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We discuss some problems and permutation statistics involving two different types of random
permutations. Under the usual model of random permutations, we prove that the shifted coverage
of the elements of {1, 2, . . . , k} of a random permutation over {1, 2, . . . , n}; that is, the size of the
union of the cycles containing these elements, excluding these elements themselves, follows a
negative hypergeometric distribution. This fact gives a probabilistic model for the coverage via
the canonical cycle representation. For a different random model, we determine some random
permutation statistics regarding the problem of the lost boarding pass and its variations.

1. Introduction

Permutation statistics play an important role in exploring structural properties of random
phenomena from a statistical point of view and often do in the context of the analysis of
algorithmic applications. We select a permutation π = (π(1), π(2) . . . , π(n)) of {1, 2 . . . , n}
at random with π(i) denoting the element to which i gets mapped in the permutation.
Sometimes, the mapping is also denoted by i → π(i). Each permutation can be uniquely
expressed as the product of disjoint cycles. A cycle is an ordered subset of the permutation
whose elements cyclically trade places with one another; for example, the permutation 3241
is the product of the (134) 3-cycle and the (2) 1-cycle. Here, the notation (134) means that
starting from the original ordering 1234, the first element is mapped into the third, the third
into the fourth, and the fourth into the first, while the second stays unchanged.

Let πi denote the set of elements in the cycle that contains element i of a random
permutation π of {1, 2, . . . , n}; that is, πi = {i, π(i), π(π(i)), . . .}. We also use the notation πS

for the (set) union of cycles containing all of the elements in S ⊆ {1, 2, . . . , n} (thus, in fact, πi

is a shortcut for π{i}). Sometimes, we write πi in its cycle form (i, π(i), π(π(i)), . . .) when we
want to emphasize the actual cyclical order in the cycle and not only its membership.
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In the standard model, all permutations are assumed to be equally likely among the
permitted permutations. If all the n! permutations are permitted, then one of the most useful
tools in analyzing these permutations is a correspondence known as the canonical cycle
representation (although often an alternative version is referred to as canonical cycle form):
in the cycle product form of the permutation, write each cycle such that it ends with its least
element and order these cycles so that these last elements of the cycles are in increasing order.
This correspondence does not seem to match any real life situation. (Had we ordered the
cycles in decreasing order or in increasing order but according to their largest elements, then
this process models how new records are achieved.) Note that one might benefit from the
canonical cycle representation even if the permutations are not equally likely (cf. proof of
Theorem 3.9).

Except for Corollary 2.7, membership problems arewell known for the standardmodel
(cf. [1], Section 3). We prove that the size of the union of the cycles containing any k
prescribed elements excluding these elements themselves follows a negative hypergeometric
distribution. For completeness, we also included the well-known results and their short
standard proofs in Section 2.

Note that in the second random permutation model, the cycle structure is simple with
one nontrivial cycle. The distribution of its size is determined in Remark 3.4 and Theorem 3.6.
The number of valid permutations for a generalized version is given in Theorem 3.9.

Theorems 2.3, 2.4, 3.5, 3.6, 3.9, and Corollary 2.7, as well as the distributional
observation given in identity (3.5) and its consequences in the second solution of the
lost boarding pass problem seem to be new. We also provide a straightforward proof of
Theorem 3.2. Identity (3.3) also appeared in [2].

We note that [3] contains a great selection of results regarding random permutation
statistics by using tools of analytic combinatorics mainly applied to bivariate generating
functions.

Apparently, the second model has the flavor of a statistical resampling method whose
purpose is to exchange labels on data points when performing significance tests.

2. The Union of Cycles with Given Membership and Its Cardinality

Now, we discuss membership issues by using the canonical cycle form.

Theorem 2.1. We have that P(k ∈ π1) = P(2 ∈ π1) = 1/2 with 2 ≤ k ≤ n.

