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We study the existence of fixed points and convergence of iterates for asymptotic pointwise
contractions in uniformly convex metric spaces. We also study the existence of fixed points for set-
valued nonexpansivemappings in the same class of spaces. Our results do not assume convexity of
the metric which makes a big difference when studying the existence of fixed points for set-valued
mappings.

1. Introduction

This paper is motivated by the recent paper [1]. In [1] the authors study different questions
related to fixed points of asymptotic pointwise contractive/nonexpansive mappings in
CAT(0) spaces. CAT(0) spaces are studied in [1] as a very significant example within the
class of uniformly convex metric spaces (the reader can consult [2] for details on CAT(0)
spaces). In our present paper we propose to consider similar questions on uniformly convex
metric spaces under the mildest additional conditions we may impose. More precisely, we
will work with uniformly convex metric spaces with either a monotone modulus of convexity
in the sense first given in [3] or a lower semicontinuous from the right modulus of convexity
(see Section 2 for proper definitions). For a recent survey on the existence of fixed points
in geodesic spaces, the reader may check [4], for recent achievements on related topics the
reader may also check [5].

The notion of asymptotic pointwise contractions was introduced in [6]. Then it was
also studied in [7] where, by means of ultrapower techniques, different results about the
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existence of fixed points and convergence of iterates were proved. In [8] new proofs were
presented but this time after applying only elementary techniques. Very recently, in [1], these
techniques were applied in CAT(0), where the authors attend to the Bruhat-Tits inequality for
CAT(0) spaces in order to obtain such results. In the present paper we show that actuallymost
of those results still hold for general uniformly convex metric spaces under mild conditions
on the modulus of convexity. In Section 3 we focus on single-valued mappings and, in
particular, on mappings which are asymptotically pointwise contractive/nonexpansive to
study the existence of fixed points, convergence of Picard’s iterates, and the structure of
their sets of fixed points. As a technical result we need to show that bounded sequences
in these spaces have a unique asymptotic center which, as a by-product, leads to Kirk’s Fixed
Point Theorem. In Section 4 we study different problems regarding set-valued mappings
in these spaces. The main technical difficulty to achieve similar results to those shown in
[1] is that now we cannot count on the existence of fixed points for nonexpansive set-
valued mappings for the kind of spaces we deal with. Finding fixed point for set-valued
nonexpansive mappings in uniformly convex metric spaces was first studied by Shimizu and
Takahashi [9], where the existence of fixed points was guaranteed under stronger conditions
on the modulus of convexity and the additional condition of metric convexity of the space.
The fact that we do not have that the metric are convex will make the problem more
complicated and this will take us to impose new conditions on the modulus of convexity
which we will relate with the geometry of the space.

2. Basic Definitions and Results

We introduce next some basic definitions.

Definition 2.1. Let (X, d) be a metric space. A mapping T : X → X is called a pointwise
contraction if there exists a mapping α : X → [0, 1) such that

d
(
T(x), T

(
y
)) ≤ α(x)d

(
x, y

)
(2.1)

for any y ∈ X.

It is proved in [8] (see also [6]) that if K is a weakly compact convex subset of a
Banach space and T : K → K is a pointwise contraction, then T has a unique fixed point and
the sequence of the iterates of T converges to the fixed point for any x ∈ K. As it is pointed out
in [1], the uniqueness of fixed points and convergence of iterates for these mappings directly
follow if existence is guaranteed.

Definition 2.2. Let (X, d) be a metric space. Let T : X → X be a mapping, and let αn : X →
[0,∞) for each n ∈ N be such that

d
(
Tn(x), Tn(y

)) ≤ αn(x)d
(
x, y

)
for any y ∈ X. (2.2)

Then

(i) T is called an asymptotic pointwise contraction if {αn} converges pointwise to α :
X → [0, 1);
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(ii) T is called an asymptotic pointwise nonexpansive mapping if lim supαn(x) ≤ 1 for
any x ∈ X;

(iii) T is called a strongly asymptotic pointwise contraction if lim supαn(x) ≤ k, with
0 < k < 1, for any x ∈ X.

In this paper we will mainly work with uniformly convex geodesic metric space. Since
the definition of uniform convexity requires the existence of midpoints, the word geodesic is
redundant and so, for simplicity, we will usually omit it.

Definition 2.3. A geodesic metric space (X, d) is said to be uniformly convex if for any r > 0 and
any ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all a, x, y ∈ X with d(x, a) ≤ r, d(y, a) ≤ r
and d(x, y) ≥ εr it is the case that

d(m,a) ≤ (1 − δ)r, (2.3)

where m stands for any midpoint of any geodesic segment [x, y]. A mapping δ : (0,+∞) ×
(0, 2] → (0, 1] providing such a δ = δ(r, ε) for a given r > 0 and ε ∈ (0, 2] is called a modulus
of uniform convexity.

