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Retractable complexes are defined in this paper. It is proved that they have the fixed simplex
property for simplicial maps. This implies the theorem of Wallace and the theorem of Rival and
Nowakowski for finite trees: every simplicial map transforming vertices of a tree into itself has a
fixed vertex or a fixed edge. This also implies the Hell and Nešetřil theorem: any endomorphism
of a dismantlable graph fixes some clique. Properties of recursively contractible complexes are
examined.

1. Preliminaries

We apply some combinatorial methods in the fixed point theory [1]. These methods allow
us to extend some known theorems for graphs [2] and to suggest algorithmic procedures
finding fixed simplices for simplicial maps defined on some classes of complexes.

By N we denote the set of natural numbers. Let V be a finite set and In = {0, . . . , n},
n ∈ N. By P(V )we denote the family of all nonempty subsets of V , and Pn(V ) (P�n(V )) is the
family of all subsets of V of the cardinality n+ 1 (at most n+ 1), n ∈ N. A subset Hn ⊂ P�n(V )
is called a hypergraph and its elements are called edges (a subset H1 ⊂ P�1(V ) is called a graph
[3]). An element of Pn(V ) is called an n-simplex defined on the set V , and a nonempty family
Kn ⊂ Pn(V ) of n-simplices defined on V is called an n-complex defined on the set V .

A complex generated by an n-simplex S is the complex K�n(S) = {V : V ⊂ S}.
Generally, a complex K�n (or an �n-complex K) defined on the set V is a family

consisting of some complexes generated by i-simplices, i ∈ In, that is, K�n ⊂ P�n(V ), and
for any simplex S ∈ K�n, K�n(S) ⊂ K�n.

Vertices of a complex are adjacent if they are vertices of some of its simplex.

Simplices of a complex are adjacent if they have a common vertex.
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A star at a vertex p in an �n-complex K is the �n-complex stK(p) = {S : p ∈ S ∈ K}; the
vertex p is also called a center of the star.

Let S ∈ K�n be an i-simplex of a complex K�n. Then the i-simplex S is a single i-
simplex if there exists exactly one (i + 1)-simplex T ∈ K�n such that S ⊂ T, i ∈ In−1; compare
[4, Definition 2.60] of a free face.

Observe that an �n-complex K is precisely defined by its vertices V (K) :=
⋃

S∈K
S

and its maximal simplices maxK := {S : S ∈ K; there is no T such that S ⊂ T ∈ K

and S/= T}.
For complexes K�n and L�m a map f : V (K�n) → V (L�m) is called simplicial if every

simplex of K�n is mapped onto some simplex of L�m.
For a simplex S = {p0, . . . , pn} ∈ K�n by ∂S := {{p0, . . . , p̂i, . . . , pn} : i ∈ In} ⊂

K�n we denote the boundary of a simplex S and denotation p̂i means that the vertex pi is
omitted.

Notice that for an (n+1)-simplex S, ∂S is an n-complex consisting of all n-subsimplices
of S.

Let u, v be adjacent vertices of a complex K�n, and let V be the set of its vertices. A
map r : V → V \ {u} defined by r(u) = v and r(x) = x for x ∈ V \ {u} is called a retraction if:

(i) u and v do not belong to the boundary ∂S ⊂ K�n of some simplex S/∈K�n,

(ii) the complex K
′
�n defined on vertices V \{u}with simplices S ∈ K�n, such that u/∈S

or S = S′ \ {u} ∪ {v} for some S′ ∈ K�n and S′ � u, is the subcomplex of K�n.

A complex K�n is retractable if it can be reduced to one vertex by a sequence of
retractions.

A union of complexes Ki, i ∈ In, is the complex L =
⋃

i∈In Ki with vertices V (L) =
⋃

i∈In V (Ki).
Analogously, the intersection of complexes Ki, i ∈ In, is the complex L =

⋂
i∈In Ki with

vertices V (L) =
⋂

i∈In V (Ki).

2. Fixed Simplex Property

We say that an �n-complex K has the fixed simplex property if for every simplicial map
f : V (K) → V (K), there exists a simplex S ∈ K which is mapped onto itself, that is,
f(S) = S.

Observe that the following lemma is true.

Lemma 2.1. For an n-simplex S, the complex K�n(S) has the fixed simplex property.

Proof. Let the complex K�n(S) be generated by an n-simplex S, and let f : S → S be a
simplicial map. Notice that fk+1(S) ⊂ fk(S), where k ∈ N and f0(S) := S.

Because S is a finite set, we have f(fi(S)) = fi(S) for some iteration i ∈ In, that is,
fi(S) is a fixed simplex.

Lemma 2.1 can be extended to the following.

Theorem 2.2. A star has the fixed simplex property.

Proof. Assume that stK(p) is a star at a vertex p in an �n-complex K. It consists of a finite
number of simplices. All simplices have the common vertex p: the center of the star. We show
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that for any simplicial map f : V (stK(p)) → V (stK(p)) there is a simplex in stK(p) which is
mapped onto itself. Denote p0 := p.

