SMOOTH STRUCTURES ON SPHERE BUNDLES OVER SPHERES

SAMUEL OMOLYE AJALA
Institute for Advanced Study
School of Mathematics
Princeton, New Jersey 08543
USA
and
Department of Mathematics
University of Lagos
Akoka - Yaba
Lagos - Nigeria
West Africa

(Received May 30, 1986)

KEY WORDS AND PHRASES. Smooth structures, differential classification, internal groups.

1. INTRODUCTION

Let E represent p-sphere bundle over a q-sphere with β ∈ π_{q-1}SO(p+1) the characteristic class of the corresponding p+1-disc bundle over the q-sphere. In [4] R. De Sapio gave a complete classification of the special case where β = 0. In [5] and [6] Kawakubo and Schultz respectively also gave a classification of E for this special case. This author in [7] gave a generalization of this special case to product of three ordinary spheres. In [1] a classification of E was given for p < q - 1 and where E has a cross-section and β ≠ 0. In [3] Schultz gave a classification of E for p ≥ q and E is without cross-section. We shall here remove the fact that E has a cross-section so that not every element of π_{q-1}SO(p+1) can be pulled back to the element π_{q-1}SO(p) in the homomorphism S_* : π_{q-1}SO(p) → π_{q-1}SO(p+1) induced by the inclusion s : SO(p) → SO(p+1). S^n denotes the unit n-sphere with the usual differential structure in the Euclidean
(n+1)-space $\mathbb{R}^{n+1} \times \mathbb{Z}^n$ denotes an homotopy n-sphere and Θ^n denotes the group of homotopy n-spheres. $H(p, k)$ denotes the subset of Θ^p which consists of those homotopy p-sphere Σ^p such that $\Sigma^p \times S^k$ is diffeomorphic to $S^p \times S^k$. By [4, Lemma 4], $H(p, k)$ is a subgroup of Θ^p and it is not always zero and in fact in [7] we showed that if $k \geq p - 3$, $H(p, k) = \Theta^p$. We shall adopt the notation $E(\mathbb{Z}^q)$ to represent the total space of a p-sphere bundle over a homotopy q-sphere \mathbb{Z}^q. We will then prove the following:

THEOREM. If M is a smooth, n-manifold homeomorphic to a p-sphere bundle over a q-sphere with total space E where $n = p + q \geq 6$ and $p < q$ then there exists homotopy spheres \mathbb{Z}^q and \mathbb{Z}^n such that M is diffeomorphic to $E(\mathbb{Z}^q) \# \mathbb{Z}^n$. We shall define a pairing

$$G : \pi_p SO(q) \times \pi_{q-1} SO(p+1) \to \Theta^{p+q}$$

and show that if $\beta \in \pi_{q-1} SO(p+1)$ is the characteristic class of a p-sphere bundle over an homotopy q-sphere \mathbb{Z}^q, then $G(\pi_p SO(q), \beta)$ equals the inertial group of $E(\mathbb{Z}^q)$. The above theorem together with the latter will give us the following.

THEOREM. Let E be the total space of a p-sphere bundle over a q-sphere then the diffeomorphism classes of $(p+q)$-manifolds that are homeomorphic to E are in one-to-one correspondence with the group

$$\frac{\Theta^q}{H(p, q)} \times \frac{\Theta^n}{\text{Image} \ G_B}, \text{ where } n = p + q \geq 6 \text{ and } p < q.$$

2. **CLASSIFICATION THEOREM**

In this section, we will prove the classification theorem for any manifold M^n homeomorphic to E. We will apply the obstruction theory to smoothing of manifolds developed by Munkres in [8]. Since $p + q \geq 6$ and $2 \leq p < q$ then E is simply-connected and the homology of E has no 2-torsion, hence the "Hauptvermutung" of D. Sullivan [9] applies and this means that piecewise linear homeomorphism can be replaced by homeomorphism, we shall not distinguish the two.

