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1. Introduction

Banach contraction mapping principle is one of the pivotal results of analysis. It is widely
considered as the source of metric fixed point theory. Also its significance lies in its vast
applicability in a number of branches of mathematics.

T : X → X where (X, d) is a complete metric space is said to be a contraction mapping
if for all x, y ∈ X,

d(Tx, Ty) ≤ kd(x, y), where 0 < k < 1. (1.1)

According to the contraction mapping principle, any mapping T satisfying (1.1) will have a
unique fixed point.

Generalisation of the above principle has been a heavily investigated branch of
research. The following are a few examples of such generalisations. In [1], Boyd and Wong
proved that the constant k in (1.1) can be replaced by the use of an upper semicontinuous
function. In [2, 3], generalised Banach contraction conjecture has been established. In
[4], Suzuki has proved a generalisation of the same principle which characterises metric
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completeness. The contraction principle has also been extended to probabilistic metric
spaces [5].

Here in this paper, we consider two such generalisations given by Khan et al. [6] and
Alber and Guerre-Delabriere [7]. We prove a theorem which generalises both these results.

In [6], Khan et al. addressed a new category of fixed point problems with the help of a
control function which they called an altering distance function.

Definition 1.1 (altering distance function [6]). A function ψ : [0,∞)→ [0,∞) is called an
altering distance function if the following properties are satisfied:

(a) ψ(0) = 0,

(b) ψ is continuous and monotonically non-decreasing.

Theorem 1.2 (see [6]). Let (X, d) be a complete metric space, let ψ be an altering distance function,
and let f : X→X be a self-mapping which satisfies the following inequality:

ψ(d(fx, fy)) ≤ cψ(d(x, y)) (1.2)

for all x, y ∈ X and for some 0 < c < 1. Then f has a unique fixed point.

In fact Khan et al. proved a more general theorem [6, Theorem 2] of which the above
result is a corollary.

Altering distance has been used in metric fixed point theory in a number of papers.
Some of the works utilising the concept of altering distance function are noted in [8–11].
In [12], 2-variable and in [13] 3-variable altering distance functions have been introduced
as generalisations of the concept of altering distance function. It has also been extended in
the context of multivalued [14] and fuzzy mappings [15]. The concept of altering distance
function has also been introduced in Menger spaces [16].

Another generalisation of the contraction principle was suggested by Alber and
Guerre-Delabriere [7] in Hilbert Spaces. Rhoades [17] has shown that the result which Alber
and Guerre-Delabriere have proved in [7] is also valid in complete metric spaces. We state
the result of Rhoades in the following.

Definition 1.3 (weakly contractive mapping). A mapping T : X→X, where (X, d) is a metric
space, is said to be weakly contractive if

d(Tx, Ty) ≤ d(x, y) − φ(d(x, y)), (1.3)

where x, y ∈ X and φ : [0,∞)→ [0,∞) is a continuous and nondecreasing function such that
φ(t) = 0 if and only if t = 0.

If one takes φ(t) = kt where 0 < k < 1, then (1.3) reduces to (1.1).

Theorem 1.4 (see [17]). If T : X→X is a weakly contractive mapping, where (X, d) is a complete
metric space, then T has a unique fixed point.

In fact, Alber and Guerre-Delabriere assumed an additional condition on φ which is
limt→∞ φ(t) = ∞. But Rhoades [17] obtained the result noted in Theorem 1.4 without using
this particular assumption.
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It may be observed that though the function φ has been defined in the same way as
the altering distance function, the way it has been used in Theorem 1.4 is completely different
from the use of altering distance function.

Weakly contractive mappings have been dealt with in a number of papers. Some of
these works are noted in [17–20].

The purpose of this paper is to introduce a generalisation of Banach contraction
mapping principle which includes the generalisations noted in Theorems 1.2 and 1.4. Lastly,
we discuss an example.

2. Main results

Theorem 2.1. Let (X, d) be a complete metric space and let T : X→X be a self-mapping satisfying
the inequality

ψ(d(Tx, Ty)) ≤ ψ(d(x, y)) − φ(d(x, y)), (2.1)

where ψ, φ : [0,∞)→ [0,∞) are both continuous and monotone nondecreasing functions with ψ(t) =
0 = φ(t) if and only if t = 0.

Then T has a unique fixed point.

Proof. For any x0 ∈ X, we construct the sequence {xn} by xn = Txn−1, n = 1, 2, . . . .
Substituting x = xn−1 and y = xn in (2.1), we obtain

ψ(d(xn, xn+1)) ≤ ψ(d(xn−1, xn)) − φ(d(xn−1, xn)), (2.2)

which implies

d(xn, xn+1) ≤ d(xn−1, xn) (using monotone property of ψ-function). (2.3)

It follows that the sequence {d(xn, xn+1)} is monotone decreasing and consequently there
exists r ≥ 0 such that

d(xn, xn+1) −→ r as n −→ ∞. (2.4)

Letting n→∞ in (2.2) we obtain

ψ(r) ≤ ψ(r) − φ(r), (2.5)

which is a contradiction unless r = 0.
Hence

d(xn, xn+1) −→ 0 as n −→ ∞. (2.6)
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We next prove that {xn} is a Cauchy sequence. If possible, let {xn} be not a Cauchy sequence.
Then there exists ε > 0 for which we can find subsequences {xm(k)} and {xn(k)} of {xn} with
n(k) > m(k) > k such that

d(xm(k), xn(k)) ≥ ε. (2.7)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) > m(k) and satisfying (2.7).

