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We prove the demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces.
As a consequence, we obtain a Δ-convergence theorem of the Krasnosel’skii-Mann iteration for
asymptotically nonexpansive mappings in this setting. Our results extend and improve many
results in the literature.

1. Introduction

One of the fundamental and celebrated results in the theory of nonexpansive mappings is
Browder’s demiclosed principle [1] which states that if X is a uniformly convex Banach
space, then C is a nonempty closed convex subset of X, and if T : C → X is a nonexpansive
mapping, then I−T is demiclosed at each y ∈ X, that is, for any sequence {xn} inC conditions
xn → xweakly and (I−T)(xn) → y strongly imply that (I−T)(x) = y (where I is the identity
mapping of X). It is known that the demiclosed principle plays important role in studying
the asymptotic behavior for nonexpansive mappings (see, e.g., [2–10]). In [11], Xu proved the
demiclosed principle for asymptotically nonexpansive mappings in the setting of a uniformly
convex Banach space. The purpose of this paper is to extend Xu’s result to a special kind of
metric spaces, namely, CAT(0) spaces, which will be defined in the next section. We also
apply our result to obtain a Δ-convergence theorem of the Krasnosel’skii-Mann iteration for
asymptotically nonexpansive mappings in the CAT(0) space setting.

2. CAT(0) Spaces

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle in X is at least as “thin” as its comparison triangle in the Euclidean plane. It is



2 Fixed Point Theory and Applications

well known that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces,R-trees (see
[12]), Euclidean buildings (see [13]), the complex Hilbert ball with a hyperbolic metric (see
[14]), andmany others. For a thorough discussion of these spaces and of the fundamental role
they play in geometry, see Bridson and Haefliger [12]. Burago et al. [15] provide a somewhat
more elementary treatment and Gromov [16] presents a deeper study.

Fixed point theory in a CAT(0) space was first studied by Kirk (see [17, 18]). He
showed that every nonexpansive (single-valued) mapping defined on a bounded closed
convex subset of a complete CAT(0) space always has a fixed point. Since then the fixed
point theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly
developed and many papers have appeared (see, e.g., [19–34]). It is worth mentioning that
the results in CAT(0) spaces can be applied to any CAT(κ) space with κ ≤ 0 since any CAT(κ)
space is a CAT(κ′) space for every κ′ ≥ κ (see [12, page 165]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) =
y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l.
The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique,
this geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two
points ofX are joined by a geodesic, andX is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes
every geodesic segment joining any two of its points.

A geodesic triangle Δ(x1, x2, x3) in a geodesic space (X, d) consists of three points
x1, x2, x3 in X (the vertices of Δ) and a geodesic segment between each pair of vertices (the
edges of Δ). A comparison triangle for geodesic triangle Δ(x1, x2, x3) in (X, d) is a triangle
Δ(x1, x2, x3) := Δ(x1, x2, x3) in the Euclidean plane E

2 such that dE2(xi, xj) = d(xi, xj) for
i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom.

CAT(0): Let Δ be a geodesic triangle in X and let Δ be a comparison triangle for Δ.
Then Δ is said to satisfy the CAT(0) inequality if, for all x, y ∈ Δ and all comparison points
x, y ∈ Δ,

d
(
x, y

) ≤ dE2
(
x, y

)
. (2.1)

Let x, y ∈ X, by [26, Lemma 2.1(iv)] for each t ∈ [0, 1], then there exists a unique point
z ∈ [x, y] such that

d(x, z) = td
(
x, y

)
, d

(
y, z

)
= (1 − t)d(x, y). (2.2)

From now on, we will use the notation (1 − t)x ⊕ ty for the unique point z satisfying (2.2). By
using this notation, Dhompongsa and Panyanak [26] obtained the following lemma which
will be used frequently in the proof of our main results.



Fixed Point Theory and Applications 3

Lemma 2.1. Let X be a CAT(0) space. Then

d
(
(1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z), (2.3)

for all x, y, z ∈ X and t ∈ [0, 1].

