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Suppose that K is a nonempty closed convex subset of a real uniformly convex and
smooth Banach space E with P as a sunny nonexpansive retraction. Let T1,T2 : K →
E be two weakly inward and asymptotically nonexpansive mappings with respect to P
with sequences {Kn},{ln} ⊂ [1,∞), limn→∞kn = 1, limn→∞ln = 1, F(T1)∩ F(T2) = {x ∈
K : T1x = T2x = x} �=∅, respectively. Suppose that {xn} is a sequence in K generated it-
eratively by x1 ∈ K , xn+1 = αnxn + βn(PT1)nxn + γn(PT2)nxn, for all n ≥ 1, where {αn},
{βn}, and {γn} are three real sequences in [ε,1− ε] for some ε > 0 which satisfy condi-
tion αn + βn + γn = 1. Then, we have the following. (1) If one of T1 and T2 is completely
continuous or demicompact and

∑∞
n=1(kn − 1) <∞,

∑∞
n=1(ln − 1) <∞, then the strong

convergence of {xn} to some q ∈ F(T1)∩F(T2) is established. (2) If E is a real uniformly
convex Banach space satisfying Opial’s condition or whose norm is Fréchet differentiable,
then the weak convergence of {xn} to some q ∈ F(T1)∩F(T2) is proved.

Copyright © 2007 H. Y. Zhou et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let K be a nonempty closed convex subset of a real uniformly convex Banach space E.
A self-mapping T : K → K is said to be nonexpansive if ‖T(x)−T(y)‖ ≤ ‖x− y‖ for all
x, y ∈ K . A self-mapping T : K → K is called asymptotically nonexpansive if there exist
sequences {kn} ⊂ [1,∞), kn→ 1 as n→∞ such that

∥
∥Tn(x)−Tn(y)

∥
∥≤ kn‖x− y‖, ∀x, y ∈ K , n≥ 1. (1.1)
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A self-mapping T : K → K is said to be uniformly L-Lipschitzian if there exists constant
L > 0 such that

∥
∥Tn(x)−Tn(y)

∥
∥≤ L‖x− y‖, ∀x, y ∈ K , n≥ 1. (1.2)

A self-mapping T : K → K is called asymptotically quasi-nonexpansive if F(T) �= ∅ and
there exist sequences {kn} ⊂ [1,∞) with kn→ 1 as n→∞ such that

∥
∥Tn(x)− p

∥
∥≤ kn‖x− p‖, ∀x ∈ K , p ∈ F(T), n≥ 1. (1.3)

It is clear that, if T is an asymptotically nonexpansive mapping from K into itself with
a fixed point in K , then T is asymptotically quasi-nonexpansive, but the converse may be
not true.

As a generalization of the class of nonexpansive maps, the class of asymptotically non-
expansive mappings was introduced by Goebel and Kirk [1] in 1972, who proved that if
K is a nonempty bounded closed convex subset of a real uniformly convex Banach space
and T is an asymptotically nonexpansive self-mapping of K , then T has a fixed point.

In 1978, Bose [2] first proved that if K is a nonempty bounded closed convex subset
of a real uniformly convex Banach space E satisfying Opial’s condition and T : K → K is
an asymptotically nonexpansive mapping, then the sequence {Tnx} converges weakly to
a fixed point of T , provided that T is asymptotically regular at x ∈ K , that is,

lim
n→∞

∥
∥Tnx−Tn+1x

∥
∥= 0. (1.4)

In 1982, Passty [3] proved that Bose’s weak convergence theorem still holds if Opial’s
condition is replaced by the condition that E has a Fréchet differentiable norm.

Furthermore, Tan and Xu [4, 5] later proved that the asymptotic regularity of T at x
can be weakened to the weakly asymptotic regularity of T at x, that is,

ω− lim
n→∞

(
Tnx−Tn+1x

)= 0. (1.5)

In all the above results (xn = Tnx), the asymptotic regularity of T at x ∈ K is equiv-
alent to xn − Txn → 0 as n→∞. We wish that the later is a conclusion rather than an
assumption.

In 1991, Schu [6, 7] introduced a modified Mann iterative algorithm to approximate
fixed points of asymptotically nonexpansive maps without assuming the asymptotic reg-
ularity of T at x ∈ K . Schu established the conclusion that xn − Txn → 0 as n→∞ by
choosing properly iterative parameters {αn}.