Notice that this definition of uniform convex metric spaces is weaker than the one
used in [9] in two ways. First, we do not impose that the metric is convex and, second, our
modulus of convexity does depend on the two variables r and εwhile it is assumed to depend
only on ε in [9].

Definition 2.4. Let (X, d) be a metric space, then the metric is said to be convex if for any x, y
and z in X, and m a midpoint in between x and y,

d(z,m) ≤ 1/2
(
d(z, x) + d

(
z, y

))
. (2.4)

It is easy to see that uniformly convex metric spaces are uniquely geodesic, that is, for
each two points there is just one geodesic joining them. Therefore midpoints and geodesic
segments [x, y] joining two points are unique. In this case there is a natural way to define
convexity. A subset C of a (uniquely) geodesic space is said to be convex if [x, y] ⊆ C for any
x, y ∈ C. For more about geodesic spaces the reader may check [2].

To obtain our results we will need to impose additional conditions on the modulus
of convexity. Following [3, 10] we consider the notion of monotone modulus of convexity as
follows.

Definition 2.5. If a uniformly convex metric space X admits a modulus of convexity δ such
that it decreases with r (for each fixed ε) then we say that δ is a monotone modulus of
convexity for X.

In the same way we define a lower semicontinuous from the right modulus of
convexity as follows.

Definition 2.6. If a uniformly convex metric space X admits a modulus of convexity δ such
that it is lower semicontinuous from the right with respect to r (for each fixed ε) then we say
δ is a lower semicontinuous from the right modulus of convexity for X.
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LetX be a metric space andF a family of subsets ofX. Then, following [1], we say that
F defines a convexity structure on X if it contains the closed balls and is stable by intersection.

Let X be a metric space and F a convexity structure on X. Given Φ : X → [0,∞), we
say that Φ is F-convex if {x : Φ(x) ≤ r} ∈ F for any r ≥ 0.

If we consider a bounded sequence {xn} in X, we are able to define a function r(·, xn),
called type, such that for each x

r(x, xn) = lim sup
n→∞

d(xn, x). (2.5)

The asymptotic center of a bounded sequence with respect to a subset C of X is then defined as

AC({xn}) =
{
x ∈ X : r(x, xn) ≤ r

(
y, xn

)
for any y ∈ C

}
. (2.6)

If the asymptotic center is taken with respect to X then it is simply denoted by A({xn}).

Definition 2.7. We say that a convexity structure is T -stable if types are F-convex.

In [1] the following definition of compactness for convexity structure was considered.

Definition 2.8. Given F a convexity structure, we will say that F is compact if any family
(Aα)α∈Γ of elements of F has nonempty intersection provided ∩α∈F /= ∅ for any finite subset
F ⊂ Γ.

In our paper we will rather use the idea of compactness given in [11]. Notice that this
second notion of compactness is weaker than the previous one.

Definition 2.9. Given F a convexity structure, we will say that F is nested compact if any
decreasing chain (Aα)α∈Γ of nonempty bounded elements of F has nonempty intersection.

A very important property given in [3] about complete uniformly convex metric
spaces with monotone modulus of convexity is that decreasing sequences of nonempty
bounded closed and convex subsets of these spaces have nonempty intersection. As a
consequence, we have that if F stands for the collection of nonempty closed and convex
subsets of a complete uniformly convex metric space with monotone modulus of convexity,
then F is a nested compact convexity structure.

Remark 2.10. It is not hard to see that the same remains true if the monotone condition on the
modulus is replaced by lower semicontinuity from the right.

3. Asymptotic Pointwise Contractions in Uniformly Convex
Metric Spaces

In this section we give different results for the above defined mappings in uniformly convex
metric spaces. Although, for expository reasons, our results will be usually proved only for
uniformly convex metric spaces with a monotone modulus of convexity, they also hold when
there is a lower semicontinuous modulus of convexity. Some indications about differences in
both cases will be given. We begin with a technical result.
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Proposition 3.1. Let (X, d) be a complete uniformly convex metric space with a monotone (or lower
semicontinuous from the right) modulus of convexity δ(r, ε). Consider the family F of all nonempty
closed and convex subsets of X. Then F defines a nested compact and T -stable convexity structure on
X.

