , and q > 1.
Suppose that G : U × [0,1]→ Pcl(X) is a closed multivalued operator such that the following
conditions are satisfied:

(a) x /∈G(x, t), for each x ∈ ∂U and each t ∈ [0,1];
(b) there exists a ∈ R+ with aq < 1, such that for each t ∈ [0,1] and each x ∈ U there

exists y ∈U ∩ Sq(x, t) (where Sq(x, t) := {y ∈G(x, t) | d(x, y)≤ q ·D(x,G(x, t))}),
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with the property

D
(

y,G(y, t)
)≤ a ·d(x, y); (2.2)

(c) there exists a continuous increasing function φ : [0,1]→R such that

H
(

G(x, t),G(x,s)
)≤ ∣∣φ(t)−φ(s)

∣

∣∀t,s∈ [0,1] and each x ∈U. (2.3)

Then G(·,0) has a fixed point if and only if G(·,1) has a fixed point.

Proof. Suppose G(·,0) has a fixed point. Define

Q := {(t,x)∈ [0,1]×U | x ∈G(x, t)
}

. (2.4)

Obviously Q �= ∅. Consider on Q a partial order defined as follows:

(t,x)≤ (s, y) iff t ≤ s, d(x, y)≤ 2q
1− aq

· [φ(s)−φ(t)
]

. (2.5)

Let M be a totally ordered subset of Q and consider t∗ := sup{t | (t,x)∈M}. Consider a
sequence (tn,xn)n∈N∗ ⊂M such that (tn,xn)≤ (tn+1,xn+1) and tn→ t∗, as n→ +∞. Then

d
(

xm,xn
)≤ 2q

1− aq
· [φ(tm

)−φ
(

tn
)]

, for each m,n∈N∗, m> n. (2.6)

When m,n→ +∞ we obtain d(xm,xn)→ 0 and so (xn)n∈N∗ is Cauchy. Denote by x∗ ∈ X
its limit. Then xn ∈G(xn, t∗), n∈N∗ and G closed imply that x∗ ∈G(x∗, t∗). Also, from
(a) x∗ ∈ U . Hence (t∗,x∗) ∈ Q. Since M is totally ordered, we get (t,x) ≤ (t∗,x∗), for
each (t,x)∈M. Thus (t∗,x∗) is an upper bound of M. Hence Zorn’s lemma applies and
Q admits a maximal element (t0,x0)∈Q. We claim that t0 = 1. This will finish the proof.

Suppose the contrary, that is, t0 < 1. Choose r > 0 and t ∈]t0,1] such that ˜B(x0,r)⊂U
and r := (2q/(1− aq)) · [φ(t)−φ(t0)].

Then the D(x0,G(x0, t))≤D(x0,G(x0, t0))+H(G(x0, t0),G(x0, t))≤ 0 + [φ(t)−φ(t0)]=
(1− aq)r/2q < (1− aq)r/q.

Then the multivalued operator G(·, t) : ˜B(x0,r)→ Pcl(X) satisfies all the assumptions
of Theorem 2.1. Hence there exists a fixed point x ∈ ˜B(x0,r) for G(·, t). Thus (t,x) ∈ Q.
Since

d
(

x0,x
)≤ r = 2q

1− aq
· [φ(t)−φ

(

t0
)]

, (2.7)

we immediately get (t0,x0) < (t,x). This is a contradiction with the maximality of (t0,x0).
�

Remark 2.4. Theorem 2.3 extends the main theorem in the work of Frigon and Granas
[6]. See also Agarwal et al. [1] and Chiş and Precup [2] for some similar results or possi-
bilities for extension.

Another fixed point result is the following.
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Theorem 2.5. Let (X ,d) be a complete metric space, x0 ∈ X , r > 0, q > 1, and T : X →
Pcl(X) a multivalued operator. Suppose that

(i) there exists a,b ∈ R+ with aq + b < 1 such that for each x ∈ ˜B(x0,r) there exists
y ∈ Sq(x) having the property

D
(

y,T(y)
)≤ a ·d(x, y) + b ·D(x,T(x)

)

, (2.8)

(ii) T is closed or the function p : X →R+, p(x) :=D(x,T(x)) is lower semicontinuous,
(iii) D(x0,T(x0)) < ((1− (aq+ b))/q) · r.
Then Fix(T)∩ ˜B(x0,r) �= ∅.

Proof. By (i) and (iii) we deduce the existence of an element x1 ∈ T(x0) such that d(x0,
x1) ≤ qD(x0,T(x0)) < (1 − (aq + b))r and D(x1,T(x1)) ≤ ad(x0,x1) + bD(x0,T(x0)) ≤
(aq+ b)D(x0,T(x0)).