If x, y1, y2 are points in a CAT(0) space and if y0 = (1/2)y1 ⊕ (1/2)y2, then the CAT(0)
inequality implies that

d
(
x, y0

)2 ≤ 1
2
d
(
x, y1

)2 +
1
2
d
(
x, y2

)2 − 1
4
d
(
y1, y2

)2
. (CN)

This is the (CN) inequality of Bruhat and Tits [35]. In fact (cf. [12, page 163]), a geodesic
space is a CAT(0) space if and only if it satisfies (CN).

The following lemma is a generalization of the (CN) inequality which can be found in
[26].

Lemma 2.2. Let (X, d) be a CAT(0) space. Then

d
(
(1 − t)x ⊕ ty, z)2 ≤ (1 − t)d(x, z)2 + td(y, z)2 − t(1 − t)d(x, y)2, (2.4)

for all t ∈ [0, 1] and x, y, z ∈ X.

3. Demiclosed Principle

In 1976, Lim [36] introduced a concept of convergence in a general metric space which
he called “Δ-convergence”. In 2008, Kirk and Panyanak [37] specialized Lim’s concept to
CAT(0) spaces and showed that many Banach space results involving weak convergence
have precise analogs in this setting. Since then the notion of Δ-convergence has been widely
studied and a number of papers have appeared (see, e.g., [26, 29, 31, 32, 34]).

We now give the concept of Δ-convergence and collect some of its basic properties.
Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X,we set

r(x, {xn}) = lim sup
n→∞

d(x, xn). (3.1)

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}, (3.2)

the asymptotic radius rC({xn}) of {xn}with respect to C ⊂ X is given by

rC({xn}) = inf{r(x, {xn}) : x ∈ C}, (3.3)
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the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}, (3.4)

and the asymptotic center AC({xn}) of {xn}with respect to C ⊂ X is the set

AC({xn}) = {x ∈ C : r(x, {xn}) = rC({xn})}. (3.5)

Recall that a bounded sequence {xn} in X is said to be regular if r({xn}) = r({un}) for
every subsequence {un} of {xn}.

The following proposition was proved in [22].

Proposition 3.1. If {xn} is a bounded sequence in a complete CAT(0) space X and if C is a closed
convex subset of X, then there exists a unique point u ∈ C such that

r(u, {xn}) = inf
x∈C

r(x, {xn}). (3.6)

This fact immediately yields the following proposition.

Proposition 3.2. Let {xn}, C, and X be as in Proposition 3.1. Then A({xn}) and AC({xn}) are
singletons.

The following lemma can be found in [25].

Lemma 3.3. If C is a closed convex subset of X and if {xn} is a bounded sequence in C, then the
asymptotic center of {xn} is in C.

Definition 3.4 (see [36, 37]). A sequence {xn} in X is said to Δ-converge to x ∈ X if x is the
unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case we write
Δ − limnxn = x and call x the Δ-limit of {xn}.

Lemma 3.5 (see [37]). Every bounded sequence in a complete CAT(0) space always has a Δ-
convergent subsequence.

There is another concept of convergence in geodesic spaces; it was introduced by Sosov
[38] and was specialized to CAT(0) spaces by Espı́nola and Fernández-León [29] as follows.

Let X be a CAT(0) space and let p be a point in X. Let S be the set of all the geodesic
segments containing the point p. Given l ∈ S and x ∈ X, we define the function φl : X → R

as φl(x) = d(p, Pl(x))where Pl(x) is the projection of x onto l. The set of all these φl is denoted
by Φp(X).

Definition 3.6. A bounded sequence {xn} in X is said to φp-converge to a point x ∈ X if

lim
n→∞

φ(xn) = φ(x) for any φ ∈ Φp(X). (3.7)

In [29], the authors showed that Δ-convergence and φ-convergence are equivalent as
the following result.
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Proposition 3.7. A sequence {xn} in a CAT(0) space Δ-converges to p if and only if it φp-converges
to p.