Schu’s iterative algorithm was defined as follows:

x1 ∈ K ,

xn+1 =
(
1−αn

)
xn +αnT

nxn, ∀n≥ 1.
(1.6)

Since then, many authors have developed Schu’s algorithm and results. Rhoades [8]
and Tan and Xu [4] generalized Schu’s iterative algorithm to the modified Ishikawa itera-
tive algorithm and extended the main results of Schu to uniformly convex Banach spaces.
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Furthermore, Osilike and Aniagbosor [9] improved the main results of Schu [6]. Schu
[7] and Rhoades [8], without assuming the boundedness condition, imposed on K . Re-
cently, Chang et al. [10] established a more general demiclosed principle and improved
the corresponding results of Bose [2], Górnicki [11], Passty [3], Reich [12], Schu [6, 7],
and Tan and Xu [4, 5].

Some iterative algorithms for approximating fixed points of nonself nonexpansive
mappings have been studied by various authors (see [13–18]). However, iterative algo-
rithms for approximating fixed points of nonself asymptotically nonexpansive mappings
have not been paid too much attention. The main reason is the fact that when T is not a
self-mapping, the mapping Tn is nonsensical. Recently, in order to establish the conver-
gence theorems for non-self-asymptotically nonexpansive mappings, Chidume et al. [19]
introduced the following definition.

Definition 1.1. Let K be a nonempty subset of real-normed linear space E. Let P : E→ K
be the nonexpansive retraction of E onto K .

(1) A non-self-mapping T : K → E is called asymptotically nonexpansive if there exists
a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→∞ such that

∥
∥T(PT)n−1(x)−T(PT)n−1(y)

∥
∥≤ kn‖x− y‖, ∀x, y ∈ K , n≥ 1. (1.7)

(2) T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

∥
∥T(PT)n−1(x)−T(PT)n−1(y)

∥
∥≤ L‖x− y‖, ∀x, y ∈ K , n≥ 1. (1.8)

By using the following iterative algorithm:

x1 ∈ K ,

xn+1 = P
((

1−αn
)
xn +αnT(PT)n−1xn

)
, ∀n≥ 1,

(1.9)

Chidume et al. [19] established the following demiclosed principle, strong and weak
convergence theorems for non-self-asymptotically nonexpansive mappings in uniformly
convex Banach spaces.

Theorem 1.2 [19]. Let E be a uniformly convex Banach space, K a nonempty closed convex
subset of E. Let T : K → E be an asymptotically nonexpansive mapping with a sequence
{kn} ⊂ [1,∞) and kn→ 1 as n→∞. Then I −T is demiclosed at zero.

Theorem 1.3 [19]. Let E be a uniformly convex Banach space and let K be a nonempty
closed convex subset of E. Let T : K → E be completely continuous and asymptotically nonex-
pansive mapping with a sequence {kn}⊂[1,∞) such that

∑∞
n=1, (k2

n− 1)<∞, and F(T) �=∅.
Let {αn} ⊂ (0,1) be a sequence such that ε ≤ 1−αn ≤ 1− ε for all n≥ 1 and some ε > 0. For
an arbitrary point x1 ∈ K , define the sequence {xn} by (1.9). Then, {xn} converges strongly
to some fixed point of T .

Theorem 1.4 [19]. Let E be a uniformly convex Banach space which has a Fréchet differen-
tiable norm and let K be a nonempty closed convex subset of E. Let T : K → E be an asymp-
totically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) such that

∑∞
n=1(k2

n− 1) <∞
and F(T) �= ∅. Let {αn} ⊂ (0,1) be a sequence such that ε ≤ 1− αn ≤ 1− ε for all n ≥ 1
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and some ε > 0. For an arbitrary point x1 ∈ K , let {xn} be the sequence defined by (1.9).
Then {xn} converges weakly to some fixed point of T .

We now introduce the following definition.

Definition 1.5. Let K be a nonempty subset of real normed linear space E. Let P : E→ K
be a nonexpansive retraction of E onto K .