Inductively we obtain (xn)n∈N a sequence of successive approximations of T satisfying,
for each n∈N, the following relations:

(1) d(xn,xn+1)≤ q(aq+ b)n ·D(x0,T(x0)), d(x0,xn)≤ (1− (aq+ b)n) · r,
(2) D(xn,T(xn))≤ (aq+ b)n ·D(x0,T(x0)).

The rest of the proof runs as before and so the conclusion follows. �

Remark 2.6. The above result generalizes the fixed point result in the work of Rus [12],
where the following graphic contraction condition is involved: there is a,b ∈ R+ with
a + b < 1 such that H(T(x),T(y)) ≤ a · d(x, y) + bD(x,T(x)), for each x ∈ X and each
y ∈ T(x).

A data dependence result is the following.

Theorem 2.7. Let (X ,d) be a complete metric space, T1,T2 : X → Pcl(X) multivalued oper-
ators, and q1,q2 > 1. Suppose that

(i) there exist ai,bi ∈ R+ with aiqi + bi < 1 such that for each x ∈ X there exists y ∈
Sqi(x) having the property

D
(

y,Ti(y)
)≤ ai ·d(x, y) + bi ·D

(

x,Ti(x)
)

, for i∈ {1,2}; (2.9)

(ii) there exists η > 0 such that H(T1(x),T2(x))≤ η, for each x ∈ X ;
(iii) Ti is closed or the function pi : X →R+, pi(x) :=D(x,Ti(x)) is lower semicontinuous,

for i∈ {1,2}.
Then
(a) Fix(Ti)∈ Pcl(X), for i∈ {1,2},
(b) H(Fix(T1),Fix(T2))≤maxi∈{1,2}{qi/(1− (aiqi + bi))} ·η.

Proof. (a) By Theorem 2.1 we have that FixTi �= ∅, for i∈ {1,2}. Also, FixTi is closed, for
i∈ {1,2}. Indeed, for example, let (un)n∈N ∈ FixT1, such that un → u, as n→ +∞. Then,
when T1 is closed, the conclusion follows. When p1(x) := D(x,T1(x)) is lower semicon-
tinuous we have 0≤ p1(u)≤ liminfn→+∞ p1(un)= 0. Hence p1(u)= 0 and so u∈ FixT1.
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(b) For the second conclusion, let x∗0 ∈ FixT1. Then there exists x1 ∈ Sq2 (x∗0 ) with
D(x1,T2(x1)) ≤ a2 · d(x∗0 ,x1) + b2 ·D(x∗0 ,T2(x∗0 )). Hence d(x∗0 ,x1) ≤ q2 ·D(x∗0 ,T2(x∗0 ))
and D(x1,T2(x1)) ≤ (a2q2 + b2) ·D(x∗0 ,T2(x∗0 )). Inductively we get a sequence (xn)n∈N
with the following properties:

(1) x0 = x∗0 ∈ FixT1,
(2) d(xn,xn+1)≤ q2(a2q2 + b2)n ·D(x∗0 ,T2(x∗0 )), n∈N,
(3) D(xn,T2(xn))≤ (a2q2 + b2)n ·D(x∗0 ,T2(x∗0 )), n∈N.

From (2) we have

d
(

xn,xn+m
)≤ q2

(

a2q2 + b2
)n · 1− (a2q2 + b2

)m

1− (a2q2 + b2
) D

(

x∗0 ,T2
(

x∗0
))

. (2.10)

Hence (xn)n∈N is Cauchy and so it converges to an element u∗2 ∈ X . As in the proof of
Theorem 2.1, from (3) we immediately get that u∗2 ∈ FixT2. When m→ +∞ in the above
relation, we obtain d(xn,u∗2 ) ≤ (q2(a2q2 + b2)n/(1− (a2q2 + b2)))D(x∗0 ,T2(x∗0 )), for each
n∈N.

For n= 0 we get d(x0,u∗2 )≤ q2/(1− (a2q2 + b2))D(x∗0 ,T2(x∗0 )).
As a consequence

d
(

x0,u∗2
)≤ q2

1− (a2q2 + b2
) ·H(T1

(

x∗0
)

,T2
(

x∗0
))≤ q2

1− (a2q2 + b2
) ·η. (2.11)

In a similar way we can prove that for each y∗0 ∈ FixT2 there exists u∗1 ∈ FixT1 such
that d(y0,u∗1 )≤ q1/(1− (a1q1 + b1)) ·η. The proof is complete. �

Remark 2.8. Theorem 2.7 gives (for bi = 0, i ∈ {1,2}) a data dependence result for the
fixed point set of a generalized contraction in Feng and Liu sense, see [5].