Proof. It only remains to be proved that F is T -stable. Let {xn} be a bounded sequence in X
and consider the type defined by {xn}. We need to show that Cr = {x : r(x, xn) ≤ r} ∈ F for
any positive r. It is immediate to see that Cr is closed and nonempty. To see that Cr ∈ F is also
convex, consider x and y to be two different points in Cr . There is no restriction if we assume
that lim supd(y, xn) ≤ lim supd(x, xn) = r1 ≤ r. Let m be the midpoint of the segment [x, y]
and take ε1 = d(x, y)/(r + 1), then, by uniform convexity, we have that

d(m,xn) ≤
(
1 − δ

(
max

{
d(x, xn), d

(
y, xn

)}
, ε1

))
max

{
d(x, xn), d

(
y, xn

)}

< max
{
d(x, xn), d

(
y, xn

)}
,

(3.1)

and so,

lim supd(m,xn) ≤ lim sup max
{
d(x, xn), d

(
y, xn

)}
= r1 ≤ r. (3.2)

Hence, m ∈ Cr .

The following theorems were proved in [1] under the hypothesis of compactness on
the convexity structure. We state it, however, under the hypothesis of nested compactness
since this is all it is actually required in the proofs given in [1].

Theorem 3.2. LetX be a bounded metric space. Assume that the convexity structureA(M) is nested
compact. Let T : X → X be a pointwise contraction. Then T has a unique fixed point x0. Moreover
the orbit {Tn(x)} converges to x0, for each x ∈ X.

Theorem 3.3. LetX be a bounded metric space. Assume that the convexity structureA(M) is nested
compact. Let T : X → X be a strongly asymptotic pointwise contraction. Then T has a unique fixed
point x0. Moreover the orbit {Tn(x)} converges to x0, for each x ∈ X.

Now the next corollary follows.

Corollary 3.4. The above theorems hold for complete bounded uniformly convex metric spaces with
either monotone or lower semicontinuous from the right modulus of convexity.

The following lemma is immediate.

Lemma 3.5. Let X be a metric space and F a nested compact convexity structure on X which is
T -stable. Then for any type r(·, xn), there exists x0 ∈ X such that

r(x0, xn) = inf{r(x, xn) : x ∈ X}. (3.3)

As a direct consequence of Proposition 3.1 and the previous lemma we get the
following result for asymptotic pointwise contractions. We omit the details of its proof as
it follows similar patterns as in [1, Theorem 4.2].
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Theorem 3.6. Let (X, d) be a complete uniformly convex metric space with a monotone (or lower
semicontinuous from the right) modulus of convexity δ(r, ε). Suppose X is bounded. Then every T :
X → X asymptotic pointwise contraction has a unique fixed point x0. Moreover, the orbit {Tn(x)}
converges to x0 for each x ∈ X.

Next we show some consequences of Proposition 3.1 and Lemma 3.5. The cases
for monotone and lower semicontinuous from the right modulus of convexity are shown
separately as they require different proofs.

Corollary 3.7. Let X be a complete uniformly convex metric space with a monotone modulus of
convexity and {xn} a bounded sequence inX. Then the set of asymptotic centers of {xn} is a singleton.

Proof. Let u and v be two different points in A({xn}), and let m be the midpoint of [u, v]. Let
r = r(u, xn) = r(u, xn), c = r + 1, and ε1 = d(u, v)/c. By the uniform convexity, there exists
N ∈ N such that for every n ≥ N,

d(m,xn) ≤ (1 − δ(max{d(u, xn), d(v, xn)}, ε1))max{d(u, xn), d(v, xn)}
≤ (1 − δ(c, ε1))max{d(u, xn), d(v, xn)}.

(3.4)

If we let n go to infinite, we obtain that r(m,xn) ≤ (1 − δ(c, ε1))r < r,which is clearly a
contradiction.

Remark 3.8. This corollary has been first proved in [12, Proposition 3.3] for a certain class of
uniformly convex hyperbolic spaces with monotone modulus of convexity.

Now we show the lower semicontinuous case.

Corollary 3.9. Let X be a complete uniformly convex metric space with a lower semicontinuous from
the right modulus of convexity and {xn} a bounded sequence in X. Then the set of asymptotic centers
of {xn} is a singleton.

Proof. Let u and v be two different points in A({xn}) and let m be the midpoint of [u, v]. Let
r = r(u, xn) = r(v, xn), ε = d(u, v)/(r + 1), and let us fix p ∈ N. Then max{d(u, xn), d(v, xn)} ≤
r + p−1 for each n large enough. By the uniform convexity,

d(m,xn) ≤
(
1 − δ

(
r + p−1, ε

))(
r + p−1

)
(3.5)

for the same n as above and finally

r(m,xn) ≤
(
1 − δ

(
r + p−1, ε

))(
r + p−1

)
. (3.6)

Now it suffices to observe that

δ
(
r + p−1, ε

)
≥ 1

2
δ(r, ε),

1 − δ
(
r + p−1, ε

)
≤ 1 − 1

2
δ(r, ε).