(1) A non-self-mapping T : K → E is called asymptotically nonexpansive with respect
to P if there exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→∞ such that

∥
∥(PT)nx− (PT)ny

∥
∥≤ kn‖x− y‖, ∀x, y ∈ K , n≥ 1. (1.10)

(2) T is said to be uniformly L-Lipschitzian with respect to P if there exists a constant
L > 0 such that

∥
∥(PT)nx− (PT)ny

∥
∥≤ L‖x− y‖, ∀x, y ∈ K , n≥ 1. (1.11)

Remark 1.6. If T is self-mapping, then P becomes the identity mapping, so that (1.7),
(1.8), and (1.9) reduce to (1.1), (1.2), and (1.6), respectively.

We remark in the passing that if T : K → E is asymptotically nonexpansive in light
of (1.7) and P : E→ K is a nonexpansive retraction, then PT : K → K is asymptotically
nonexpansive in light of (1.1). Indeed, by definition (1.7), we have

∥
∥(PT)nx− (PT)ny

∥
∥

= ∥∥PT(PT)n−1x−PT(PT)n−1y
∥
∥

≤ ∥∥T(PT)n−1x−T(PT)n−1y
∥
∥

≤ kn‖x− y‖, ∀x, y ∈ K , n≥ 1.

(1.12)

Conversely, it may not be true.
It is our purpose in this paper to introduce a new iterative algorithm (see (2.6)) for

approximating common fixed points of two non-self-asymptotically nonexpansive map-
pings with respect to P and to prove some strong and weak convergence theorems for
such mappings in uniformly convex Banach spaces. As a consequence, the main results of
Chidume et al. [19] are deduced.

2. Preliminaries

In this section, we will introduce a new iterative algorithm and prove a new demiclosed-
ness principle for a non-self-asymptotically nonexpansive mapping in the sense of (1.10).

Let E be a Banach space with dimension E ≥ 2. The modulus of E is the function
δE : (0,2]→ [0,1] defined by

δE(ε)= inf
{

1−
∥
∥
∥
∥

1
2

(x+ y)
∥
∥
∥
∥ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x− y‖

}

. (2.1)

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0,2].
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A subset K of E is said to be retract if there exists a continuous mapping P : E→ K
such that Px = x for all x ∈ K . Every closed convex subset of a uniformly convex Banach
space is a retraction. A mapping P : E→ E is said to be a retraction if P2 = P. Note that if
a mapping P is a retraction, then Pz = z for all z ∈ R(P), the range of P.

Let E be a Banach space and let C, D be subsets of E. Then, a mapping P : C → D is
said to be sunny if

P
(
Px+ t(x−Px)

)= Px, (2.2)

whenever Px+ t(x−Px)∈ C for all x ∈ C and t ≥ 0.
Let K be a subset of a Banach space E. For all x ∈ K , define a set IK (x) by

IK (x)= {x+ λ(y− x) : λ > 0, y ∈ K
}
. (2.3)

A non-self-mapping T : K → E is said to be inward if Tx ∈ Ik(x) for all x ∈ K and T is
said to be weakly inward if Tx ∈ IK (x) for all x ∈ K .

The following facts are well known (see [20, 18]).

Lemma 2.1. Let C be a nonempty convex subset of a smooth Banach space E, C0 ⊂ C, let
J : E→ E∗ be the normalized duality mapping of E, and let P : C→ C0 be a retraction. Then,
the following statements are equivalent:

(1) 〈x−Px, J(y−Px)〉 ≤ 0 for all x ∈ C and y ∈ C0 ;
(2) P is both sunny and nonexpansive.

Lemma 2.2. Let E be a real smooth Banach space, let K be a nonempty closed convex subset
of E with P as a sunny nonexpansive retraction, and let T : K → E be a mapping satisfying
weakly inward condition. Then F(PT)= F(T).

A Banach space E is said to satisfy Opial’s condition if for any sequence {xn} in E,
xn⇀ x implies that

limsup
n→∞

∥
∥xn− x

∥
∥ < limsup

n→∞

∥
∥xn− y

∥
∥ (2.4)

for all y ∈ E with y �= x, where xn⇀ x denotes that {xn} converges weakly to x. It is well
known that Hilbert space and lp (1 < p <∞) admit Opial’s property, while Lp does not
unless p = 2.

