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We discuss the newly introduced concept of cone metric spaces. We also discuss the fixed point
existence results of contractive mappings defined on such metric spaces. In particular, we show
that most of the new results are merely copies of the classical ones.

1. Introduction

Cone metric spaces were introduced in [1]. A similar notion was also considered by Rzepecki
in [2]. After carefully defining convergence and completeness in cone metric spaces, the
authors proved some fixed point theorems of contractive mappings. Recently, more fixed
point results in cone metric spaces appeared in [3–8]. Topological questions in cone metric
spaces were studied in [6]where it was proved that every cone metric space is first countable
topological space. Hence, continuity is equivalent to sequential continuity and compactness
is equivalent to sequential compactness. It is worth mentioning the pioneering work of
Quilliot [9] who introduced the concept of generalized metric spaces. His approach was
very successful and used by many (see references in [10]). It is our belief that cone metric
spaces are a special case of generalizedmetric spaces. In this work, we introduce ametric type
structure in cone metric spaces and show that classical proofs do carry almost identically in
these metric spaces. This approach suggest that any extension of known fixed point result to
cone metric spaces is redundant. Moreover the underlying Banach space and the associated
cone subset are not necessary.

For more on metric fixed point theory, the reader may consult the book [11].



2 Fixed Point Theory and Applications

2. Basic Definitions and Results

First let us start by making some basic definitions.

Definition 2.1. Let E be a real Banach space with norm ‖ · ‖ and P a subset of E. Then P is
called a cone if and only if

(1) P is closed, nonempty, and P /= {θ}, where θ is the zero vector in E;

(2) if a, b ≥ 0, and x, y ∈ P , then ax + by ∈ P ;

(3) if x ∈ P and −x ∈ P , then x = θ.

Given a cone P in a Banach space E, we define a partial ordering � with respect to P
by

x � y ⇐⇒ y − x ∈ P. (2.1)

We also write x ≺ y whenever x � y and x /=y, while x 	 y will stand for y − x ∈ Int(P)
(where Int(P) designate the interior of P). The cone P is called normal if there is a number
K > 0, such that for all x, y ∈ E, we have

θ � x � y =⇒ ‖x‖ ≤ K
∥
∥y

∥
∥. (2.2)

The least positive number satisfying this inequality is called the normal constant of P .
The cone P is called regular if every increasing sequence which is bounded from above is
convergent. Equivalently the cone P is called regular if every decreasing sequence which is
bounded from below is convergent. Regular cones are normal and there exist normal cones
which are not regular.

Throughout the Banach space E and the cone P will be omitted.

Definition 2.2. A cone metric space is an ordered pair (X, d), where X is any set and d : X ×
X → E is a mapping satisfying

(1) d(x, y) ∈ P , that is, θ � d(x, y), for all x, y ∈ X, and d(x, y) = θ if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) � d(x, z) + d(z, y), for all x, y, z ∈ X.

Convergence is defined as follows.

Definition 2.3. Let (X, d) be a cone metric space, let {xn} be a sequence in X and x ∈ X. If for
any c ∈ P with c � θ, there isN ≥ 1 such that for all n ≥ N, d(xn, x) 	 c, then {xn} is said to
be convergent. We will say {xn} converges to x and write limn→∞xn = x.

It is easy to show that the limit of a convergent sequence is unique. Cauchy sequences
and completeness are defined by

Definition 2.4. Let (X, d) be a cone metric space, {xn} be a sequence in X. If for any c ∈ P
with c � θ, there is N ≥ 1 such that for all n,m ≥ N, d(xn, xm) 	 c, then {xn} is called
Cauchy sequence. If every Cauchy sequence is convergent in X, then X is called a complete
cone metric space.
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The basic properties of convergent and Cauchy sequences may be found at [1]. In
fact the properties and their proofs are identical to the classical metric ones. Since this work
concerns the fixed point property of mappings, we will need the following property.

Definition 2.5. Let (X, d) be a cone metric space. A mapping T : X → X is called Lipschitzian
if there exists k ∈ R such that

d
(

Tx, Ty
) � kd

(

x, y
)

, (2.3)

for all x, y ∈ X. The smallest constant k which satisfies the above inequality is called the
Lipschitz constant of T , denoted Lip(T). In particular T is a contraction if Lip(T) ∈ [0, 1).