Proof. Without loss of generality, we answer the question for 2 ∈ π1. We use the canonical
cycle form defined in Section 1: P(2 ∈ π1) is related to the position of 2 relative to that of 1.
In fact, 2 belongs to the cycle π1 of element 1 exactly if 2 comes before 1 whose probability is
1/2.

The previous question on P(2 ∈ π1) has an equivalent form P(π1 = π2). We can
generalize this to k cycles about shared membership.

Theorem 2.2. For k ≥ 2, we have that

mk = P(π1 = π2 = · · · = πk) =
1
k
, (2.1)

and the probability remains the same for any k distinct indices.
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Proof. Similarly to the proof of Theorem 2.1, the elements 2, 3, . . ., and k belong to the cycle
of element 1 exactly if 2, 3, . . ., and k each comes before 1; that is, mk is the probability that
in a random permutation 1 is the last of these numbers which is 1/k. The probability is not
affected by the choice of the indices by symmetry.

Nowwe find, in probabilistic terms, howmuch of {1, 2, . . . , n} is covered by taking the
union of the cycles that include any given k elements, for example, 1, 2 . . . , k.

Theorem 2.3. For all m, 1 ≤ k ≤ m ≤ n, we get that

Pk(m,n) = P
(∣∣π{1,2,...,k}(n)

∣
∣ = m

)
=

k

m

(
n−k
n−m

)

( n
n−m )

=

(
m−1
k−1

)

( n
k )

. (2.2)

With some calculations, we get the expected size and the variance of the size of the coverage
in

Theorem 2.4. We have that

E
∣∣π{1,2,...,k}(n)

∣∣ =
k

k + 1
(n + 1), var

(∣∣π{1,2,...,k}(n)
∣∣) =

k(n − k)(n + 1)

(k + 1)2(k + 2)
. (2.3)

For any fixed k, 1 ≤ k ≤ n, as n → ∞, we get that

var
(∣∣π{1,2,...,k}(n)

∣∣) ∼ k

(k + 1)2(k + 2)
n2. (2.4)

Remark 2.5. The case k = 1 with P1(m,n) = 1/n, 1 ≤ m ≤ n is trivial since 1 can go to
n equally likely positions in the canonical representation. With the indicator variables Xi =
1, i = 1, 2, . . . , n, exactly if i is in the cycle π1, we have X1 = 1, since 1 ∈ π1 and P(i ∈ π1) = 1/2
if 2 ≤ i ≤ n by Theorem 2.1, and hence E|π1| = (n+1)/2. Note that theXis are not independent
sincemj /=m

j−1
2 , for j ≥ 3, by Theorem 2.2. Indeed, as we have just mentioned |π1| = 1+

∑n
i=2 Xi

has uniform distribution rather than binomial.

Remark 2.6. Another interesting special case deals with m = n, that is, determining the
probability Pk(n, n) = k/n, 1 ≤ k ≤ n that the combined cycles covering k preselected
elements cover the whole set {1, 2, . . . , n}. Surprisingly, the most likely numberN of elements
covered is n for k ≥ 2 as we will see it in (2.5) of the proof below.

Proof of Theorem 2.3. We use the canonical cycle form again: we can characterize all
permutations with the required property. We start with the case in which m = n (cf.
Remark 2.6). The k elements cover the whole set {1, 2, . . . , n} exactly if the last element of
the permutation in the correspondence is not greater than k which has a chance of k/n.