Let E be a Banach space and S(E)= {x ∈ E : ‖x‖ = 1}. The space E is said to be smooth
if

lim
t→0

‖x+ ty‖−‖x‖
t

(2.5)

exists for all x, y ∈ S(E). For any x, y ∈ E (x �= 0), we denote this limit by (x, y). The
norm ‖ · ‖ of E is said to be Fréchet differentiable if for all x ∈ S(E), the limit (x, y) exists
uniformly for all y ∈ S(E).

A mapping T with domain D(T) and range R(T) in E is said to be demiclosed at p if
whenever {xn} is a sequence in D(T) such that {xn} converges to x∗ ∈D(T) and {Txn}
converges strongly to p, Tx∗ = p.



6 Fixed Point Theory and Applications

Let E be a real normed linear space, let K be a nonempty closed convex subset of
E which is also a nonexpansive retraction of E with a retraction P. Let T1 : K → E and
T2 : K → E be two non-self-asymptotically nonexpansive mappings with respect to P. For
approximating the common fixed points of two non-self-asymptotically nonexpansive
mappings, we introduce the following iterative algorithm:

x1 ∈ K ,

xn+1 = αnxn +βn
(
PT1

)n
xn + γn

(
PT2

)n
xn, ∀n≥ 1,

(2.6)

where {αn}, {βn}, and {γn} are three real sequences in (0,1) satisfying αn +βn + γn = 1.

Lemma 2.3 [21]. Let {αn} and {tn} be two nonnegative real sequences satisfying

αn+1 ≤ αn + tn, ∀n≥ 1. (2.7)

If
∑∞

n=1 tn <∞, then limn→∞αn exists.

The following lemma can be found in Zhou et al. [22].

Lemma 2.4 [22]. Let E be a real uniformly convex Banach space and let Br(0) be the closed
ball of E with centre at the origin and radius r > 0. Then, there exists a continuous strictly
increasing convex function g : [0,∞)→ [0,∞) with g(0)= 0 such that

‖λx+μy + γz‖2 ≤ λ‖x‖2 +μ‖y‖2 + γ‖z‖2− λμg
(‖x− y‖) (2.8)

for all x, y,z ∈ Br(0) and λ,μ,γ ∈ [0,1] with λ+μ+ γ = 1.

The following demiclosedness principle for non-self-mapping follows from [10, The-
orem 1].

Lemma 2.5. Let E be a real smooth and uniformly convex Banach space and K a nonempty
closed convex subset of E with P as a sunny nonexpansive retraction. Let T : K → E be a
weakly inward and asymptotically nonexpansive mapping with respect to P with a sequence
{kn} ⊂ [1,∞) such that {kn} → 1 as n→∞. Then I −T is demiclosed at zero, that is, xn⇀ x
and xn−Txn→ 0 imply that Tx = x.

Proof. Suppose that {xn} ⊂ K converges weakly to x∗ ∈ K and xn −Txn → 0 as n→∞.
We will prove that Tx∗ = x∗. Indeed, since {xn} ⊂ K , by the property of P, we have Pxn =
xn for all n ≥ 1 and so xn − PTxn → 0 as n→∞. By Chang et al. [10, Theorem 1], we
conclude that x∗ = PTx∗. Since F(PT) = F(T) by Lemma 2.2, we have Tx∗ = x∗. This
completes the proof. �

Remark 2.6. Lemma 2.5 extends Chang et al. [10, Theorem 1] to non-self-mapping case.

Using the proof lines of Reich [12, Proposition], then we can prove the following
lemma.

Lemma 2.7. Let K be a closed convex subset of a uniformly convex Banach space E with
a Fréchet differentiable norm and let {Tn : 1 ≤ n ≤ ∞} be a family of Lipschitzian self-
mappings of K with a nonempty common fixed point set F and a Lipschitzian constant
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sequence {Ln} such that
∑∞

n=1(Ln − 1) < ∞. If x1 ∈ K and xn+1 = Tnxn for n ≥ 1, then
limn→∞( f1− f2,xn) exists for all f1 �= f2 ∈ F.

Remark 2.8. Lemma 2.7 is an extension of a proposition due to Reich [12].

3. Main results

In this section, we present some several strong and weak convergence theorems for two
non-self-asymptotically nonexpansive mappings with respect to P.