Remark 2.9. The condition D(T(x),T(y))≤ a ·d(x, y), for each x, y ∈ X , does not imply
the existence of a fixed point for a multivalued operator T : X → Pcl(X). Take for example
X := [1,+∞] and T(x) := [2x,+∞[ see also [10]. On the other hand, if X := {0,1}∪{kn |
n∈N∗} (with k ∈]0,1[) and T : X → Pcl(X) given by

T(x)=
⎧

⎨

⎩

{0,k}, if x = 0,
{

kn+1,1
}

, if x = kn (n∈N),
(2.12)

then T does not satisfies the hypothesis of Nadler’s theorem, but satisfies the condition
D(y,T(y))≤ a ·d(x, y) + b ·D(x,T(x)), for each (x, y)∈GraphT and FixT = {0}.

3. Strict fixed points

Let (X ,d) be a metric space, T : X → Pb,cl(X) a multivalued operator, and q > 1. Define
Mq(x) := {y ∈ T(x) | δ(x,T(x)) ≤ q · d(x, y)}. Obviously, Mq is a multivalued selection
of T and Mq(x) �= ∅, for each x ∈ X .

We have the following theorem.
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Theorem 3.1. Let (X ,d) be a complete metric space, T : X → Pb(X) a multivalued operator
and q > 1. Suppose

(3.1) there exists a ∈ R+ with aq < 1 such that for each x ∈ X there exists y ∈Mq(x)
having the property

δ
(

y,T(y)
)≤ a ·max

{

δ
(

x,T(x)
)

,
1
2

[

D
(

x,T(y)
)

}

. (3.1)

If the function r : X →R+, r(x) := δ(x,T(x)) is lower semicontinuous, then SFix(T) �=∅.

Proof. Let x0 ∈ X . If δ(x0,T(x0)) = 0 we are done. Suppose that δ(x0,T(x0)) > 0. Then
there exists x1 ∈ Mq(x0) such that δ(x1,T(x1)) ≤ a · max{δ(x0,T(x0)),(1/2) · D(x0,
T(x1))} ≤max{a/(2− a),aq}d(x0,x1).

Inductively we construct a sequence (xn)n∈N of successive approximation of T with
δ(xn,T(xn)) ≤ q · d(xn,xn+1), for each n ∈ N. Then d(xn,xn+1) ≤ δ(xn,T(xn)) ≤ a ·
max{δ(xn−1,T(xn−1)),(1/2) · D(xn−1,T(xn))} ≤ a · max{q · d(xn−1,xn),(1/2) · D(xn−1,
T(xn))} ≤max{a/(2− a),aq} · d(xn−1,xn). Since α :=max{a/(2− a),aq} < 1, we imme-
diately get that the sequence (xn)n∈N is convergent in the complete metric space (X ,d).
Denote by x∗ its limit.

We also have that r(xn+1)≤ q ·αn ·d(x0,x1). When n→ +∞we obtain limn→+∞ r(xn)=
0. From the lower semicontinuity of r we conclude 0 ≤ r(x∗) ≤ liminfn→+∞ r(xn) = 0.
Hence δ(x∗,T(x∗))= 0 and so x∗ ∈ SFixT . �

Remark 3.2. The above result generalizes some strict fixed point results, given by Reich
in [10, 11], Rus in [12, 13] and Ćirić in [3]. In particular, (3.1) implies the Ćirić-type
condition on the graph of T .

Remark 3.3. If X is a metric space, the condition

δ
(

T(x),T(y)
)≤ a ·d(x, y), for each x, y ∈ X , (3.2)

necessarily implies that T is singlevalued. This is not the case, if T satisfies the condition

δ
(

y,T(y)
)≤ a ·max

{

d(x, y),δ
(

x,T(x)
)

,
1
2

[

D
(

x,T(y)
)

+D
(

y,T(x)
)]

}

, (3.3)

for each (x, y)∈ X . Take for example X := [0,1] and T(x) := [0,x/4]. Then SFixT = {0}
see also [10].
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[9] A. Petruşel, “Multivalued weakly Picard operators and applications,” Scientiae Mathematicae
Japonicae, vol. 59, no. 1, pp. 169–202, 2004.

[10] S. Reich, “Fixed points of contractive functions,” Bollettino della Unione Matematica Italiana.
Serie IV, vol. 5, pp. 26–42, 1972.

[11] S. Reich, “A fixed point theorem for locally contractive multi-valued functions,” Revue Roumaine
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