DEFINITION. Let M and N be smooth closed n-manifolds and L a closed subset of M of dimension less than n. Let $f : M \to N$ be a homeomorphism such that for each simplex γ of L, $f(\gamma)$ are contained in coordinate systems under which they are flat. f is said to be a diffeomorphism modulo L if $f|_{(M-L)}$ is a diffeomorphism and each simplex γ of L has a neighborhood V such that f is smooth on $V-L$ near γ. By [8, Theorem 2.8], if M and N are homeomorphic then there is a diffeomorphism modulo $(n-1)$-skeleton of M. If $f : M \to N$ is a diffeomorphism modulo m-skeleton $m < n$ then the obstruction to deforming
f to a diffeomorphism modulo (m-1)-skeleton g : M → N is an element λ(f) ∈ H_m(M, r^{n-m}) where r^{n-m} is a group of diffeomorphism of S^{n-m-1} modulo those that extend to diffeomorphisms of D^{n-m}. g is called the smoothing of f. If λ(f) = 0 then by [8, §4] smoothing g exist.

THEOREM 2.1. If M is a smooth n-manifold homeomorphic to E where E denotes the total space of a p-sphere bundle over a q-sphere, 2 ≤ p < q and n = p + q then there exist homotopy spheres z^q and z^n such that M is diffeomorphic to E(z^q) # z^n where E(z^q) denotes the total space of a p-sphere bundle over the homotopy q-sphere z^q.

PROOF. E is the total space of a p-sphere bundle over a q-sphere with characteristic class [b] ∈ π_q ISO(p+1) then E = D^q × S^p ∪_{f_b} D^q × S^p where f_b : S^{q-1} × S^p → S^q × S^p is a diffeomorphism defined by f_b(x,y) = (x, b(x), y), (x, y) ∈ S^{q-1} × S^p.

\[
H_i(E) = \begin{cases} Z & \text{for } i = 0, p, q, p+q \\ 0 & \text{elsewhere} \end{cases}
\]

Since M^q is homeomorphic to E where n = p+q ≥ 6 2 ≤ p < q, then M^q is simply connected and since H_3(M, Z) has no 2-torsion, then "Hauptvermutung" of D. Sullivan [9] implies that there is a piecewise linear homeomorphism h : M^q → E which by [8, §5] is a diffeomorphism modulo (n-1)-skeleton. Since H_i(M, Z) = 0 for n-p+1 ≤ i ≤ n-1 then we can assume that h is a diffeomorphism modulo n-p = q skeleton. The obstruction to a diffeomorphism modulo q-1 skeleton is λ(h) ∈ H_q(M, r^p) = r^p. If [ϕ] = λ(h) ∈ r^p where ϕ : S^{p-1} × S^{p-1} is a diffeomorphism that represents λ(h) and let z^p denote the homotopy p-sphere where z^p = D^p_1 ∪_{id.} D^p_2. We define a map

\[
j : S^p → z^p
\]

such that

\[
j(x) = \begin{cases} x & \text{if } x ∈ D^p_1 \\ \phi^{-1}(\frac{x}{|x|}) & \text{if } x ∈ D^p_2. \end{cases}
\]

So j is an homeomorphism which is identity on D^p_1 and the radial extension of \(ϕ^{-1}\) on D^p_2 and so the first obstruction \(λ(j)\) to deforming j to a diffeomorphism is [\(ϕ^{-1}\)] = -λ(h).

We then define id × j : D^q × S^p → D^q × z^p where id is the identity, then id × j is a homeomorphism and it follows from [8, Def. 3.4] that the first obstruction \(λ(id × j)\) to
deforming \(\text{id} x_j \) to a diffeomorphism is also \(-\lambda(h)\). We can form a manifold \(E' \) by identifying two copies of \(D^q \times \Sigma^p \) along their common boundaries \(S^{q-1} \times \Sigma^p \) by the diffeomorphism \(f_b : S^{q-1} \times \Sigma^p \to S^{q-1} \times \Sigma^p \) where \(f_b(x,y) = (x,b(x),y) \) and

\[[b] \in \pi_{q-1} SO(p+1). \]

So \(E' = D^q \times \Sigma^p \cup_{f_b} D^q \times \Sigma^p \). We define a map

\[g : E = (D^q \times \Sigma^p)_1 \cup_{f_b} (D^q \times \Sigma^p)_2 \to (D^q \times \Sigma^p)_1 \cup_{f_b} (D^q \times \Sigma^p)_2 \]

on both \((D^q \times \Sigma^p)_1\), and \((D^q \times \Sigma^p)_2\), the map looks like

\[E = (D^q \times \Sigma^p)_1 \cup_{f_b} (D^q \times \Sigma^p)_2 = (D^q \times \Sigma^p)_1 \cup_{f_b} S^{q-1} \times \Sigma^p \cup_{\text{id}} (D^q \times \Sigma^p)_2 \]

\[E' = (D^q \times \Sigma^p)_1 \cup_{f_b} (D^q \times \Sigma^p)_2 = (D^q \times \Sigma^p)_1 \cup_{f_b} S^{q-1} \times \Sigma^p \cup_{\text{id}} (D^q \times \Sigma^p)_2 \]

\(g \) is an homeomorphism and the first obstruction to a diffeomorphism is \(\lambda(\text{id} x_j) = -\lambda(h) \).