(3.7)



Fixed Point Theory and Applications 7

for p large enough. Combining it with (3.6) and taking limp→∞ we obtain r(m,xn) < r as in
the former corollary, and thus the contradiction.

Another consequence is Kirk Fixed Point Theorem in uniformly convex metric spaces.

Corollary 3.10. Let X be a complete uniformly convex geodesic metric space with a monotone
(or lower semicontinuous from the right) modulus of convexity. Suppose X is bounded, then any
nonexpansive mapping T : X → X has a fixed point.

Proof. Consider x ∈ X and {Tn(x)} the sequence of its iterates. Let ω be the only asymptotic
center of {Tn(x)} in X. Then, by the nonexpansiveness of T , it follows that r(T(ω), Tn(x)) ≤
r(ω, Tn(x)) and so, T(ω) = ω.

Now we present a counterpart for [1, Theorem 5.1].

Theorem 3.11. Let (X, d) be a complete uniformly convex metric space with a monotone (or lower
semicontinuous from the right) modulus of convexity δ(r, ε). Let C be a bounded closed convex
nonempty subset of X. Then any T : C → C asymptotic pointwise nonexpansive mapping has a
fixed point, and the set of fixed points of T , Fix(T), is closed and convex.

Proof. Let x ∈ C and consider xn = Tn(x). From Corollary 3.7, we know that AC({xn}) is a
singleton. Letω be the only point in that set, that is,ω is such that r(ω, xn) = inf{r(u, xn) : u ∈
C}. We want to show that {Tm(ω)} is a Cauchy sequence. Suppose this is not the case. Then
there exists a separated subsequence {Tmi(ω)} of {Tm(ω)}, that is, there exists ε > 0 such that
d(Tmk(ω), Tmh(ω)) ≥ ε for every k /=h in N.

Let mkh be the midpoint of the segment [Tmk(ω), Tmh(ω)], c = diam(C) and ε1 = ε/c.
The uniform convexity of the space, together with its monotone character, implies that for
every k and h in N

d(mkh, xn)≤(1−δ(max{d(Tmh(ω), xn), d(Tmk(ω), xn)}, ε1))max{d(Tmh(ω), xn), d(Tmk(ω), xn)}
≤ (1 − δ(c, ε1))max{d(Tmh(ω), xn), d(Tmk(ω), xn)}.

(3.8)

Notice that, by definition of T ,

r(Tm(ω), xn) ≤ αm(ω)r(ω, xn). (3.9)

Then, if we let n go to infinity,

r(ω, xn) ≤ r(mkh, xn)

≤ (1 − δ(c, ε1))max{r(Tmk(ω), xn), r(Tmh(ω), xn)}
≤ (1 − δ(c, ε1))max{αmk(ω)r(ω, xn), αmh(ω)r(ω, xn)}.

(3.10)

Since T is pointwise asymptotic nonexpansive, then

r(ω, xn) ≤ (1 − δ(c, ε1))r(ω, xn), (3.11)
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and so r(ω, xn) = 0, which is a contradiction since, in virtue of (3.9), this implies that Tm(ω)
converges to ω. Therefore, {Tm(ω)} is a Cauchy sequence and its limit, again by (3.9), is ω.
Then, from the continuity of T , T(ω) = ω.

In consequence, Fix(T) is nonempty. Now, since T is continuous, Fix(T) is closed. We
show next that Fix(T) is also convex. Let u, v be two different points in Fix(T) and w the
midpoint of the segment [u, v]. We need to show that w ∈ Fix(T). Now, since T is pointwise
asymptotic nonexpansive,

d(u, Tn(w)) = d(Tn(u), Tn(w)) ≤ αn(w)d(u,w) =
αn(w)d(u, v)

2
(3.12)

and, equally,

d(v, Tn(w)) = d(Tn(v), Tn(w)) ≤ αn(w)d(v,w) =
αn(w)d(u, v)

2
. (3.13)

Therefore, for ε > 0, there exists n0 such that if n ≥ n0 then

Tn(w) ∈ B

(
u,

d(u, v)
2

+ ε

)
∩ B

(
v,

d(u, v)
2

+ ε

)
= Dε, (3.14)

but, from the proof of Proposition 2.2 in [3], the diameters of the sets Dε tend to 0 as ε tends
to 0 and so lim Tn(w) = w, which proves w is a fixed point of T .

Remark 3.12. The proof for the lower semicontinuous case follows in a similar way but
following the reasoning of Corollary 3.9.