As we mentioned earlier cone metric spaces have a metric type structure. Indeed we
have the following result.

Theorem 2.6. Let (X, d) be a metric cone over the Banach space E with the cone P which is normal
with the normal constant K. The mapping D : X × X → [0,∞) defined by D(x, y) = ‖d(x, y)‖
satisfies the following properties:

(1) D(x, y) = 0 if and only if x = y;

(2) D(x, y) = D(y, x), for any x, y ∈ X;

(3) D(x, y) ≤ K(D(x, z1) + D(z1, z2) + · · · + D(zn, y)), for any points x, y, zi ∈ X, i =
1, 2, . . . , n.

Proof. The proofs of (1) and (2) are easy and left to the reader. In order to prove (3), let
x, y, z1, . . . , zn be any points in X. Using the triangle inequality satisfied by d, we get

d
(

x, y
) � d(x, z1) + d(z1, z2) + · · · + d

(

zn, y
)

. (2.4)

Since P is normal with constant K we get

∥
∥d

(

x, y
)∥
∥ ≤ K

∥
∥d(x, z1) + d(z1, z2) + · · · + d

(

zn, y
)∥
∥, (2.5)

which implies

∥
∥d

(

x, y
)∥
∥ ≤ K

(‖d(x, z1)‖ + ‖d(z1, z2)‖ + · · · + ∥
∥d

(

zn, y
)∥
∥
)

. (2.6)

This completes the proof of the theorem.

Note that the property (3) is discouraging since it does not give the classical triangle
inequality satisfied by a distance. But there are many examples where the triangle inequality
fails (see, e.g., [12]).

The above result suggest the following definition.
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Definition 2.7. Let X be a set. Let D : X ×X → [0,∞) be a function which satisfies

(1) D(x, y) = 0 if and only if x = y;

(2) D(x, y) = D(y, x), for any x, y ∈ X;

(3) D(x, y) ≤ K(D(x, z1) + D(z1, z2) + · · · + D(zn, y)), for any points x, y, zi ∈ X, i =
1, 2, . . . , n, for some constant K > 0.

The pair (X,D) is called a metric type space.

Similarly we define convergence and completeness in metric type spaces.

Definition 2.8. Let (X,D) be a metric type space.

(1) The sequence {xn} converges to x ∈ X if and only if limn→∞D(xn, x) = 0.

(2) The sequence {xn} is Cauchy if and only if limn,m→∞D(xn, xm) = 0.

(X,D) is complete if and only if any Cauchy sequence in X is convergent.

3. Some Fixed Point Results

Let T : X → X be a map. T is called Lipschitzian if there exists a constant λ ≥ 0 such that

D
(

Tx, Ty
) ≤ λD

(

x, y
)

(3.1)

for any x, y ∈ X. The smallest constant λ will be denoted Lip(T).

Theorem 3.1. Let (X,D) be a complete metric type space. Let T : X → X be a map such Tn is
Lipschitzian for all n ≥ 0 and that

∑∞
n=0 Lip(T

n) < ∞. Then T has a unique fixed point ω ∈ X.
Moreover for any x ∈ X, the orbit {Tnx} converges to ω.

Proof. Let x ∈ X. For any n, h ≥ 0, we have

D
(

Tn+hx, Tnx
)

≤ Lip(Tn)D
(

Thx, x
)

≤ KLip(Tn)
h−1∑

i=0

D
(

Ti+1x, Tix
)

. (3.2)

Hence

D
(

Tn+hx, Tnx
)

≤ KLip(Tn)

(
h−1∑

i=0

Lip
(

Ti
)
)

D(x, Tx). (3.3)

Since
∑∞

n=0 Lip(T
n) is convergent, then limn→∞Lip(Tn) = 0. This forces {Tnx} to be a Cauchy

sequence. Since X is complete, then {Tnx} converges to some point ω(x). First let us show
that ω(x) is a fixed point of T . Since

D
(

Tn−1x,ω(x)
)

≤ K
(

D
(

Tn−1x, Tnx
)

+D(Tnx,ω(x))
)

≤ K
(

Lip
(

Tn−1
)

D(x, Tx) +D(Tnx,ω(x))
)

,

(3.4)
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we get

D(ω(x), Tω(x)) ≤ K(D(ω(x), Tnx) +D(Tnx, Tω(x)))