In the general case, if the union consists of m elements, then the probability of this
happening is k/m by the previous case, and the remaining n − m positions can be filled
( n
n−m )(n − m)! ways, out of which

(
n−k
n−m

)
(n − m)! will have the smallest k elements in the

union, and this completes the proof of the first part of the identity (2.2).
In order to prove the second part of the theorem, we note that, for k ≥ 2, the

distribution of the random variable |π{1,2,...,k}(n)| is, perhaps somewhat surprisingly, tail
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heavy on the right; that is, Pk(m,n) = P(|π{1,2,...,k}(n)| = m) is getting larger as m is getting
closer to n. We observe that

Pk(m + 1, n)
Pk(m,n)

=
m

m + 1 − k
, k ≤ m ≤ n − 1. (2.5)

For k = 1, we get that the ratio is 1, and the coverage follows the uniform distribution over
{1, 2, . . . , n}. For k ≥ 2, the ratio exceeds 1. It is easy to see that

P2(m,n) =
2(m − 1)
n(n − 1)

, k ≤ m ≤ n (2.6)

is a linear function in m, and in general, Pk(m,n) as a function of m over the integers
{k, k + 1, . . . , n} is a polynomial of degree k − 1 by (2.5). More precisely, it follows by (2.5)
and Pk(k, n) = k!(n − k)!/n! = 1/

(n
k

)
that

Pk(m,n) =

(
m−1
k−1

)

( n
k )

, k ≤ m ≤ n. (2.7)

(This fact also guarantees that the sequence Pk(m,n), m = k, k+1, . . . , n, is strictly concave up
for k ≥ 3.)

It follows that the distribution of the shifted coverage |π{1,2,...,k}(n)| − k belongs to the
family of negative hypergeometric distributions. This observation gives a probabilistic model
for the coverage via the canonical cycle representation of permutations.

Corollary 2.7. For the shifted coverage, one has that |π{1,2,...,k}(n)|−k ∼NegativeHypergeometric[k,n-
k;k].

Now, we present an alternative direct proof of the corollary without using (2.7).

Proof of Corollary 2.7. We have k black and n − k white balls. We select balls without
replacement until all black balls have been selected, and, at this point, let Yk denote the
number of white balls selected. Clearly, Yk ∼ NegativeHypergeometric[k, n − k; k]; that is,
P(Yk = x) =

(
x+k−1
k−1

)
/( n

k ), 0 ≤ x ≤ n − k. With m = x + k, we get that P(Yk = m − k) =
P(Yk + k = m) =

(
m−1
k−1

)
/( n

k ), k ≤ m ≤ n, for the distribution of the total number of
selected balls (including the k black ones). Note that this probability remains the same if we
distinguish the balls of the same color; for example, individually label the black and white
balls in two separate groups, since it introduces an extra factor k!(n−k)! in both the numerator
and denominator. We can find a correspondence between the k black and n − k white balls,
and the sets Sk = {1, 2, . . . , k} and {1, 2, . . . , n} \ Sk, respectively. First, we index the black
balls from 1 to k and the white balls from k + 1 to n. We set π(1) to be the index of the first
ball. We also record the color of the ball in every step. If the index is different from 1, then
we go on and pick the next ball whose index is to be assigned to π(2)(1) = π(π(1)). We keep
picking elements until π(j)(1) = 1 for some j. Let s = s1 be the smallest index in Sk not in
π1 = (π(1), π(2)(1), . . . , π(j)(1) = 1). If such an s exists, then we set π(s) to be the index of the
next ball and keep continuing until the cycle πs is completed. We set s = s2 to be the smallest
index in Sk not in π1 ∪πs1 . If such an s exists, then we set π(s) to be the index of the next ball
and keep continuing until πs is completed, and so forth. The process goes on until no such
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s exists. Note that the coverage of π{1,2,...,k}(n) consists of k black balls and |π{1,2,...,k}(n)| − k
white balls.

For k = 1, |π1(n)| − 1 is the number of elements of the first cycle π1 in the canonical
cycle representation before 1 is included; that is, it is the number of white balls before the
only black ball is selected. For a general k, |π{1,2,...,k}(n)| − k counts the white balls before the
set {1, 2, . . . , k} is completely included.

3. Some New Results Regarding the Lost Boarding Pass

Now, we discuss a popular problem and some of its variations involving random
permutations of a different type. We answer questions similar to those addressed in Section 2
and derive some other properties regarding certain generalizations.