Lemma 3.1. Let K be a nonempty closed convex subset of a normed linear space E. Let
T1,T2 : K → E be two non-self-asymptotically nonexpansive mappings with respect to P with
sequences {kn},{ln} ⊂ [1,∞),

∑∞
n=1(kn − 1) <∞,

∑∞
n=1(ln − 1) <∞, respectively. Suppose

that {xn} is the sequence defined by (2.6). If F(T1)∩F(T2) �= ∅, then limn→∞‖xn− q‖ and
limn→∞‖yn− q‖ exist for any q ∈ F(T1)∩F(T2).

Proof. For any q ∈ F(T1)∩ F(T2), using the fact that P is nonexpansive and (2.6), then
we have

∥
∥xn+1− q

∥
∥= ∥∥(αnxn +βn

(
PT1

)n
xn + γn

(
PT2

)n
xn
)−Pq

∥
∥

≤ αn
∥
∥xn− q

∥
∥+βnkn

∥
∥xn− q

∥
∥+ γnln

∥
∥xn− q

∥
∥

≤mn

∥
∥xn− q

∥
∥,

(3.1)

wheremn =max{kn, ln} for all n≥ 1. It is clear that
∑∞

n=1(mn− 1) <∞ by the assumptions
on {kn} and {ln}. It follows from Lemma 2.3 that limn→∞‖xn− q‖ exists. This completes
the proof. �

Lemma 3.2. Let K be a nonempty closed convex subset of a real uniformly convex Banach
space E. Let T1,T2 : K → E be two non-self-asymptotically nonexpansive mappings with re-
spect to P with sequences {kn},{ln} ⊂ [1,∞),

∑∞
n=1(kn− 1) <∞,

∑∞
n=1(ln− 1) <∞, respec-

tively. Suppose that {xn} is the sequence defined by (2.6), where {αn}, {βn}, and {γn} are
three sequences in [ε,1− ε] for some ε > 0. If F(T1)∩F(T2) �= ∅, then

lim
n→∞

∥
∥xn−

(
PT1

)
xn
∥
∥= lim

n→∞
∥
∥xn−

(
PT2

)
xn
∥
∥= 0. (3.2)

Proof. From (2.6), by the property of P, and Lemma 2.4, we have

∥
∥xn+1− q

∥
∥2 ≤ ∥∥αnxn +βn

(
PT1

)n
xn + γn

(
PT2

)n
xn− q

∥
∥2

= ∥∥αn
(
xn− q

)
+βn

((
PT1

)n
xn− q

)
+ γn

((
PT2

)n
xn− q

)∥
∥2

≤ αn
∥
∥xn− q

∥
∥2

+βn
∥
∥
(
PT1

)n
xn− q

∥
∥2

+ γn
∥
∥
(
PT2

)n
xn− q

∥
∥2

−αnβng
(∥
∥xn−

(
PT1

)n
xn
∥
∥
)

≤mn
2
∥
∥xn− q

∥
∥2− ε2g

(∥
∥xn−

(
PT1

)n
xn
∥
∥
)
,

(3.3)

which implies that g(‖xn−(PT1)nxn‖)→0 as n→∞. Since g : [0,∞)→[0,∞) with g(0)= 0
being a continuous strictly increasing convex function, we have xn − (PT1)nxn → 0 as
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n → ∞. Consequently, xn − (PT1)xn → 0 as n → ∞. Similarly, we can prove that xn −
(PT2)xn→ 0 as n→∞. This completes the proof. �

Theorem 3.3. Let K be a nonempty closed convex subset of a real smooth uniformly con-
vex Banach space E with P as a sunny nonexpansive retraction. Let T1,T2 : K → E be two
weakly inward and asymptotically nonexpansive mappings with respect to P with sequences
{kn},{ln} ⊂ [1,∞),

∑∞
n=1(kn− 1) <∞,

∑∞
n=1(ln− 1) <∞, respectively. Let {xn} ⊂ K be the

sequence defined by (2.6), where {αn}, {βn}, and {γn} are three sequences in [ε,1− ε) for
some ε > 0. If one of T1 and T2 is completely continuous and F(T1)∩F(T2) �= ∅, then {xn}
converges strongly to a common fixed point of T1 and T2.

