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A procedure for the construction of Costas arrays of infinite size representing configurations on
non-attacking queens on the chessboard is presented.

1. Introduction

Costas arrays [1] are square arrays of dots/1s and blanks/0s, such that there exists exactly
one dot per row and column, and so that (a) no four dots form a parallelogram and (b) no
three dots lying on a straight line are equidistant. They were first developed by Costas in 1965
in the context of SONAR detection ([2], and later in 1984 [3] as a journal publication), while
Golomb, based on previously available empirical constructions, stated and proved in 1984
[4, 5] two algebraic construction methods based on finite fields, known as the Golomb and
Welch methods, still the only ones available today, which work for infinitely many, but not
all, sizes. It was then that Costas arrays acquired their present name and became an object of
mathematical study.

In [6], in connection with the problem of determining the distance vectors between
dots present in Costas arrays, the existence of Costas arrays representing configurations of
nonattacking kings and queens on the chessboard, named Nonattacking Kings Costas Arrays
(NAKCAs) and Nonattacking Queens Costas Arrays (NAQCAs), respectively, was consid-
ered. The conclusion was that NAKCAs exist and can even be systematically constructed for
infinitely many sizes, provided a certain number-theoretic/algebraic conjecture holds true,
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while no known Costas array (i.e., either of size n ≤ 27 [7] or algebraically constructed of
any size, or one of the four Costas arrays presented in [8]) is a NAQCA. Thus, if finite size
NAQCAs exist, they will necessarily have to be sporadic Costas arrays.

This work, after reviewing the basics on Costas arrays, proceeds to present a
procedural constructive proof of the existence of NAQCAs of infinite size. The existence of
NAQCAs of finite size remains an open problem.

2. Basics

Let [n] := {1, . . . , n}, n ∈ N
∗. A Costas array/permutation of finite size is defined as follows.

Definition 2.1. Let f : [n] → [n], n ∈ N, be a bijection; then f is a Costas permutation of size
n if and only if the collection of vectors {(i − j, f(i) − f(j)) : 1 ≤ j < i ≤ n}, called the distance
vectors, are all distinct. Equivalently, f is a Costas permutation if and only if

∀i, j, k ∈ [n] : i + k, j + k ∈ [n], f(i + k) − f(i) = f
(
j + k

) − f(j) =⇒ i = j. (2.1)

The corresponding Costas arrayAf is the square n×n array where the elements at (f(i), i), i ∈
[n], are equal to 1 (dots), while the remaining elements are equal to 0 (blanks):

Af =
[
aij

]
=

⎧
⎨

⎩

1 if i = f
(
j
)
,

0 otherwise,
j ∈ [n]. (2.2)

For Costas arrays/permutations of infinite size, the definition is slightly modified.

Definition 2.2. Let f : S1 → S2, where S1,S2 ∈ {N,Z} is a bijection; then f is a Costas
permutation if and only if the collection of vectors {(i − j, f(i) − f(j)) : j < i}, called the
distance vectors, are all distinct. Equivalently, f is a Costas permutation if and only if

∀i, j ∈ S1, k ∈ N
∗, f(i + k) − f(i) = f

(
j + k

) − f(j) =⇒ i = j. (2.3)

The corresponding Costas array Af is the infinite array where the elements at (f(i), i), i ∈ S1,
are equal to 1 (dots), while the remaining elements are equal to 0 (blanks):

Af =
[
aij

]
=

⎧
⎨

⎩

1 if i = f
(
j
)
,

0 otherwise,
j ∈ S1. (2.4)

There exist two algebraic construction techniques for Costas arrays, based on the
theory of finite fields, known as the Golomb and Welch methods [1, 4, 5], which produce
Costas arrays for infinitely many, though not all, sizes. Costas arrays not obtained by either
of these two methods are known as sporadic Costas arrays.



International Journal of Combinatorics 3

3. NAQCAs of Infinite Size

NAQCAs of infinite size exist in abundance. A procedural construction is described below,
where, starting with an empty array, dots are added to its rows and columns one at a time,
so that, eventually, an NAQCA is formed after countably infinitely many steps. The infinite
size of the array guarantees that, at each step, any column or row that does not contain a dot
yet has finitely many forbidden positions, so there are infinitely many available positions for
placing the dot therein.

Theorem 3.1. NAQCAs of infinite size exist.

Proof. The proof is procedural and begins with an array A = [aij], i ∈ S1, j ∈ S2, S1,S2 ∈
{N,Z}, whose elements are valueless, namely neither 0 nor 1. The steps of the procedure are
the following.

(1) Initialization. Set a00 ← 1; set aij ← 0 for all pairs (i, j) such that either i /= 0, j = 0, or
j /= 0, i = 0, or i = j /= 0, or i = −j /= 0.

(2) Positive Row. Find the smallest i0 > 0 for which for all j, ai0j /= 1; choose randomly
a j for which ai0j is valueless, say j0, and set ai0j0 ← 1; set ai−i0,j−j0 ← 0 for all (i, j)
such that either i /= i0, j = j0, or j /= j0, i = i0, or i− i0 = j − j0 /= 0, or i− i0 = −(j − j0)/= 0.
Set aij ← 0 for all (i, j) such that the distance vector sgn(i − i0)(i − i0, j − j0) already
appears in the construction so far between elements equal to 1.