Then

d(xm(k), xn(k)−1) < ε. (2.8)

Then we have

ε ≤ d(xm(k), xn(k)) ≤ d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k)) < ε + d(xn(k)−1, xn(k)). (2.9)

Letting k→∞ and using (2.6),

lim
k→∞

d(xm(k), xn(k)) = ε. (2.10)

Again,

d(xn(k), xm(k)) ≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)−1) + d(xm(k)−1, xm(k)),

d(xn(k)−1, xm(k)−1) ≤ d(xn(k)−1, xn(k)) + d(xn(k), xm(k)) + d(xm(k), xm(k)−1).
(2.11)

Letting k→∞ in the above two inequalities and using (2.6), (2.10), we get

lim
k→∞

d(xn(k)−1, xm(k)−1) = ε. (2.12)

Setting x = xm(k)−1 and y = xn(k)−1 in (2.1) and using (2.7), we obtain

ψ(ε) ≤ ψ(d(xm(k), xn(k))) ≤ ψ(d(xm(k)−1, xn(k)−1)) − φ(d(xm(k)−1, xn(k)−1)). (2.13)

Letting k→∞, utilising (2.10) and (2.12), we obtain

ψ(ε) ≤ ψ(ε) −Φ(ε), (2.14)

which is a contradiction if ε > 0.
This shows that {xn} is a Cauchy sequence and hence is convergent in the complete

metric space X.
Let

xn −→ z (say) as n −→ ∞. (2.15)
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Substituting x = xn−1 and y = z in (2.1), we obtain

ψ(d(xn, Tz)) ≤ ψ(d(xn−1, z)) − φ(d(xn−1, z)). (2.16)

Letting n→∞, using (2.15) and continuity of φ and ψ, we have

ψ(d(z, Tz)) ≤ ψ(0) − φ(0) = 0, (2.17)

which implies ψ(d(z, Tz)) = 0, that is,

d(z, Tz) = 0 or z = Tz. (2.18)

To prove the uniqueness of the fixed point, let us suppose that z1 and z2 are two fixed points
of T .

Putting x = z1 and y = z2 in (2.1),

ψ(d(Tz1, Tz2)) ≤ ψ(d(z1, z2)) − φ(d(z1, z2))
or ψ(d(z1, z2)) ≤ ψ(d(z1, z2)) − φ(d(z1, z2))
or φ(d(z1, z2)) ≤ 0,

(2.19)

or equivalently d(z1, z2) = 0, that is, z1 = z2.
This proves the uniqueness of the fixed point.

If we particularly take φ(t) = (1 − k)ψ(t) ∀t > 0 where 0 < k < 1, then we obtain the
result noted in Theorem 1.2. Again, in particular, if we take ψ(t) = t ∀t ≥ 0, then the result
noted in Theorem 1.4 is obtained.

Example 2.2. Let X = [0, 1] ∪ {2, 3, 4, . . .} and

d(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|x − y|, if x, y ∈ [0, 1], x /=y,

x + y, if at least one of x or y/∈[0, 1] and x /=y,

0, if x = y.

(2.20)

Then (X, d) is a complete metric space [1].
Let ψ : [0,∞)→ [0,∞) be defined as

ψ(t) =

⎧
⎨

⎩

t, if 0 ≤ t ≤ 1,

t2, if t > 1,
(2.21)
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and let φ : [0,∞)→ [0,∞) be defined as

φ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
t2, if 0 ≤ t ≤ 1,

1
2
, if t > 1.

(2.22)

Let T : X→X be defined as

Tx =

⎧
⎪⎨

⎪⎩

x − 1
2
x2, if 0 ≤ x ≤ 1,

x − 1, if x ∈ {2, 3, . . .}.
(2.23)

Without loss of generality, we assume that x > y and discuss the following cases.

Case 1 (x ∈ [0, 1]). Then

ψ(d(Tx, Ty)) =
(

x − 1
2
x2
)

−
(

y − 1
2
y2

)

= (x − y) − 1
2
(x − y)(x + y) ≤ (x − y) − 1

2
(x − y)2

= d(x, y) − 1
2
(d(x, y))2

= ψ(d(x, y)) − 1
2
(d(x, y))2

= ψ(d(x, y)) − φ(d(x, y)) (since x − y ≤ x + y).

(2.24)

Case 2 (x ∈ {3, 4, . . .}). Then

d(Tx, Ty) = d
(

x − 1, y − 1
2
y2

)

if y ∈ [0, 1]

or d(Tx, Ty) = x − 1 + y − 1
2
y2 ≤ x + y − 1,

d(Tx, Ty) = d(x − 1, y − 1) if y ∈ {2, 3, 4, . . .}
or d(Tx, Ty) = x + y − 2 < x + y − 1.

(2.25)

Consequently,

ψ(d(Tx, Ty)) = (d(Tx, Ty))2 ≤ (x + y − 1)2 < (x + y − 1)(x + y + 1)

= (x + y)2 − 1 < (x + y)2 − 1
2

= ψ(d(x, y)) − φ(d(x, y)).

(2.26)
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Case 3 (x = 2). Then y ∈ [0, 1], Tx = 1, and d(Tx, Ty) = 1 − (y − (1/2)y2) ≤ 1.
So, we have ψ(d(Tx, Ty)) ≤ ψ(1) = 1.
Again d(x, y) = 2 + y.
So,

ψ(d(x, y)) − φ(d(x, y)) = (2 + y)2 − φ((2 + y)2)

= (2 + y)2 − 1
2

=
7
2
+ 4y + y2 > 1

= ψ(d(Tx, Ty)).

(2.27)

Considering all the above cases, we conclude that inequality (2.1) remains valid for φ, ψ, and
T constructed as above and consequently by an application of Theorem 2.1, T has a unique
fixed point.

It is seen that “0” is the unique fixed point of T .

Note

The example discussed above cannot be covered by the result of Khan et al. noted in
Theorem 1.2.
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