It follows that the obstructions to smoothing the composition \(g \cdot h : M \to E' \) is

\(\lambda(g \cdot h) = \lambda(g) + \lambda(h) = -\lambda(h) + \lambda(h) = 0 \). It follows that \(g \cdot h : M \to E' \) is a diffeomorphism modulo \((q-1)\)-skeleton. However in [7, Remark 1] we showed that \(D^q \times \Sigma^p \) is diffeomorphic to \(D^q \times \Sigma^p \) if \(p < q + 2 \) and so by our hypothesis \(p < q \) then it follows that \(D^q \times \Sigma^p \) is diffeomorphic to \(D^q \times \Sigma^p \). This implies that \(E \) and \(E' \) are diffeomorphic hence \(g' : M \to E \) is a diffeomorphism modulo \((q-1)\)-skeleton. Since \(H_i(M,\mathbb{Z}) = 0 \) for \(p + 1 < i < q-1 \), there is no more obstruction to deforming \(g' \) to a diffeomorphism until we get to \((p-1)\) skeleton. We can then assume that \(g' \) is a diffeomorphism modulo \(p \)-skeleton. The first obstruction to deforming \(g' \) to a diffeomorphism modulo \((p-1)\)-skeleton is \(\lambda(g';) \in H_p(M,\pi^q) = \pi^p \). Let \([\phi] = \lambda(g') \in \pi^q \) where \(\phi : S^{q-1} \to S^{q-1} \) is a diffeomorphism which represents \(\lambda(g') \in \pi^q \). We define \((\phi \cdot \text{id}) : S^{q-1} \times \Sigma^p \to S^{q-1} \times \Sigma^p \)

where \((\phi \cdot \text{id})(x,y) = (\phi(x),y) \) and if \(b = [b] \in \pi_{q-1} SO(p+1) \) we also define \(f_b : S^{q-1} \times \Sigma^p \to S^{q-1} \times \Sigma^p \) where \(f_b(x,y) = (x,b(x),y) \). We then have two orientation preserving diffeomorphisms of \(S^{q-1} \times \Sigma^p \) unto itself which we can compose to get \((\phi \cdot \text{id}) \cdot f_b : S^{q-1} \times \Sigma^p \to S^{q-1} \times \Sigma^p \) where \((\phi \cdot \text{id}) \cdot f_b(x,y) = (\phi(x),b(x),y) \). We then construct a manifold by attaching two copies of \(D^q \times \Sigma^p \) along their common boundary \(S^{q-1} \times \Sigma^p \) using the diffeomorphism \((\phi \cdot \text{id}) \cdot f_b \) to have \(D^q_1 \times \Sigma^p \cup_{f_b} D^q_2 \times \Sigma^p \). Notice that this manifold is a \(p \)-sphere bundle over a homotopy \(q \)-sphere \(S^q = D^q_1 \cup_0 D^q_2 \) whose characteristic map is
$\beta = [b] \in \pi_{q-1}SO(p+1)$. We define a map

$$h : D^q \times S^p \bigcup_{f_b} D_2^q \times S^p = D_1^q \times S^p \bigcup_{(\phi \times \text{id}) \cdot f_b} D_2^q \times S^p$$

by

$$h(x,y) = \begin{cases} (x,y) & \text{if } (x,y) \in D_1^q \times S^p \\ (x \cdot \phi^{-1}(1/|x|), y) & \text{if } (x,y) \in D_2^q \times S^p \end{cases}$$

Hence h is identity on $D_1^q \times S^p$ and a radial extension of ϕ^{-1} on D_2^q. It then follows that h is an homeomorphism with the first obstruction to a diffeomorphism being $[\phi^{-1}] = -\lambda(g')$. Then by [8, 3.8] the first obstruction to deforming the composition $g' \circ h = g : M \times D_1^q \times S^p \bigcup_{(\phi \times \text{id}) \cdot f_b} D_2^q \times S^p$ into a diffeomorphism is $\lambda(g) = \lambda(g' \circ h) = \lambda(g') + \lambda(h) = -\lambda(h) + \lambda(h) = 0$ and hence g is a diffeomorphism modulo $(p-1)$-skeleton. Since $H_i(M, \mathbb{Z}) = 0$ for $0 < i < p$ then we can assume that g is a diffeomorphism modulo one point. Since $D_1^q \times S^p \bigcup_{(\phi \times \text{id}) \cdot f_b} D_2^q \times S^p$ is a p-sphere bundle over a homotopy q-sphere Σ^q with characteristic map $[b] \in \pi_{q-1}SO(p+1)$, we shall denote it by $E(\Sigma^q)$.