≤ K
((

1 +KLip(T)
)

D(ω(x), Tnx) +KLip(T)Lip
(

Tn−1
)

D(x, Tx)
)

.
(3.5)

If we let n → ∞, we get D(ω(x), Tω(x)) = 0, or Tω(x) = ω(x). Next we show that T has at
most one fixed point. Indeed let ω1 and ω2 be two fixed points of T . Then we have

D(ω1, ω2) = D(Tnω1, T
nω2) ≤ Lip(Tn)D(ω1, ω2) (3.6)

for any n ≥ 1. Since limn→∞Lip(Tn) = 0, we getD(ω1, ω2) = 0, or ω1 = ω2. Therefore we have
ω(x) = ω(y) for any x, y ∈ X, which completes the proof of the theorem.

The condition
∑∞

n=0 Lip(T
n) < ∞ is needed because of the condition (3) satisfied byD.

In fact a more natural condition should be

(3′) D(x, y) ≤ K(D(x, z) +D(z, y)), for any points x, y, z ∈ X, for some constant K > 0.

An example of such D satisfying (3′) is given below.

Example 3.2. Let X be the set of Lebesgue measurable functions on [0, 1] such that

∫1

0

∣
∣f(x)

∣
∣
2
dx < ∞. (3.7)

Define D : X ×X → [0,∞) by

D
(

f, g
)

=
∫1

0

∣
∣f(x) − g(x)

∣
∣
2
dx. (3.8)

Then D satisfies the following properties:

(1) D(f, g) = 0 if and only if f = g;

(2) D(f, g) = D(g, f), for any f, g ∈ X;

(3′) D(f, g) ≤ 2(D(f, h) +D(h, g)), for any points f, g, h ∈ X.

In the next result we consider the case of metric type spaces (X,D) when D satisfies
(3′). Recall that a subset Y of X is said to be bounded whenever sup{D(x, y);x, y ∈ Y} < ∞.

Theorem 3.3. Let (X,D) be a complete metric type space, where D satisfies (3′) instead of (3). Let
T : X → X be a map such that Tn is Lipschitzian for any n ≥ 0 and limn→∞Lip(Tn) = 0. Then T
has a unique fixed point if and only if there exists a bounded orbit. Moreover if T has a fixed point ω,
then for any x ∈ X, the orbit {Tnx} converges to ω.
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Proof. Clearly if T has a fixed point, then its orbit is bounded. Conversely let x ∈ X such that
{Tnx} is bounded, that is, there exists c ≥ 0 such that D(Tnx, Tmx) ≤ c, for any n,m ≥ 0. Let
n, h ≥ 0, we have

D
(

Tn+hx, Tnx
)

≤ Lip(Tn)D
(

Thx, x
)

≤ Lip(Tn)c. (3.9)

Since limn→∞Lip(Tn) = 0, then {Tnx} is a Cauchy sequence. Hence {Tnx} converges to some
point ω(x) since X is complete. The remaining part of the proof follows the same as in the
previous theorem.

The connection between the above results and the main theorems of [1] are given in
the following corollary.

Corollary 3.4. Let (X, d) be a metric cone over the Banach space E with the cone P which is normal
with the normal constant K. Consider D : X × X → [0,∞) defined by D(x, y) = ‖d(x, y)‖. Let
T : X → X be a contraction with constant k < 1. Then

D
(

Tnx, Tny
) ≤ KknD

(

x, y
)

(3.10)

for any x, y ∈ X and n ≥ 0. Hence Lip(Tn) ≤ Kkn, for any n ≥ 0. Therefore
∑

n≥0 Lip(T
n) is

convergent, which implies T has a unique fixed point ω, and any orbit converges to ω.

From the definition ofD in the above Corollary, we easily see thatD-convergence and
d-convergence are identical.

Remark 3.5. In [1] the authors gave an example of a map T which is contraction for d but not
for the euclidian distance. From the above corollary, we see that Lip(T) ≤ Kk. Since Kk may
not be less than 1, then T may not be a contraction for D. This is why the above theorems
were stated in terms of {Lip(Tn)}.

Using the ideas described above one can prove fixed point results for mappings which
contracts orbits and obtain similar results as Theorem 4 for example in [1].
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