Recall that a mapping T on a metric space X is said to be nonexpansive if

d
(
T(x), T

(
y
)) ≤ d(x, y), ∀x, y ∈ X. (3.8)

T is called asymptotically nonexpansive if there is a sequence {kn} of positive numbers
with the property limn→∞kn = 1 such that

d
(
Tn(x), Tn

(
y
)) ≤ knd

(
x, y

)
, ∀n ≥ 1, x, y ∈ X. (3.9)

A point x ∈ X is called a fixed point of T if x = T(x).We will denote with F(T) the set
of fixed points of T. The existence of fixed points for asymptotically nonexpansive mappings
in CAT(0) spaces was proved by Kirk [18] as the following result.

Theorem 3.8. Let C be a nonempty bounded closed and convex subset of a complete CAT(0) space X
and let T : C → C be asymptotically nonexpansive. Then T has a fixed point.

Now, we discuss the notion of asymptotic contractions which was introduced by Kirk
[39] as the following statement.

Let Ψ denote the class of all mappings ψ : [0,∞) → [0,∞) satisfying what follows:

(i) ψ is continuous,

(ii) ψ(s) < s for all s > 0.

Definition 3.9. Let (X, d) be a metric space. A mapping T : X → X is said to be an asymptotic
contraction (see[39]) if

d
(
Tn(x), Tn

(
y
)) ≤ ψn

(
d
(
x, y

)) ∀x, y ∈ X, (3.10)

where ψn : [0,∞) → [0,∞) and ψn → ψ ∈ Ψ uniformly on the range of d.

T is called a pointwise contraction (see[40]) if there exists a mapping α : X → [0, 1)
such that

d
(
T(x), T

(
y
)) ≤ α(x)d(x, y) for each y ∈ X. (3.11)

Definition 3.10. Let (X, d) be a metric space. A mapping T : X → X is called an asymptotic
pointwise mapping (see[30]) if there exists a sequence of mappings αn : X → [0,∞) such that

d
(
Tn(x), Tn

(
y
)) ≤ αn(x)d

(
x, y

)
for any y ∈ X. (3.12)

(i) If {αn} converges pointwise to α : X → [0, 1), then T is called an asymptotic
pointwise contraction.
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(ii) If lim supn→∞αn(x) ≤ 1, then T is called asymptotic pointwise nonexpansive.

(iii) If lim supn→∞αn(x) ≤ k, with 0 < k < 1, then T is called strongly asymptotic
pointwise contraction.

It is immediately clear that an asymptotically nonexpansive mapping is asymptotic
pointwise nonexpansive. By using the ultrapower technique, Kirk [39] established the
existence of fixed points for asymptotic contractions in complete metric spaces. In [40], Kirk
and Xu gave simple and elementary proofs for the existence of fixed points for asymptotic
pointwise contractions and asymptotic pointwise nonexpansive mappings in Banach spaces
without the use of ultrapowers. Very recently, Hussain and Khamsi [30] extended Kirk-
Xu’s results to CAT(0) spaces. Moreover, they introduced a notion of convergence in CAT(0)
spaces as follows.

Let {xn} be a bounded sequence in a CAT(0) space X and let C be a closed convex
subset of X which contains {xn}. We denote the notation

{xn}⇀ w iff Φ(w) = inf
x∈C

Φ(x), (3.13)

where Φ(x) = lim supn→∞d(xn, x). By using this notation, they obtained the demiclosed
principle for asymptotic pointwise nonexpansive mappings as the following result.

Proposition 3.11. Let C be a closed and convex subset of a complete CAT(0) space X, T : C → C
be an asymptotic pointwise nonexpansive mapping. Let {xn} be a bounded sequence in C such that
limnd(xn, T(xn)) = 0, and {xn}⇀ w. Then T(w) = w.

We now give a connection between this kind of convergence and Δ-convergence.

Proposition 3.12. Let {xn} be a bounded sequence in a CAT(0) space X and let C be a closed convex
subset of X which contains {xn}. Then

(1) Δ − limnxn = x implies that {xn}⇀ x,

(2) the converse of (2.2) is true if {xn} is regular.

Proof. (1) Suppose that Δ − limnxn = x, then x ∈ C by Lemma 3.3. Since A({xn}) = {x},
we have r({xn}) = r(x, {xn}). This implies that Φ(x) = infy∈CΦ(y). Therefore we obtain the
desired result.