In [1] a demiclosed principle is also given for asymptotic pointwise nonexpansive
mappings in CAT(0) spaces. Next we show that an equivalent result is also possible for
uniformly convex metric spaces. Following [1]we define

{xn}⇀C ω if and only if r(ω, xn) = inf
x∈C

r(x, xn), (3.15)

where C is a closed and convex subset of a uniformly convex metric space containing the
bounded sequence {xn}. Notice that this definition does not depend on the set C when the
space X is a complete CAT(0) space. This is due to the fact that the asymptotic center of
a bounded sequence of a complete CAT(0) space belongs to the closed convex hull of the
sequence, which easily follows from the very well-known fact that the metric projection onto
closed convex subsets of a complete CAT(0) space is nonexpansive (see [2] for details). Recall
that the existence and uniqueness of such a ω ∈ C in a complete uniformly convex metric
spaces with monotone modulus of convexity is guaranteed by Corollary 3.7.

Proposition 3.13. Let (X, d) be a complete uniformly convex metric space with a monotone modulus
of convexity δ(r, ε). Let C be a bounded closed convex nonempty subset of X. Let T : C → C an
asymptotic pointwise nonexpansive mapping. Let {xn} ∈ C be an approximate fixed point sequence,
that is, limn→∞d(xn, T(xn)) = 0, and such that xn ⇀ ω for a certain ω ∈ C. Then T(ω) = ω.
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Proof. Since {xn} is an approximate fixed point sequence, then we have that

r(x, xn) = lim sup
n→∞

d(x, Tm(xn)) = r(x, Tm(xn)) (3.16)

for any m ≥ 1( see Note Added in Proof at the end of the paper) . In consequence, since
r(Tm(x), Tm(xn)) ≤ αm(x)r(x, xn) for x ∈ C, (3.9) holds for any x.

Therefore, particularizing for ω, we have that lim supm→∞r(T
m(ω), xn) = r(ω, xn).

Now we claim that Tm(ω) → ω asm → ∞. Suppose on the contrary that there exist an ε > 0
and a subsequence {Tmk(ω)} of {Tm(ω)} such that d(Tmk(ω), ω) ≥ ε for every k ∈ N. Let ωmk

be the midpoint of the geodesic segment [Tmk(ω), ω], c = diam(C) and ε1 = ε/c. By uniform
convexity, for every k, we have that

d(ωmk , xn) ≤ (1 − δ(max{d(ω, xn), d(Tmk(ω), xn)}, ε1))max{d(ω, xn), d(Tmk(ω), xn)}
≤ (1 − δ(c, ε1))max{d(ω, xn), d(Tmk(ω), xn)}.

(3.17)

If we consider the upper limit of the above inequality when n → ∞, we get

r(ω, xn) ≤ r(ωmk , xn) ≤ (1 − δ(c, ε1))max{r(ω, xn), r(Tmk(ω), xn)}. (3.18)

If we do the same when k → ∞, we finally obtain that r(ω, xn) ≤ (1 − δ(c, ε1))r(ω, xn).
Therefore r(ω, xn) = 0, and the existence of fixed point follows the same as in Theorem 3.11.

Remark 3.14. The proof for the lower semicontinuous case follows in a similar way but
following the reasoning of Corollary 3.9.

4. Fixed Points of Set-Valued Mappings

In this section we present fixed points theorems for set-valued mappings defined on
uniformly convex metric spaces. Results stated for uniformly convex metric space with a
monotone modulus of convexity also hold if there is a lower semicontinuous from the right
modulus of convexity. Proofs of this second case will be omitted as they are based on technical
results already proved for both kinds of modulus in Section 3. The Hausdorff metric on the
closed and bounded parts of a metric space X is defined as follows. If U and V are bounded
and closed subsets of a metric space X, then

H(U,V ) = inf{ε > 0 : U ⊆ Nε(V ), V ⊆ Nε(U)}, (4.1)

where Nε(V ) = {y ∈ X : dist(y, V ) = inf{d(y, x) : x ∈ V } < ε}. Let C be a subset of a metric
space X. A mapping T : C → 2X with nonempty bounded closed values is nonexpansive if

H
(
T(x), T

(
y
)) ≤ d

(
x, y

)
(4.2)

for all x, y ∈ C. Our main goal in this section is to study if given X is a bounded uniformly
convex metric space with monotone modulus of convexity, then every nonexpansive
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mapping T : X → 2X with nonempty and compact values has a fixed point, that is, a point
x ∈ X such that x ∈ T(x). This problem was first solved in the affirmative by Shimizu and
Takahashi in [9] under the assumption that the metric is convex. If we lack this condition the
problem is much more complicated and we can offer only partial answers. Our first answer
will be achieved after imposing condition (i):

(i) there exists a point x ∈ X such that for each t ∈ (0, 1) there is a number s(t) ∈ (0, 1)
such that for all y, z ∈ X:

d(u, v) ≤ s(t) d
(
y, z

)
, (4.3)

where u, v stand for points from geodesic segments [x, y] and [x, z], respectively,
and d(x, u) = t d(x, y), d(x, v) = t d(x, z).