Since g is a diffeomorphism modulo one point then it is known that there is an homotopy n-sphere Σ^n such that M is diffeomorphic to $E(\Sigma^q) \# \Sigma^n$. Hence the proof.

3. INERTIAL GROUPS

Since by Theorem 2.1, every manifold homeomorphic to E is diffeomorphic to $E(\Sigma^q) \# \Sigma^n$ for some homotopy spheres Σ^q, Σ^n, classification of such manifolds reduces to classification of manifolds of the form $E(\Sigma^q) \# \Sigma^n$. To complete this classification, we then need to investigate what happens when we vary the homotopy spheres and in particular we need to investigate the Inertial group of $E(\Sigma^q)$. We will investigate these in this section.

Lemma 3.1. Let Σ^q_1 and Σ^q_2 be homotopy q-spheres such that $\Sigma^q_i = D_1^q \bigcup_{\phi^i} D_2^q$, $i = 1, 2$ then $E(\Sigma^q_1)$ is diffeomorphic to $E(\Sigma^q_2)$ if and only if $\Sigma^q_1 \pm \Sigma^q_2 \in H(q,p)$.

Proof. Suppose $E(\Sigma^q_1)$ is diffeomorphic to $E(\Sigma^q_2)$. This means that $D^q_1 \times S^p \bigcup_{(\phi^1 \times \text{id}) \cdot f_b} D^q_2 \times S^p$ is diffeomorphic to $D^q_1 \times S^p \bigcup_{(\phi^2 \times \text{id}) \cdot f_b} D^q_2 \times S^p$ where $\phi^i : S^q-1 \times S^p \times S^q-1 \times S^p$ is the diffeomorphism defined by $\phi^i(x,y) = (\phi^i(x), y)$ and $f_b : S^q-1 \times S^p \times S^q-1 \times S^p$ is defined by $f_b(x,y) = (x, b(x), y)$ where $[b] = b \in \pi_{q-1}SO(p+1)$ is the characteristic map of the bundle. The manifold $E(\Sigma^q_2)$ can be regarded as the boundary of the $(p+1)$-disc bundle over Σ_2 which is denoted by
\[D_q \times D^{p+1} \cup_{(2 \times 1 \times 1)} D_2 \times D^{p+1} = D(\Sigma_2^q). \]

So if \(E(\Sigma_1^q) \) is diffeomorphic to \(E(\Sigma_2^q) \) then since \(\Sigma_1^q \) can be embedded in \(E(\Sigma_1^q) \) it follows that \(\Sigma_1^q \) embeds in \(E(\Sigma_2^q) \). But \(\Sigma_2^q \) naturally embeds in \(E(\Sigma_2^q) \) and so we have \(\Sigma_1^q \) and \(\Sigma_2^q \) sitting in \(E(\Sigma_2^q) \), if we translate \(\Sigma_1^q \) away from \(\Sigma_2^q \) we can run a tube between them to obtain an embedding \(\Sigma_1^q \# (\Sigma_2^q) \rightarrow E(\Sigma_2^q) \) so that the embedding is homotopically trivial and so by the engulfing result of [10, chapter 7] it means that \(\Sigma_1^q \# (\Sigma_2^q) \) can be embedded in the interior of a \((p+q+1)\)-disc in \(E(\Sigma_2^q) \) and by [11, 3.5] the embedding is isotopic to a nuclear embedding into the interior of \(S^q \times D^{p+1} \). However the embedding \(\Sigma_1^q \# (\Sigma_2^q) \rightarrow S^q \times D^{p+1} \) is a homotopy equivalence, it then follows by Smale's theorem [12, Theorem 4.1] that \(\Sigma_1^q \# (\Sigma_2^q) \times D^{p+1} \) is diffeomorphic to \(S^q \times D^{p+1} \) and so it follows that \(\Sigma_1^q \# (\Sigma_2^q) \times S^p \) is diffeomorphic to \(S^q \times S^p \). Since \(S^q \times S^p \) embeds in \(R^{p+q+1} \) with trivial normal bundle then it follows that \(\Sigma_1^q \# (\Sigma_2^q) \) embeds in \(R^{p+q+1} \) with trivial normal bundle. This shows that each \(\Sigma_i^q \) for \(i = 1, 2 \) embeds in \(R^{p+q+1} \) with trivial normal bundle and by [11, §3.5] the embedding is isotopic to an embedding of \(\Sigma_i^q \) into the interior of \(S^q \times D^{p+1} \). However for \(i = 1, 2 \) the embedding \(\Sigma_i^q \rightarrow S^q \times D^{p+1} \) is a homotopy equivalence hence it follows from [12, Theorem 4.1] that \(\Sigma_i^q \times D^{p+1} \) is diffeomorphic to \(S^q \times D^{p+1} \) which implies that \(\Sigma_1^q \times D^{p+1} \) is diffeomorphic to \(\Sigma_2^q \times D^{p+1} \). Now since \(\Sigma_i^q = D_1 \cup D_2 \) where \(\phi_i : S^{q-1} \rightarrow S^{q-1} \) represents \(\Sigma_i^q \in r^q \) \(i = 1, 2 \), then we can write