(2) Suppose that {xn} is regular and {xn} ⇀ x. We note that {xn} ⇀ x if and only if
AC({xn}) = {x}. Suppose that A({xn}) = {y}, again by Lemma 3.3, we have y ∈ C. Therefore
x = y, and hence, A({xn}) = {x}. By the regularity of {xn}, we have A({xn}) ⊂ A({un})
for each subsequence {un} of {xn}. Thus Δ − limnxn = x since the asymptotic center of any
bounded sequence in X must be a singleton.

The following example shows that the regularity in Proposition 3.12 is necessary.

Example 3.13. Let X = R, d be the usual metric on X, C = [−1, 1], {xn} =
{1,−1, 1,−1, . . .}, {un} = {−1,−1,−1, . . .}, and {vn} = {1, 1, 1, . . .}. Then A({xn}) = AC({xn}) =
{0}, A({un}) = {−1}, and A({vn}) = {1}. This means that {xn} ⇀ 0 but it does not have a
Δ-limit.
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Now, we extend Proposition 3.11 to the case of non-self-mappings. The proof closely
follows the proof of Proposition 1 in [30]. For the convenience of the reader we include the
details.

Proposition 3.14. Let C be a closed and convex subset of a complete CAT(0) spaceX and let T : C →
X be an asymptotic pointwise nonexpansive mapping. Let {xn} be a bounded sequence in C such that
limnd(xn, T(xn)) = 0 and {xn}⇀ w. Then T(w) = w.

Proof. As we have observed in the proof of Proposition 3.12, {xn} ⇀ w if and only if
AC({xn}) = {w}. By Lemma 3.3, we have A({xn}) = {w}. Since limnd(xn, T(xn)) = 0,
then we have Φ(x) = lim supn→∞d(T

m(xn), x) for each x ∈ C and m ≥ 1. It follows that
Φ(Tm(x)) ≤ αm(x)Φ(x). In particular, we have Φ(Tm(w)) ≤ αm(w)Φ(w) for allm ≥ 1. Hence

lim sup
m→∞

Φ(Tm(w)) ≤ Φ(w). (3.14)

The (CN) inequality implies that

d

(
xn,

w ⊕ Tm(w)
2

)2

≤ 1
2
d(xn,w)2 +

1
2
d(xn, Tm(w))2 − 1

4
d(w, Tm(w))2, (3.15)

for any n,m ≥ 1. By taking n → ∞,we get

Φ
(
w ⊕ Tm(w)

2

)2

≤ 1
2
Φ(w)2 +

1
2
Φ(Tm(w))2 − 1

4
d(w, Tm(w))2, (3.16)

for anym ≥ 1. Since A({xn}) = {w}, we have

Φ(w)2 ≤ Φ
(
w ⊕ Tm(w)

2

)2

≤ 1
2
Φ(w)2 +

1
2
Φ(Tm(w))2 − 1

4
d(w, Tm(w))2, (3.17)

for anym ≥ 1, which implies that

d(w, Tm(w))2 ≤ 2Φ(Tm(w))2 − 2Φ(w)2. (3.18)

By (3.14) and (3.18)we have limm→∞d(w, Tm(w)) = 0. Hence T(w) = w as desired.

As a consequence, we obtain the following corollary which is a generalization of [37,
Proposition 3.7].

Corollary 3.15. Let C be a closed and convex subset of a complete CAT(0) space X and let T :
C → X be an asymptotically nonexpansive mapping. Let {xn} be a bounded sequence in C such
that limnd(xn, T(xn)) = 0 and Δ − limnxn = w. Then T(w) = w.
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4. Hyperbolic Spaces

We begin this section by talking about hyperbolic spaces. This class contains the class of
CAT(0) spaces (see Lemma 4.4 below).