Remark 4.1. Condition (i) can be seen as a kind of very weak hyperbolicity condition. In fact,
it is immediate to see that hyperbolic uniformly convex spaces studied in [3, 10, 12] satisfy
condition (i) as well as for any uniformly convex CAT(k) space with k ∈ R. Notice here that
CAT(k) spaces with k ≤ 0 are particular examples of hyperbolic uniformly convex spaces.

Theorem 4.2. Let (X, d) be a complete uniformly convex metric space with a monotone modulus
of convexity. Suppose that X is bounded and the condition (i) holds true. Then each nonexpansive
set-valued mapping T : X → 2X \ {∅} with compact values has a fixed point.

Proof. Let us fix x0 ∈ X satisfying the condition (i). Now, from (i) and the fact that T(x) is
compact for any x, it follows that set-valued mappings Tt : X → 2X , t ∈ (0, 1) defined by

Tt(x) =
{
u ∈ X : ∃ y ∈ T(x) s.t. u ∈ [

x0, y
]
, d(x0, u) = t d

(
x0, y

)}
(4.4)

are compact-valued contractions with constants s(t). Nadler’s Fixed Point Theorem for set-
valued contractions implies that Tt has a fixed point for each t and therefore T has an
approximate fixed point sequence, that is, a sequence {xn} such that lim dist(xn, T(xn)) = 0.
According to Corollary 3.7 there is a unique asymptotic center of {xn} in X. Now the rest of
the proof follows the same patterns of the standard one for uniformly convex Banach spaces
(see [13, Theorem 15.3, page 165]).

It is wellknown that a CAT(1) space needs not to be uniformly convex if its diameter
is not smaller than π/2. Next we show, however, that the same above idea can be applied to
CAT(1) spaces of radius smaller than π/2. Remember that for k > 0 the numberDk is defined
as Dk = π/

√
k and that the radius of a bounded subset C of X is given by

radX(C) = inf{r : there exists x ∈ X such that C ⊆ B(x, r)}. (4.5)

Theorem 4.3. Let k > 0 and let (X, d) be a complete CAT(k) space with rad(X) < Dk/2. Then each
nonexpansive mapping T : X → 2X \ {∅} with compact values has at least one fixed point.

Proof. Take x0 ∈ X in such a way that supy∈Xd(x0, y) < Dk/2. As it is shown in [14, Lemma
3], it is enough to take s(t) = sin(tπ/2) for t ∈ (0, 1) to verify condition (i)with x = x0 inX. In
a similar manner as above we obtain an approximate fixed point sequence {xn}. On account
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of rad({xn}) ≤ rad(X) and [15, Proposition 4.1] the asymptotic center of each subsequence
of {xn} is unique, and the rest of the proof is not different from the case of uniformly convex
Banach spaces.

Next we consider two further conditions to guarantee the existence of fixed points for
nonexpansive set-valued mappings with compact values in uniformly convex metric spaces.

(ii) There is a function f : N × R+ → R+ such that

lim
δ→ 0+

f(n, δ) = 0, n ∈ N, (4.6)

and for all x, y, z ∈ X and u ∈ [x, y], v ∈ [x, z] was chosen in such a way that
d(x, u) = n−1 d(x, y), d(x, v) = n−1 d(x, z), and d(u, v) ≤ δ,we have

d
(
y, z

) ≤ f(n, δ) (4.7)

(iii) limr→R+,ε→ 2−δ(r, ε) = 1, where δ(r, ε) is, as usual, a monotonemodulus of convexity
of the space.

Remark 4.4. Notice that, roughly speaking, conditions (i) and (ii) give opposite information
about the geometry of the space. While condition (i) implies that geodesic emanating from a
same point must separate and no matters how fast, condition (ii) imposes a superior bound
about how much two geodesics emanating from a same point are allowed to separate. It is
easy to see that any geodesic space admitting bifurcating geodesics cannot verify condition
(ii). In particular, condition (ii) does not hold in R-trees. It easily follows from the definitions
that geodesic spaces with curvature bounded below by a real number k (check [16] for a
detailed exposition about these spaces) satisfy condition (ii).

Before stating our next result we need to introduce a definition.

Definition 4.5. A geodesic space X is said to have the geodesic extension property if any
geodesic segment in X is actually contained in a geodesic line, that is, in a geodesic γ : R →
X.

Theorem 4.6. Let X be a complete uniformly convex metric space with a monotone modulus of
convexity and the geodesic extension property. Moreover, suppose that X satisfies conditions (ii) and
(iii) andC is a nonempty bounded closed and convex subset ofX. If T : C → 2C\{∅} is a nonexpansive
mappings with compact values then T has at least one fixed point.