The problem of the lost boarding pass (see [4, page 35]). One hundred people line up to board
an airplane, but the first has lost their boarding pass and takes a random seat instead. Each subsequent
passenger takes their assigned seat if available, otherwise a random unoccupied seat. What is the
probability that the last passenger to board finds their seat occupied?

We assume that the passengers and the seats are ordered and the ith passenger takes
the seat π(i), 1 ≤ i ≤ n. In our original standard model of random permutations, each
passenger would randomly pick their seat while here the ith passenger’s assigned seat is
i but then the first one picks their seat at random, out of necessity. The other passengers
make random choices only if their seats are occupied. In a more general context, if r stands
for the number of passengers who have lost their boarding passes, then the original model
corresponds to r = n, while here r = 1 with the understanding that the first passenger lost
their pass. Remarks 3.3 and 3.7 below make it clear that it is irrelevant which of the first n − 1
passengers lost their pass. Of course, if only the last passenger lost their boarding pass, then
even they will be properly seated. On the other hand, for larger r, the actual r-element set L
of passengers without boarding passes does matter. Note that if the last passenger finds their
seat occupied, then they end up at a seat assigned to one of the passengers in L. In summary,
this model can be viewed as a generalization of the original one with r < n. We focus on the
case with L = {1}, and thus r = 1.

Remark 3.1. By (2.1), we would get that P(π1 = πn) = P(π1 = π2) = m2 = 1/2. However, it
turns out that the random permutation model used for establishing (2.1) does not work here.
In fact, P(i ∈ π1) changes with i, for example, P(2 ∈ π1) = 1/n and P(3 ∈ π1) = 1/(n − 1) as
we will see below in the solution (when we calculate qk). The structure of the cycles is
also different from the above random model, and the resulting permutation is far from
being typical: it has a long cycle π1 (of asymptotic average length logn, cf. Remark 3.4),
and otherwise, only one-element cycles (fixed points). It is easy to see that there are 2n−1

such permutations for n ≥ 1, since we have
(

n−1
|π1|−1

)
ways to construct the nontrivial cycle

with size |π1| = 1, 2, . . . , n. In a similar fashion, half of these permutations have the last
passenger finding their seat occupied. Note, however, that the permutations occur with very
different probabilities depending on not only the size of π1 but its membership according
to Theorem 3.5 (notwithstanding, it also gives the answer 0.50 to the problem of the lost
boarding pass by the fact that (3.3) has a last factor of one exactly if the last passenger finds
their seat already occupied, and thus, making P(n ∈ π1) = P(n/∈π1) = 1/2).

We find the answer by presenting two approaches. There are other solutions using
recurrence relations or other techniques. The “definitive” solution is given in [4, pages 36-37]
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although it is of no help with respect to distributional concerns. (Winkler’s solution requires
no calculations and is based on conditionalizing with two competing targets. It also shows
that references to the actual permutation can be completely dropped.) Regarding the case
L = {1, 2, . . . , r}, we also mention an interesting result byMisra [2] and determine the number
of valid permutations.

The first approach is based on finding the probability qk that passenger k finds their
seat occupied. We note that the cycle of 1 is quite special: it looks like π1 = (a1 = 1, a2, . . . , al)
with l = |π1|, a1 = 1 < a2 < a3 < · · · < al, ai+1 = π(ai), i = 1, 2, . . . , l − 1, and π(al) = 1; thus,
the elements of the only nontrivial cycle are in a monotone increasing order. (We note that by
assuming that a little argument erupts whenever a passenger with a boarding pass finds their
seat occupied, then the first passenger can figure out their original seat assignment since their
seat is taken by the last upset person. The distribution of the waiting time T for obtaining this
information is implicitly discussed in the second solution since P(T = l) = on−l, 2 ≤ l ≤ n,
and the probability that none of the n passengers get upset is on.) One might ask about the
chances that the second, the third, and so forth, passengers will find their own seats occupied
rather than simply the last one. With qk = P(passenger k finds their own seat occupied) =
P(k ∈ π1), we get that q1 = 0, q2 = P(passenger 1 takes the seat of passenger 2) = 1/n, and
qn = P(a|π1| = n). With the notation i → j meaning that passenger i takes the seat of passenger
j: q3 = P((1 → 3) ∪ (1 → 2 → 3)) = (1/n) + 1/n(1/n − 1) = 1/n − 1 and