Definition 4.1 (see [41]). A hyperbolic space is a triple (X, d,W)where (X, d) is a metric space
andW : X ×X × [0, 1] → X is such that

(W1) d(z,W(x, y, α)) ≤ (1 − α)d(z, x) + αd(z, y),
(W2) d(W(x, y, α),W(x, y, β)) = |α − β|d(x, y),
(W3) W(x, y, α) =W(y, x, 1 − α),
(W4) d(W(x, z, α),W(y,w, α)) ≤ (1−α)d(x, y)+αd(z,w) for all x, y, z,w ∈ X, α, β ∈ [0, 1].

It follows from (W1) that, for each x, y ∈ X and α ∈ [0, 1],

d
(
x,W

(
x, y, α

)) ≤ αd(x, y), d
(
y,W

(
x, y, α

)) ≤ (1 − α)d(x, y). (4.1)

In fact, we have

d
(
x,W

(
x, y, α

))
= αd

(
x, y

)
, d

(
y,W

(
x, y, α

))
= (1 − α)d(x, y), (4.2)

since if

d
(
x,W

(
x, y, α

))
< αd

(
x, y

)
or d

(
y,W

(
x, y, α

))
< (1 − α)d(x, y), (4.3)

then we get

d
(
x, y

) ≤ d(x,W(
x, y, α

))
+ d

(
W

(
x, y, α

)
, y

)

< αd
(
x, y

)
+ (1 − α)d(x, y)

= d
(
x, y

)
,

(4.4)

which is a contradiction. By comparing between (2.2) and (4.2), we can also use the notation
(1 − α)x ⊕ αy forW(x, y, α) in a hyperbolic space (X, d,W).

Definition 4.2 (see [41]). The hyperbolic space (X, d,W) is called uniformly convex if for any
r > 0 and ε ∈ (0, 2] there exists a δ ∈ (0, 1] such that, for all a, x, y ∈ X,

d(x, a) ≤ r
d
(
y, a

) ≤ r
d
(
x, y

) ≥ εr

⎫
⎪⎪⎬

⎪⎪⎭
=⇒ d

(
1
2
x ⊕ 1

2
y, a

)
≤ (1 − δ)r. (4.5)

A mapping η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r, ε) for given r > 0 and
ε ∈ (0, 2] is called a modulus of uniform convexity.
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Lemma 4.3 (see [41, Lemma 7]). Let (X, d,W) be a uniformly convex hyperbolic space with
modulus of uniform convexity η. For any r > 0, ε ∈ (0, 2], λ ∈ [0, 1], and a, x, y ∈ X,

d(x, a) ≤ r
d
(
y, a

) ≤ r
d
(
x, y

) ≥ εr

⎫
⎪⎪⎬

⎪⎪⎭
=⇒ d

(
(1 − λ)x ⊕ λy, a) ≤ (

1 − 2λ(1 − λ)η(r, ε))r. (4.6)

Lemma 4.4 (see [41, Proposition 8]). Assume that X is a CAT(0) space. Then X is uniformly
convex, and

η(r, ε) =
ε2

8
(4.7)

is a modulus of uniform convexity.

The following result is a characterization of uniformly convex hyperbolic spaces which
is an analog of Schu [42, Lemma 1.3]. It can be applied to a CAT(0) space as well.

Lemma 4.5. Let (X, d,W) be a uniformly convex hyperbolic space with modulus of convexity η, and
let x ∈ X. Suppose that η increases with r (for a fixed ε), that {tn} is a sequence in [b, c] for some
b, c ∈ (0, 1), and {xn}, {yn} are sequences inX such that lim supnd(xn, x) ≤ r, lim supnd(yn, x) ≤
r, and limnd((1 − tn)xn ⊕ tnyn, x) = r for some r ≥ 0. Then

lim
n→∞

d
(
xn, yn

)
= 0. (4.8)

Proof. The case r = 0 is trivial. Now suppose that r > 0. If it is not the case that d(xn, yn) → 0
as n → ∞, then there are subsequences, denoted by {xn} and {yn}, such that

inf
n
d
(
xn, yn

)
> 0. (4.9)

Choose ε ∈ (0, 1] such that

d
(
xn, yn

) ≥ ε(r + 1) > 0 ∀n ∈ N. (4.10)