(1) If f(p0) = p0, then {p0} is a fixed simplex.

(2) If f(p0)/= p0, then denote p1 := f(p0). The vertices p0 and p1 are adjacent because
the center of the star p0 is adjacent to all vertices.

Observe that all succesive iterations of the vertex p0 (including p0) are in one simplex.
By Lemma 2.1 there exists a fixed simplex of the map f . More precisely, consider any vertex
pi = fi(p0) such that f(pi) = pk, where k ∈ Ii, i ∈ In. Observe that the simplex {pk, . . . , pi} is
the fixed simplex of the map f .

Themethod used in the second step of the proof of Theorem 2.2 can be applied to show
the following.

Theorem 2.3. If an �n-complex is retractable, then it has the fixed simplex property.

Proof. We proceed by induction on the number m of vertices of a retractable complex. The
theorem is true for the 0-complex. Let K�n be retractable complex withm + 1 vertices and let
f be a simplicial map defined on V (K�n). By the definition of a retractable complex K�n there
exists a retraction r of a vertex u to a vertex v. The complex K

′
�n with m vertices obtained by

the retraction r has the fixed simplex property. Of course r is the simplicial map from V (K�n)
to V (K′

�n), indeed all simplices of K
′
�n are mapped onto themselves, simplices containing {u}

are mapped onto respective simplices containing v, simplices containing u and v are mapped
onto simplices of a smaller dimension. Define a simplicial map f ′ := r ◦ f on V (K�n). Let
S ∈ K

′
�n be a fixed simplex of the map f ′|V (K′

�n). If f(S) ∈ K
′
�n, then S is the fixed simplex

of f . If not, then there is some vertex x ∈ S such that f(x) = u, u/∈S, and f ′(x) = v, v ∈ S.
For all the other vertices y ∈ S \ {x} we have f(y) = f ′(y) ∈ S \ {v}. We consider successive
iterations of f(x) and show that all fi(x), i ∈ N, f0(x) := x, are in some simplex of K�n.
Because f is the simplicial map, the simplex {u} ∪ (S \ {v}) ∈ K�n. By (i) for any T ⊂ S \ {v}
the simplex {u, v} ∪ T belongs to K�n because u, v are on some boundary ∂T ′ ⊂ K�n for some
T ′ ⊂ {u, v} ∪ S. In particular the simplex f(x) ∪ S is in K�n. Analogously, by induction on
k we prove that

⋃
i∈Ik{fi(x)} ∪ S ∈ K�n, k ∈ Im. Observe that any vertex adjacent to the

vertex u is also adjacent to the vertex v, because of condition (ii) of the retraction r. So all
simplices {fi(x), v} belong to K�n, i ∈ N \ {0, 1}. Thus, by Lemma 2.1 applied to the simplex
⋃

i∈N{fi(x)} ∪ S, the complex K�n has the fixed simplex property.

3. Recursively Contractible Complexes

A complex is recursively contractible [5] if it is generated by an n-simplex or, recursively, it
is a union of two recursively contractible complexes whose intersection is also a recursively
contractible complex.

A complex is s-recursively contractible (or a tree-like) if it is generated by n-simplex or,
recursively, it is a union of two s-recursively contractible complexes whose intersection is a
complex generated by some simplex.

Theorem 3.1. From an s-recursively retractable complex K�n, by a sequence of retractions, one can
obtain the complex generated by any simplex S ∈ K�n.
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Proof. We proceed by induction on the number of recursive steps in the definition of K�n.
Our theorem is obviously true for complexes consisting of two complexes generated by some
simplices with a common complex generated by some simplex. Assume that our theorem is
true for s-recursively complexes K�n and L�n. Let the complex K�n ∪L�n be their union and
a complex M�n(S) (generated by some simplex S) be their intersection. Let T ∈ K�n. Then
we construct a sequence of retractions from L�n to the complex M�n(S) and successively in
the complex K�n to obtain the complex generated by T .

Corollary 3.2. Every s-recursively contractible complex K�n is retractable.

Now from Corollary 3.2 and Theorem 2.3 we have the following.

Corollary 3.3. If an �n-complex K is s-recursively contractible, then it has the fixed simplex
property.

Notice that the recursive contractibility of complexes is not equivalent to the
topological contractibility (see Figure 1).

Theorem 3.4. Any triangulation of the dunce cap is not recursively contractible.

Proof. Let an �2-complex K be a triangulation of the dunce cap. Assume that K is recursively
contractible. Then it can be represented as a union of two recursively contractible �2-
complexes A and B such that their intersection C is also a recursively contractible complex.
Each of complexes A and B must contain at least one 2-simplex which does not belong to C.
Let us remove all 2-simplices, 1-simplices and 0-simplices of A and B which do not belong
to C, respectively. The remaining simplices compose a complex C. We successively remove
all single 1-simplices and respective 2-complexes of C. Observe that the remaining part of C

contains a 1-dimensional cycle and it cannot be recursively contractible.