q4 = P((1 −→ 4) ∪ (1 −→ 2 −→ 4) ∪ (1 −→ 2 −→ 3 −→ 4) ∪ ((1 −→ 3 −→ 4) ∩ (2 −→ 2)))

=
1
n
+
1
n

1
n − 1

+
1
n

1
n − 1

1
n − 2

+
1
n
1

1
n − 2

=
1

n − 2
.

(3.1)

In a similar way, q5 = 1/(n − 3). More complicated calculations lead to qk = 1/(n − k + 2).
Indeed, in general, we encounter exactly the various terms in the expansion of qk =
(1/n)

∏k−2
i=1 (1 + (1/n − i)) = 1/(n − k + 2) by properly conditionalizing with respect to all

seat selections leading to k ∈ π1. We have just proved

Theorem 3.2.

qk = P(passenger k finds their own seat occupied) =
1

n − k + 2
, 2 ≤ k ≤ n. (3.2)

In particular, we get qn = 1/2, which provides the solution to the problem.

Remark 3.3. We note that qk depends on the actual set L of passengers who lost their boarding
passes if r = |L| > 1. The above derivation assumes that r = 1 and the first passenger lost
their pass. However, it is easy to see that if it is the jth rather than the first passenger who
is without a boarding pass, then we can simply ignore the first j − 1 passengers since they
are properly seated. With this reduction in the size of the actual problem, the original answer
qk = 1/(n − k + 2) is preserved in Theorem 3.2 for every j + 1 ≤ k ≤ n, since we simply shift
both n and k by j − 1 to the left. Clearly, q1 = q2 = · · · = qj−1 = qj = 0. In contrast, if r > 1, then
things get more complicated. In general, we consider the condition CL which represents the
event that exactly the passengers in L lost their boarding passes. In this case, the calculation
of the conditional probability that the kth passenger finds their seat occupied may depend on
the choice of L. For example, if r = n − 1 ≥ 1, then the corresponding conditional probability
qk(L) = P(passenger k finds their own seat occupied | CL) for the last passenger with k = n
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is 1 − 1/n or 1 − 1/(n − 1) depending on whether L = {1, 2, . . . , n − 1}, that is, the first n − 1,
or L = {2, 3, . . . , n}, that is, the last n − 1 passengers lost their boarding passes. Of course,
n ∈ L makes no sense since the last passenger has no choice and takes the only empty seat
left; therefore, we assume that n/∈L. Another example with a small r: if r = |L| = 2, then
q3({1, a}) = 2/n, q3({2, b}) = 1/(n − 1), q3({c, d}) = 0 with a > 1, b > 2, c ≥ 3, d > c, and n ≥ 3.
On might speculate that qk(L) depends only on an ordered subset of L.

Remark 3.4. Now, we can find the average number of people who pick their seats at random.
The average is the harmonic number Hn. In fact, we set the indicator variables Xk = 1, k =
1, 2, . . . , n exactly if k is in the cycle π1. We get that |π1| = 1 +

∑n
k=2 Xk since X1 = 1, and thus,

E|π1| = 1 + E(
∑n

k=2 Xk) = 1 +
∑n

k=2 qk = Hn ∼ log n.

We can also derive the following theorem on the probability of membership and
shared membership, similar to Theorems 2.1 and 2.2 of the original standard random
permutation model.