(3) Positive Column. Find the smallest j0 > 0 for which for all i, aij0 /= 1; choose randomly
an i for which aij0 is valueless, say i0, and set ai0j0 ← 1; set ai−i0,j−j0 ← 0 for all (i, j)
such that either i /= i0, j = j0, or j /= j0, i = i0, or i− i0 = j − j0 /= 0, or i− i0 = −(j − j0)/= 0.
Set aij ← 0 for all (i, j) such that the distance vector sgn(i − i0)(i − i0, j − j0) already
appears in the construction so far between elements equal to 1.

(4) Negative Row, Applicable If and Only If S1 = Z. Find the largest i0 < 0 for which
for all j, ai0j /= 1; choose randomly a j for which ai0j is valueless, say j0, and set
ai0j0 ← 1; set ai−i0,j−j0 ← 0 for all (i, j) such that either i /= i0, j = j0, or j /= j0, i = i0, or
i − i0 = j − j0 /= 0, or i − i0 = −(j − j0)/= 0. Set aij ← 0 for all (i, j) such that the distance
vector sgn(i − i0)(i − i0, j − j0) already appears in the construction so far between
elements equal to 1.

(5) Negative Column, Applicable If and Only If S2 = Z. Find the largest j0 < 0 for which
for all i, aij0 /= 1; choose randomly an i for which aij0 is valueless, say i0, and set
ai0j0 ← 1; set ai−i0,j−j0 ← 0 for all (i, j) such that either i /= i0, j = j0, or j /= j0, i = i0, or
i − i0 = j − j0 /= 0, or i − i0 = −(j − j0)/= 0. Set aij ← 0 for all (i, j) such that the distance
vector sgn(i − i0)(i − i0, j − j0) already appears in the construction so far between
elements equal to 1.

For S1 = S2 = N, steps are performed in the order 1232323 . . ., for S1 = Z, S2 = N in the
order 1234234 . . ., for S1 = N, S2 = Z in the order 1235235 . . ., and, finally, for S1 = S2 = Z in
the order 123452345 . . . .

Observe that, once a value is assigned, the procedure does not alter it any further. To
check the procedure for correctness, it remains to be shown that

(i) it produces a permutation;
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(ii) it retains the nonattacking queens property;

(iii) it retains the Costas property.

This is done inductively. To begin with, initialization certainly retains both the
nonattacking queens and the Costas property. Assume now that, up to a certain step, each
row and column has at most one element equal to 1 and that both the nonattacking queens
and Costas properties are preserved.

(i) As each step assigns exactly one value of 1, at that point finitely many rows and
columns will contain a value of 1, so that any of steps (2)–(5) is allowed to follow
at this point (the procedure “does not get stuck”), and a new value of 1 is indeed
assigned.

(ii) The new value of 1 cannot possibly be assigned to a row or a column that
already contains a value of 1, as 1s get explicitly assigned by the procedure to
rows/columns that contain no value of 1. So, it is always true that each row and
column has at most one element equal to 1.

(iii) Any given row or column can remain without an element equal to one, namely, full
of either unassigned elements or elements equal to 0, for a finite number of steps
only. This is because, at each step, finitely many elements of a row or column are 0s,
and, since for row i/column j it holds true that i−1 rows/j −1 columns lie between
themselves and row 0/column 0, row i/column j is bound to acquire an element
equal to 1 after at most i/j runs of the procedure step cycle 23(4)(5), and at that
point, all remaining valueless elements of this row/column will become equal to 0.

(iv) The Costas and nonattacking queens properties are preserved, by the very
definitions of the steps of the procedure. Note that the Costas property constraint
assigns finitely many values of 0 at the end of each step while the nonattacking
queens constraint assigns values of 0 on four “rays” (the row, the column, and the
two diagonals) emanating from the point where a 1 was assigned, so that every row
or column of the array not containing this specific point gets at most three values of
0 assigned by this constraint on every step.

This concludes the proof.

Note that the description of the procedure in the proof above is unnecessarily
restrictive. In reality, the crucial feature is that each row and column gets exactly one value
of 1, so that a bijection is obtained; the two properties (Costas and nonattacking queens) are
satisfied by default thanks to the definition of the steps. Therefore, the first dot can be placed
anywhere, while, subsequently, steps can be applied in an arbitrary order, as long as any two
consecutive applications of any particular step lie finitely many steps apart.

Note also that the term “procedure” has been used above to characterize the proposed
construction technique, instead of the more common perhaps term “algorithm.” This was a
deliberate decision, in order to respect the fact that an “algorithm” is usually defined as a
finite sequence of actions (or instructions, or steps. . .) leading to the solution of a problem.
The procedure described above involves a countably infinite number of steps and lacks an
explicit stopping condition; hence it should not be characterized as an “algorithm.”
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4. Conclusion

A procedural and constructive proof of the existence of Costas arrays of infinite size
representing configurations on nonattacking queens on the chessboard was presented. The
existence of such arrays in finite sizes remains an open problem: the techniques used in this
work rely crucially on the infinity of the size and do not readily generalize to finite sizes.
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