\[
\Sigma_i^q \times D^{p+1} = D_1 \times D^{p+1} \cup_{\phi_i \times 1} D_2 \times D^{p+1}
\]

along \(S^{q-1} \times D^{p+1} \) by the diffeomorphism \(\phi_i \times 1 : S^{q-1} \times D^{p+1} \rightarrow S^{q-1} \times D^{p+1} \) defined by \((\phi_i \times 1)(x,y) = (\phi_i(x),y) \) where \((x,y) \in S^{q-1} \times D^{p+1} \). So \(\Sigma_1^q \times D^{p+1} \) is diffeomorphic to \(\Sigma_2^q \times D^{p+1} \) implies \(D_1 \times D^{p+1} \cup_{\phi_i \times 1} D_2 \times D^{p+1} \) is diffeomorphic to \(D_1 \times D^{p+1} \cup_{\phi_i \times 1} D_2 \times D^{p+1} \).

Now consider the manifold \(D(S^q) = D_1 \times D^{p+1} \cup_{f_b} D_2 \times D^{p+1} \) which is a \((p+1)\)-disc bundle over a \(q \)-sphere with characteristic map \([b] \in \pi_{q-1} SO(p+1)\). We then form the quotient space

\[
D(S^q) \cup \Sigma_1^q \times D^{p+1} = (D_1 \times D^{p+1} \cup_{f_b} D_2 \times D^{p+1}) \cup (D_1 \times D^{p+1} \cup_{\phi_i \times 1} D_2 \times D^{p+1})
\]

by identifying \(D_1 \times D^{p+1} \subset D(S^q) \) and \(D_2 \times D^{p+1} \subset \Sigma_1^q \times D^{p+1} \) by the relation \((x,y) = (x,y)(x \in D_1^q, y \in D^{p+1}) \). The manifold \(D(S^q) \cup \Sigma_2^q \times D^{p+1} \) is similarly constructed. Since \(\Sigma_1^q \times D^{p+1} \) is diffeomorphic to \(\Sigma_2^q \times D^{p+1} \). Let \(d : \Sigma_1^q \times D^{p+1} \rightarrow \Sigma_2^q \times D^{p+1} \) be the
Diffeomorphism and since any diffeomorphism fixes a disc, we can assume that \(d \) is identity on the disc \(D^{p+q+1} = D_1^q \times D^{p+1} \), then we can define a diffeomorphism.

\[
g : D(S^q) \cup \Sigma_1^q \times D^{p+1} \to D(S^q) \cup \Sigma_2^q \times D^{p+1}
\]

where

\[
g(x) = \begin{cases}
 d(x) & \text{for } x \in \Sigma_1^q \times D^{p+1} \\
 x & \text{for } x \in D(S^q).
\end{cases}
\]