Theorem 3.5. We have that P(π1 = πk) = P(k ∈ π1) = 1/(n − k + 2) with 2 ≤ k ≤ n. Also, for the
full nontrivial cycle, with arbitrary 1 < a2 < a3 < · · · < al ≤ n, we get that

P(π1 = (a1 = 1, a2, . . . , al)) =
1

∏l
i=1(n − ai + 1)

. (3.3)

It is a trivial lower bound on P(π1 = πa2 = · · · = πal), as we might skip some indices of the cycle and
l can be less than |π1|, and an equality if ai = i, 2 ≤ i ≤ l = |π1|, that is, P(π1 = π2 = · · · = π|π1|) =
1/n(n − 1) · · · (n − |π1| + 1).

In general, for 1 < i1 < i2 < · · · < ij ≤ n with j ≥ 2, we have

P
(
π1 = π2 = · · · = πij

)
= P

(
π1 = πi1 = πi2 = · · · = πij

)

=
1

∏j

t=1(n − ii + 2)
,

(3.4)

and thus, the probability depends on the choice of indices.

Proof. The proof is based on the way random selections are made. Identity (3.4) follows by
the repeated applications of Theorem 3.2. Indeed, P(π1 = πi1 = πi2 = · · · = πij ) = P(π1 =
πi1)P(π1 = πi2−i1+1 = πi3−i1+1 = · · · = πij−i1+1), ij − i1 + 1 ≤ n − i1 + 1, since we can recast the
problem as if the nontrivial cycle started with the i1th passenger rather than the first one.

As a consequence of Remark 3.4 and Theorem 3.5, now we can determine the exact
distribution of |π1| since the construction of π1 corresponds to that of consecutive records (cf.
[5]).

Theorem 3.6. For the distribution of the size of the nontrivial cycle, one gets that P(|π1| = j) =
s(n, j)/n!, 1 ≤ j ≤ n, with s(n, j) being the unsigned Stirling number of the first kind indicating the
number of permutations over an n-element set with exactly j cycles.
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Proof. We observe that the variables Xi introduced in Remark 3.4 are independent random
variables according to (3.4). The proof can be finished by the usual argument used for proving
that the positions of the records form an independent sequence of random variables (cf. [6]).
Note that for the usual records, position j is that of a record with probability 1/j. But here,
for the Xis, the order of the indices is reversed between 2 and n. We add that the standard
proof that the distribution of the number of records and cycles is the same uses the alternative
canonical cycle representation mentioned in the introduction.

The second approach is based on calculating the probability ok that exactly the last k
passengers will get their own seats. We can rephrase Remark 3.4 by saying that the number
of people getting their own seats is n−Hn on the average. A portion of this number is formed
by people with consecutive indices immediately following the largest index m = a|π1| in π1.
This is the point after which people take their own seats one-by-one and follow the proper
seating from then on. In fact, if m = n − k, then exactly the last k passengers (without any
gap) will get their own seats. Depending on k, we get that

ok = P
(
exactly the last k passengers will get their own seats

)

= P
(
at least the last k passengers will get their own seats

)

− P
(
at least the last k + 1 passengers will get their own seats

)

=
1

k + 1
− 1
k + 2

=
1

(k + 1)(k + 2)
, k = 0, 1, . . . , n − 2.

(3.5)

The reason for P(at least the last k passengers will get their own seats) = 1/(k + 1) is that
it suffices to focus on π1. As this cycle develops, at any stage of the selection, the current
passenger faces two competing targets: the seat assigned to the first passenger and the set
of seats assigned to the last k passengers. The cycle is either finished by the first choice with
probability 1/(k + 1) or it will move to a seat assigned to one of the last k passengers with
probability k/(k+1). We note that a similar argument shows up in the proof in [4]with k = 1;
however, here, we are interested in the complete distribution ok, 0 ≤ k ≤ n.

We have that o0 = P(n ∈ π1) = 1/2 by (3.5) which solves the problem, in agreement
with the above result.