4. Graph Complexes

Now we present some applications to the graph theory.
A graph is represented by an �1-complex. A vertex of a graph is considered also as a

0-simplex and an edge is considered as a 1-simplex [7].
A graph G is a nonempty finite set V (G), whose elements are called vertices, and a

finite set E(G) ⊂ P�1(V (G)) of unordered pairs of the set V (G) called edges. In case E(G) =
P1(V (G)) it is called a clique or a complete graph.

An edge of the form {v} ∈ P0(V (G)) is called a loop in E(G).

Assumption 4.1. In this paragraph we assume that P0(V (G)) ⊂ E(G) for every graph G.

A vertex u is a neighbour of a vertex v if there is an edge e = {u, v} ∈ E(G).
A subgraph of a graph G = (V,E) is a graph H = (V1,E1), where V1 ⊂ V and E1 ⊂ E. In

this case we denote H � G.
A path P = (W,F) in a graph G = (V,E) is a subgraph P � G with pairwise different

vertices W = {v0, v1, . . . , vk+1}, such that {vi, vi+1} ∈ F for i ∈ Ik and some k ∈ N. The path P
is denoted by v0 · · ·vk+1.

Furthermore, a path v0 · · ·vk+1 = (W,F) is a cycle if {v0, vk+1} ∈ F, k ∈ N.
A graph is connected if every two vertices can be joined by a path.
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Figure 1: Dunce cap is topologically contractible [6].

A connected graph without cycles is called a tree.
Let Gi be a graph, V (Gi) be a set of its vertices and E(Gi) be a set of its edges. A

union of the graphs Gi, i ∈ In, is a graph H =
⊎

i∈InGi, where V (H) =
⋃

i∈In V (Gi) and E(H) =
⋃

i∈In E(Gi).
Analogously, the intersection of the graphs Gi, i ∈ In, is a graph H =

�
i∈InGi, where

V (H) =
⋂

i∈In V (Gi) and E(H) =
⋂

i∈In E(Gi).
Let the vertices of a graphG be covered by itsmaximal cliques (the covering is unique).

These cliques generate maximal simplices. The graph G is identified with a graph complex
KG consisting of these simplices and its subsimplices. There is one to one correspondence
between the graph G and the graph complex KG defined in that way.

We know that a tree has the fixed edge property [8] or the fixed point property [9].
To formulate this theorem for graph complexes we consider a tree as a union of 1-simplices,
where the intersection of some two 1-simplices is a vertex or an empty set.

Fact 1 (see [8, Theorem 3]). A tree with loops has the fixed clique property.

Similarly, we conclude that a union of graphs, having the fixed clique property, with
a clique as their intersection also has the fixed clique property. We just consider complexes
generated by these graphs with simplices generated by respective cliques.

The fixed clique property is analogous to the fixed simplex property. Simplicial maps
on complexes correspond to edge-preserving maps on graphs.

Theorem 4.2. If each of a finite number of graphs G1 = (V1,E1), G2 = (V2,E2), . . . , Gk = (Vk,Ek)
has the fixed clique property and the intersection of these graphs is a clique, then their union
G1

⊎
G2

⊎ · · ·⊎Gk = (V1 ∪ V2 ∪ · · · ∪ Vk,E1 ∪ E2 ∪ · · · ∪ Ek) has also the fixed clique property.

A graph G which generate the retractable graph complex KG is called a retractable
graph.

A graph G is triangulated [10] if every cycle of the length greater than 3 possesses a
chord, that is, an edge joining two nonconsecutive vertices of the cycle.

Let H be a graph and u, v be its vertices such that every neighbour of v (including v)
is also a neighbour of u. Then there is a fold of the graph H to H − v (a graph obtained from
H by removing the vertex v with all edges e such that v ∈ e), mapping v to u and fixing
other vertices. A graph is dismantlable if it can be reduced, by a sequence of such folds, to one
vertex.
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Figure 2: The retractable complex M�2 cannot be obtained from the dismantlable graph K4 (by covering
by maximal cliques).

Figure 3: The dismantlable graph which is not triangulated.

Observe that a fold in a dismantlable graph G corresponds to a retraction in the
respective graph complex KG.

Theorem 4.3 (see [2, Theorem 2.65]). Every endomorphism of a dismantlable graph fixes some
clique.

Fact 2. A dismantlable graph is a retractable graph.

A dismantlable graph always generate a retractable complex. However, there are some
retractable complexes which cannot be obtained from the dismantlable graph. Consider a
cliqueK4 with four vertices. Covering its vertices by simplices we obtain a complex L�3(K4).
This complex contains all edges of the clique K4 but these edges are also contained in the
complex M�2 obtained from L�3(K4) by removing simplices 1234 and 123 (see Figure 2).

Observe that triangulated graphs are dismantlable. One can find some dismantlable
graphs which are not triangulated (see Figure 3).
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