Since 0 < b(1 − c) ≤ 1/2 and 0 < η(r, ε) ≤ 1, 0 < 2b(1 − c)η(r, ε) ≤ 1. This implies that
0 ≤ 1 − 2b(1 − c)η(r, ε) < 1. Choose R ∈ (r, r + 1) such that

(
1 − 2b(1 − c)η(r, ε))R < r. (4.11)

Since

lim sup
n

d(xn, x) ≤ r, lim sup
n

d
(
yn, x

) ≤ r, r < R, (4.12)
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there are further subsequences again denoted by {xn} and {yn} such that

d(xn, x) ≤ R, d
(
yn, x

) ≤ R, d
(
xn, yn

) ≥ εR ∀n ∈ N. (4.13)

Then by Lemma 4.3 and (4.11),

d
(
(1 − tn)xn ⊕ tnyn, x

) ≤ (
1 − 2tn(1 − tn)η(R, ε)

)
R

≤ (
1 − 2b(1 − c)η(r, ε))R < r,

(4.14)

for all n ∈ N. Taking n → ∞,we obtain

lim
n→∞

d
(
(1 − tn)xn ⊕ tnyn, x

)
< r, (4.15)

which contradicts the hypothesis.

5. Δ-Convergence Theorem

We now give an application of Corollary 3.15. The following concept for Banach spaces is
due to Schu [42]. Let C be a nonempty closed convex subset of a CAT(0) space X and let
T : C → C be an asymptotically nonexpansive mapping. The Krasnoselski-Mann iteration
starting from x1 ∈ C is defined by

xn+1 = αnTn(xn) ⊕ (1 − αn)xn, n ≥ 1, (5.1)

where {αn} is a sequence in [0, 1].
Recall that a mapping T from a subset C of a CAT(0) space X into itself is called

uniformly Lipschitzian [43] if there exists L > 0 such that

d
(
Tn(x), Tn

(
y
)) ≤ Ld(x, y) ∀x, y ∈ C, n ∈ N. (5.2)

In this case, we call T a uniformly L-Lipschitzian mapping. We also note from (3.9) and (5.2)
that every asymptotically nonexpansive mapping is uniformly L-Lipschitzian for some L > 0.

The following lemma can be found in [44].

Lemma 5.1. LetC be a nonempty convex subset of a CAT(0) spaceX and let T : C → C be uniformly
L-Lipschitzian for some L > 0, {αn} ⊂ [0, 1], and x1 ∈ C. Suppose that {xn} is given by (5.1), and
set cn = d(Tn(xn), xn) for all n ∈ N. Then

d(xn, T(xn)) ≤ cn + cn−1L
(
1 + 3L + 2L2

)
∀n ∈ N. (5.3)

The following lemma can be found in [45].
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Lemma 5.2. Let {an} and {bn} be two sequences of nonnegative numbers such that

an+1 ≤ (1 + bn)an ∀n ≥ 1. (5.4)

If
∑∞

n=1 bn converges, then limn→∞an exists. In particular, if there is a subsequence of {an} which
converges to 0, then limn→∞an = 0.

The following lemmas are also needed.

Lemma 5.3. Let C be a nonempty bounded closed convex subset of a complete CAT(0) spaceX and let
T : C → C be asymptotically nonexpansive with a sequence {kn} in [1,∞) for which

∑∞
n=1(kn −1) <

∞. Suppose that x1 ∈ C, {αn} ⊂ [0, 1], and {xn} is given by (5.1). Then limn→∞d(xn, x) exists for
each x ∈ F(T).

Proof. Let x ∈ F(T), then we have

d(xn+1, x) ≤ d(αnTn(xn) ⊕ (1 − αn)xn, x)
≤ αnd(Tn(xn), x) + (1 − αn)d(xn, x)
≤ αnd(Tn(xn), Tn(x)) + (1 − αn)d(xn, x)
≤ αnknd(xn, x) + (1 − αn)d(xn, x)
≤ [αnkn + (1 − αn)]d(xn, x)
≤ [1 + αn(kn − 1)]d(xn, x).

(5.5)

Hence

d(xn+1, x) ≤ [1 + αn(kn − 1)]d(xn, x). (5.6)

Since {d(xn, x)} is bounded and
∑∞

n=1(kn−1) <∞, by Lemma 5.2, we get that limn→∞d(xn, x)
exists. This completes the proof.