We note that clearly, on = P(π1 = (1)) = 1/n and o0 /= (n − 1)!/n! = 1/n, for not just the
permutation of the single cycle but all permutations which include 1 and n in the same cycle
π1 should be accounted for. Of course, the case with k = n − 1 is impossible; thus, on−1 = 0. It
is worth mentioning that the question regarding another permutation statistic, the maximum
element of a cycle is answered by ok: P(max{j | j ∈ π1} = k) = P(a|π1| = k) = on−k for
k = 2, . . . n and P(max{j | j ∈ π1} = 1) = P(a|π1| = 1) = on = 1/n.

The expected number of passengers properly seated beyond the mth passenger
defined above isHn − 1 + 1/n. In fact,

n∑

k=0

kok = n
1
n
+

n−2∑

k=1

k

(k + 1)(k + 2)
= 1 +

n−2∑

k=1

(
k + 1

(k + 1)(k + 2)
− 1
(k + 1)(k + 2)

)

= 1 +
(
Hn − 1 − 1

2

)
−
(
1
2
− 1
n

)
= Hn − 1 +

1
n
.

(3.6)
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Thus, on the average, there areHn ∼ logn passengers who are seated at random, and there are
asymptotically n − 2 logn passengers who happened to take their seats before the procedure
settles to proper seating with asymptotically logn people involved in it.

Remark 3.7. Note that the answer does not depend on n. Also, we can start anywhere: it is
irrelevant which of the first n − 1 passengers lost their boarding pass; the answer is simply
P(n ∈ πi) = 1/2, i < n, if the ith passenger lost their pass.

With a proof based on equivalences due to exchanging pairs of seats and (3.3), Misra
[2] obtained the following result.

Theorem 3.8 (see [2, Theorem 4.1]). The probability that the last passenger finds their seat when
the first r passengers seat themselves at random is 1/(r + 1), that is,

1 − qn({1, 2, . . . , r}) = 1
r + 1

, 0 ≤ r ≤ n − 1. (3.7)

In other words, we can create the ultimate chaos by letting the r passengers without
their boarding passes enter the plane first; thus, L = {1, 2, . . . , r} and qn(L) = 1 − (1/(r + 1))
which agrees with our answers based on Theorem 3.2 if r = 1 and the ones in Remark 3.3.

Of course, in real life, these passengers should enter last, since this way theywill have a
better chance to guess their seats correctly. In fact, this group of people will never know what
was their original seat assignment. They might not even care about it and simply choose one
of the remaining empty seats as it was theirs in the first place; thus, all of them are happily
seated at the end. Not to mention that this way the passengers with boarding passes will not
be aggravated by finding their seats occupied.

We note that this kind of seating arrangement seem to be easier to analyze. For
instance, an even better explanation comes for the permutation count 2n−1, mentioned in
Remark 3.1, from applying the canonical cycle representation: for i > 1, there are two ways
to put i, either before or after 1, corresponding to the options i ∈ π1 and i /∈π1, respectively;
otherwise, the orders are determined. In a similar fashion, relative to the position of 1 and 2,
we find that there are 2 · 3n−2, n ≥ 2, valid permutations if L = {1, 2}. In general, we get

Theorem 3.9. For L = {1, 2, . . . , r}, the number of valid permutations is r!(r + 1)n−r if n ≥ r.

Proof. The proof uses the canonical cycle representation. Any ordering of the elements of L
uniquely determines the ordering of the other n−r elements once their relative positions with
respect to L are chosen. In fact, for each number i /∈L, 2 ≤ i ≤ n, there are r+1 segments relative
to the r elements of L to hold i. The segments ending with the elements of L correspond to
the cycles, and thus, within the segments, the order of these numbers is set by the nature of
the seat selections.

Note that this argument does not directly apply to a set L with a gap. For example, if
2/∈L, then the cycle (1x2 . . .), x ≥ 3; hence, the ordering x, 2, . . . , 1 in the first segment cannot
occur.
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