Proof. From the proof of Theorem 4.2, we know that if infx∈Cdist(x, T(x)) = 0 then the
conclusion follows. So let us suppose that

d := inf
x∈C

d(x, T(x)) > 0 (4.8)

and fix ε > 0 small enough. Let x0 be chosen in such a way that d(x0, T(x0)) < d + ε and let
us denote this distance by d1. Clearly, from the compactness of T(x0) it follows the existence
of x1 ∈ T(x0) for which d(x0, x1) = d1. Now assume that m0 is a midpoint of the metric
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segment [x0, x1]. The conditions imposed on T imply that there is m1 ∈ T(m0) such that
d(x1, m1) ≤ d1/2 and d(m0, m1) = d2 ≥ d.

To estimate the distance between x0 andm1 let us consider the midpoint p0 of [m0, m1].
Using the uniformly convexity of X we obtain that

d
(
x1, p0

) ≤
(
1 − δ

(
d1

2
,
2d
d1

))
d1

2
=: δ1. (4.9)

If we denote by x3/2 the point of the geodesic ray γ containing [x0, x1] such that d(x1, x3/2) =
d1/2 and x3/2 /=m0, then d(m1, x3/2) ≤ f(2, δ1) and

d(x0, m1) ≥ 3
2
d − f(2, δ1). (4.10)

Repeating our reasoning form0,m1, and p0, we obtain points p1 ∈ T(p0) andm3/2 ∈ X
satisfying

d
(
p1, m3/2

) ≤ f(2, δ2), d(m0, m3/2) =
3
2
d2, (4.11)

where

δ2 =
(
1 − δ

(
d2

2
,
2d
d2

))
d2

2
. (4.12)

If we denote by x2 the point in γ for which d(x0, x2) = 2d1 and d(x1, x2) = d1, then it is easy
to see that d(x2, m3/2) ≤ f(3, δ1). Hence

d
(
x0, p1

) ≥ d(x0, x2) − d(x2, m3/2) − d
(
m3/2, p1

) ≥ 2d − f(3, δ1) − f(2, δ2). (4.13)

The previous procedure gives us induction sequences of points {xn/2} and numbers
{δn} such that

d(x0, xn/2) =
n

2
d1, (4.14)

and for n fixed, a point y ∈ C for which

d
(
y, xn/2

) ≤
n−1∑

k=2

f(k, δn−k). (4.15)

Next let us fixM > 0 and findN ∈ N such thatM < (N−2)(d/2). Obviously, according
to (ii), one can choose δ > 0 for which

N∑

k=1

f(k, δ) < d, (4.16)
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and by (iii) select ε > 0 such small that (1 − δ(r, d/r))((d + ε)/2) < δ for all r ∈ (d/2,
(d + ε)/2].

Choosing x0 ∈ C such that d(x0, T(x0)) < d+ε and repeating our iterative procedureN-
times, one may notice that the sequence {dn}Nn=1 decreases so δn < δ for each n ∈ {1, . . . ,N}.
Finally we find y ∈ C for which, on account of (4.15),

d
(
y, xN/2

) ≤
N∑

n=1

f(n, δ),

d
(
x0, y

) ≥ N
d

2
−

N∑

n=1

f(n, δ) > (N − 2)
d

2
> M,

(4.17)

contrary to the boundedness of C. Hence d = 0 and the result follows.

From Theorems 3.11 and 4.2 one may get the following generalization of [1, Theorem
5.2]. We omit the proof as it is analog to the one given for CAT(0) spaces in [1]. We first need
some notations and definitions.

Let X be a uniformly convex metric space. Consider the mappings t : X → X and
T : X → 2X \ {∅}, then t and T are said to be commuting mappings if t(y) ∈ T(t(x)) for all
y ∈ T(x) and for all x ∈ X. A point z is called a center for the mapping t : X → X if for each
x ∈ X, d(z, t(x)) ≤ d(z, x). The set Z(t) denotes the set of all centers of the mappings t.

Theorem 4.7. Let (X, d) be a bounded and complete uniformly convex space with a monotone
modulus of convexity for which condition (i) holds. Suppose that t : X → X is pointwise
asymptotically nonexpansive and T : X → 2X \ {∅} a nonexpansive mapping with compact and
convex values. If t and T commute and satisfy the condition

T(x) ∩ Fix(t) ⊂ Z(t), x ∈ Fix(t), (4.18)

then there is z ∈ X such that z = t(z) ∈ T(z).

Remark 4.8. The same result remains true if the uniformly convex metric space is supposed to
have the geodesic extension property, and conditions (ii)-(iii) hold instead of condition (i).