Proof. By Lemma 3.1, limn→∞‖xn − q‖ exists for any q ∈ F. It is sufficient to show that
{xn} has a subsequence which converges strongly to a common fixed point of T1 and
T2. By Lemma 3.2, limn→∞‖xn − PT1xn‖ = limn→∞‖xn − PT2xn‖ = 0. Suppose that T1

is completely continuous. Noting that P is nonexpansive, we conclude that there exists
subsequence {PT1xnj} of {PT1xn} such that PT1xnj → q, and hence xnj → q as j →∞. By
the continuity of P, T1, and T2, we have q = PT1q = PT2q, and so q ∈ F(T1)∩ F(T2) by
Lemma 2.2. Thus, {xn} converges strongly to a common fixed point q of T1 and T2. This
completes the proof. �

Theorem 3.4. Let K be a nonempty closed convex subset of a real smooth and uniformly
convex Banach space E with P as a sunny nonexpansive retraction. Let T1,T2 : K → E be
two weakly inward asymptotically nonexpansive mappings with respect to P with sequences
{kn},{ln} ⊂ [1,∞),

∑∞
n=1(kn− 1) <∞,

∑∞
n=1(ln− 1) <∞, respectively. Let {xn} ⊂ K be the

sequence defined by (2.6), where {αn}, {βn}, and {γn} are three sequences in [ε,1− ε) for
some ε > 0. If one of T1 and T2 is demicompact and F(T1)∩F(T2) �= ∅, then {xn} converges
strongly to a common fixed point of T1 and T2.

Proof. Since one ofT1 andT2 is demicompact, so is one of PT1 and PT2. Suppose that PT1

is demicompact. Noting that {xn} is bounded, we assert that there exists a subsequence
{PT1xnj} of {PT1xn} such that PT1xnj converges strongly to q. By Lemma 3.2, we have
xnj → q as j →∞. Since P, T1, and T2 are all continuous, we have q = PT1q = PT2q and
q ∈ F(T1)∩ F(T2) by Lemma 2.2. By Lemma 3.1, we know that limn→∞‖xn − q‖exists.
Therefore, {xn} converges strongly to q as n→∞. This completes the proof. �

Theorem 3.5. Let K be a nonempty closed convex subset of a real smooth and uniformly
convex Banach space E satisfying Opial’s condition or whose norm is Fréchet differentiable.
Let T1,T2 : K → E be two weakly inward and asymptotically nonexpansive mappings with
respect to P with sequences {kn},{ln} ⊂ [1,∞),

∑∞
n=1(kn − 1) <∞,

∑∞
n=1(ln − 1) <∞, re-

spectively. Let {xn} ⊂ K be the sequence defined by (2.6), where {αn}, {βn}, and {γn} are
three sequences in [ε,1− ε) for some ε > 0. If F(T1)∩ F(T2) �= ∅, then {xn} converges
weakly to a common fixed point of T1 and T2.

Proof. For any q ∈ F(T1)∩ F(T2), by Lemma 3.1, we know that limn→∞‖xn − q‖ exists.
We now prove that {xn} has a unique weakly subsequential limit in F(T1)∩ F(T2). First
of all, Lemmas 2.2, 2.5, and 3.2 guarantee that each weakly subsequential limit of {xn} is
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a common fixed point of T1 and T2. Secondly, Opial’s condition and Lemma 2.7 guaran-
tee that the weakly subsequential limit of {xn} is unique. Consequently, {xn} converges
weakly to a common fixed point of T1 and T2.This completes the proof. �

Remark 3.6. The main results of this paper can be extended to a finite family of non-
self-asymptotically nonexpansive mappings {Ti : 1 ≤ i ≤m}, where m is a fixed positive
integer, by introducing the following iterative algorithm:

x1 ∈ K ,

xn+1 = αn1xn +αn2
(
PT1

)n
xn +αn3

(
PT2

)n
xn + ···+αn(m+1)

(
PTm

)n
xn,

(3.4)

where {αn1},{αn2}, . . ., and {αn(m+1)} are m + 1 real sequences in (0,1) satisfying αn1 +
αn2 + ···+αn(m+1) = 1.

We close this section with the following open question.
How to devise an iterative algorithm for approximating common fixed points of an

infinite family of non-self-asymptotically nonexpansive mappings?
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