Lemma 5.4. Let C be a nonempty bounded closed and convex subset of a complete CAT(0) space
X and let T : C → C be asymptotically nonexpansive with a sequence {kn} in [1,∞) for which∑∞

n=1(kn − 1) < ∞ and {αn} is a sequence in [a, b] for some a, b ∈ (0, 1). Suppose that x1 ∈ C and
that {xn} is given by (5.1). Then

lim
n→∞

d(xn, T(xn)) = 0. (5.7)

Proof. It follows from Theorem 3.8 that T has a fixed point x ∈ C. In view of Lemma 5.3 we
can let limnd(xn, x) = c for some c in R. Since

d(Tn(xn), x) = d(Tn(xn), Tn(x)) ≤ knd(xn, x), (5.8)
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for all n ∈ N, then

lim sup
n→∞

d(Tn(xn), x) ≤ c. (5.9)

On the other hand, since

d(xn+1, x) ≤ αnd(Tn(xn), x) + (1 − αn)d(xn, x)
≤ αnd(Tn(xn), Tn(x)) + (1 − αn)d(xn, x)
≤ [αnkn + (1 − αn)]d(xn, x)
≤ knd(xn, x),

(5.10)

then

d(xn+1, x) ≤ d(αnTn(xn) ⊕ (1 − αn)xn, x) ≤ knd(xn, x). (5.11)

Hence

lim
n→∞

(d(αnTn(xn) ⊕ (1 − αn)xn, x)) = c. (5.12)

By Lemma 4.5, we have limn→∞d(Tn(xn), xn) = 0. Aswe have observed, every asymptotically
nonexpansive mapping is also uniformly L-Lipschitzian for some L > 0; it follows from
Lemma 5.1 that limn→∞d(T(xn), xn) = 0. This completes the proof.

Lemma 5.5 (see [26]). If {xn} is a bounded sequence in a complete CAT(0) space with A({xn}) =
{x}, {un} is a subsequence of {xn} withA({un}) = {u}, and the sequence {d(xn, u)} converges, then
x = u.

Lemma 5.6. Let C be a closed convex subset of a complete CAT(0) space X and let T : C → X
be an asymptotically nonexpansive mapping. Suppose that {xn} is a bounded sequence in C such
that limnd(xn, T(xn)) = 0 and d(xn, v) converges for each v ∈ F(T), then ωw(xn) ⊂ F(T). Here
ωw(xn) =

⋃
A({un})where the union is taken over all subsequences {un} of {xn}. Moreover,ωw(xn)

consists of exactly one point.

Proof. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that A({un}) = {u}.
By Lemmas 3.5 and 3.3 there exists a subsequence {vn} of {un} such that Δ − limnvn = v ∈ C.
By Corollary 3.15, we have v ∈ F(T). By Lemma 5.5, u = v. This shows that ωw(xn) ⊂ F(T).
Next, we show that ωw(xn) consists of exactly one point. Let {un} be a subsequence of {xn}
with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ ωw(xn) ⊂ F(T), {d(xn, u)} converges.
By Lemma 5.5, x = u. This completes the proof.

We are now ready to prove our main result.

Theorem 5.7. Let C be a bounded closed and convex subset of a complete CAT(0) space X and let T :
C → C be asymptotically nonexpansive with a sequence {kn} ⊂ [1,∞) for which

∑∞
n=1(kn − 1) <∞.
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Suppose that x1 ∈ C and {αn} is a sequence in [a, b] for some a, b ∈ (0, 1). Then the sequence {xn}
given by (5.1) Δ-converges to a fixed point of T.

Proof. It follows from Theorem 3.8 that F(T) is nonempty. By Lemma 5.3, {d(xn, v)} is
convergent for each v ∈ F(T). By Lemma 5.4, we have limn→∞d(xn, T(xn)) = 0. By
Lemma 5.6, ωw(xn) consists of exactly one point and is contained in F(T). This shows that
{xn} Δ-converges to an element of F(T).
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