We finish this work with a last remark about a different condition to obtain another
version of Theorem 4.6. Let X be a metric space. Then we say that X has the Stečkin property if
for ε, d, and r fixed positive numbers there exist ξ = ξ(ε, d, r) > 0 such that if x, y ∈ X satisfy
d(x, y) = r, then

diam
[
B
(
y, d + ξ

) \ B(x, d + r)
]
< ε. (4.19)

The Stečkin property was introduced in [17] to obtain different results regarding the
existence of unique nearest and farthest points to closed subsets of normed linear spaces. This
property has been studied by many authors since then being of special relevance in the study
of uniformly convex Banach spaces; see for instance [18, 19]. It is known that the Stečkin
property does not happen in geodesic spaces with bifurcating geodesics [19, 20] and it has
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been shown to be related to the property of having curvature bounded below (see [16] for
details about spaces with curvature bounded below); see [19, 20]. We next show that this
property, in addition to a similar condition to (ii), leads to the existence of fixed points for
set-valued nonexpansive mappings. We first introduce condition (ii)′:

(ii)′ there is a function f : N × R+ → R+ such that

lim
δ→ 0+

f(n, δ) = 0, n ∈ N, (4.20)

and for all x, y, z ∈ X and u ∈ [x, y], v ∈ [x, z] was chosen in such a way that
d(x, u) = (2/n)d(x, y), d(x, v) = (2/n)d(x, z), and d(u, v) ≤ δ,we have

d
(
y, z

) ≤ f(n, δ). (4.21)

Theorem 4.9. Let X be a complete uniformly convex metric space with a monotone modulus of
convexity and the geodesic extension property. Moreover, suppose that X satisfies conditions (ii)′ and
the Stečkin property. LetC be a nonempty bounded closed and convex subset ofX. If T : C → 2C\{∅}
is a nonexpansive mappings with compact values then T has at least one fixed point.

Proof. We will omit details for this proof as it follows the same patterns of the proof of
Theorem 4.6. We will just point out that the main difference happens when the modulus of
convexity is used to estimate d(x0, m1) first (see (4.10)), and d(y, xn/2) later (see (4.15)), now
we use property S to achieve similar estimations.

Note Added in Proof

To prove (3.16) in Proposition 3.13 we need to ask for something more, in particular, it
suffices if we assume that T is uniformly continuous. Under this assumption we can prove
by induction that {Tm(xn)} is an approximate fixed point sequence for each m ∈ N. Indeed,
let m = 1, ε > 0 and choose δ = δ(ε) > 0 the one given by the uniform continuity of T . Since
{xn} is an approximate fixed point sequence, there exists n0 ∈ N such that d(xn, T(xn)) ≤ δ
for every n ≥ n0. This implies that

d
(
T(xn), T2(xn)

)
≤ ε (4.22)

for every n ≥ n0. Thus {d(T(xn), T2(xn))} → 0 which proves our claim. Suppose now that
{Tm−1(xn)} is an approximate fixed point sequence. We want to see that {Tm(xn)} is so too.
Given ε > 0 we fix δ > 0 as in the case m = 1. Since {Tm−1(xn)} is an approximate fixed point
sequence, there exists n0 ∈ N such that d(Tm−1(xn), Tm(xn)) ≤ δ for every n ≥ n0. This implies
that

d
(
Tm(xn), Tm+1(xn)

)
≤ ε (4.23)

for every n ≥ n0. Thus {Tm(xn)} is an approximate fixed point sequence.
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Now, since

d(x, Tm(xn)) ≤ d(x, xn) + d(xn, T
m(xn)), d(x, xn) ≤ d(x, Tm(xn)) + d(Tm(xn), xn), (4.24)

by recalling that d(Tm(xn), xn) ≤
∑k=m−1

k=0 d(Tk(xn), Tk+1(xn)), (3.16) follows.
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is dedicated to W. A. Kirk.

References

[1] N. Hussain and M. A. Khamsi, “On asymptotic pointwise contractions in Metric spaces,” Nonlinear
Analysis: Theory, Methods & Applications. In press.

[2] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, vol. 319 of Grundlehren der
Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999.
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[12] L. Leuştean, “Nonexpansive iterations in uniformly convex W-hyperbolic spaces,” to appear in
Contemporary Mathematics, http://arxiv.org/abs/0810.4117.

[13] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28 of Cambridge Studies in Advanced
Mathematics, Cambridge University Press, Cambridge, UK, 1990.

[14] B. Pia̧tek, “Halpern iteration in spherical spaces,” submitted to publication.
[15] R. Espı́nola and A. Fernández-León, “CAT(k)-spaces, weak convergence and fixed points,” Journal of

Mathematical Analysis and Applications, vol. 353, no. 1, pp. 410–427, 2009.
[16] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry, vol. 33 of Graduate Studies in

Mathematics, American Mathematical Society, Providence, RI, USA, 2001.
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