This means that \(g = d \) on \(\Sigma_1^q \times D^{p+1} \) and identity on \(D(S^q) \). \(g \) is well defined because \(d \) is identity on the disc connecting \(D(S^q) \) and \(\Sigma_1^q \times D^{p+1} \) and \(g \) is a diffeomorphism. The manifold \(D(S^q) \cup \Sigma_1^q \times D^{p+1} \) can be clearly seen as follows. Let \((\phi_i \times \text{id}) \cdot f_b : S^{q-1} \times D^{p+1} \to S^{q-1} \times D^{p+1} \) be the diffeomorphism defined by \(((\phi_i \times \text{id}) \cdot f_b)(x,y) = (\phi_i (x), b(x) \cdot y) \), \((x,y) \in S^{q-1} \times D^{p+1} \) then attaching two manifolds \(D^q_+ \times D^{p+1} \) and \(D^q_- \times D^{p+1} \) by the diffeomorphism \((\phi_i \times \text{id}) \cdot f_b \) we have \(D^q_+ \times D^{p+1} \cup D^q_- \times D^{p+1} \) we get a \((p+1)\)-disc bundle over the homotopy q-sphere \(\Sigma_1^q = D_1^q \cup D_2^q \) \(i = 1, 2 \). However, from the way \((\phi_i \times \text{id}) \cdot f_b \) is constructed it is easily seen that \(D(S^q) \cup \Sigma_1^q \times D^{p+1} = D^q_+ \times D^{p+1} \cup D^q_- \times D^{p+1} = D(S^q) \) hence \(g \) is the diffeomorphism of \(D(\Sigma_1^q) \) onto \(D(\Sigma_2^q) \) then it follows that \(a(D(\Sigma_1^q)) = E(\Sigma_1^q) \) is diffeomorphic to \(a(D(\Sigma_2^q)) = E(\Sigma_2^q) \).

Hence the theorem is proved.

REMARK 1. This theorem implies that \(E(\Sigma_1^q) \) is diffeomorphic to \(E(\Sigma_2^q) \) if and only if \(\Sigma_1^q \) and \(\Sigma_2^q \) are equivalent in the quotient group \(\mathfrak{e}^q / \mathfrak{h}(q,p) \).

To complete this classification, we need to determine the inertial group of \(E(\Sigma^q) \). The inertial group \(\mathfrak{I}(M) \) of an oriented closed smooth \(n \)-dimensional manifold \(M \) is defined to be the subgroup of \(\mathfrak{e}^n \) consisting of those homotopy \(n \)-spheres \(\Sigma^n \) such that \(M \) is diffeomorphic to \(M \).

Let \(E_B \) represent the total space of a \(p \)-sphere bundle over a real \(q \)-sphere with characteristic class \(\beta \in \pi_{q-1}SO(p+1) \). In \([13]\) we defined a map \(G_B : \pi_p SO(q) \to \mathfrak{e}^{p+q} \) and showed that the image of this map equals the inertial group of \(E_B \) where \(p < q \) and \(E_B \) has no cross-section. We shall similarly define a map \(G_{\phi, \beta} : \pi_p SO(q) \to \mathfrak{e}^{p+q} \) and show that the image of this map equals the inertial group of \(E(\Sigma^q) \) where \(E(\Sigma^q) \) is the total space of \(p \)-sphere bundle over a homotopy sphere \(\Sigma^q = D_1^q \cup D_2^q \). Let \(\alpha \in \pi_p SO(q) \) we define

\[
G_{\phi, \beta}(\alpha) = S^{q-1} \times D^{p+1} \bigcup_{\phi^{-1}(\phi \times \text{id}) \cdot f_b} D^q \times S^p \text{ where } [\alpha] = \alpha \text{ and } [\beta] = \beta \in \pi_{q-1}SO(p+1) \text{ and}
\]
fa-1(φ×id)⋅fb : S^{q-1} × S^p → S^{q-1} × S^p is a diffeomorphism defined by
fa-1(φ×id)⋅fb(x,y) = (a^{-1}(b(x)⋅y) ∗ (x),b(x)⋅y). One can easily show that G_{φ, B} is well-defined and that
its image is an homotopy (p+q)-sphere as similarly shown in [13].

Lemma 3.2. Let E(ζ^q) denote the total space of a p-sphere bundle over an homotopy
q-sphere ζ^q = D^q_1 = D^q_1 ∪ D^q_2 with characteristic class B ∈ π_{q-1}SO(p+1) then
G_{φ, B^p}(SO(q)) = I(E(ζ^q)).

Proof. If ζ^{p+q} ∈ I(E(ζ^q)) then this means there is a diffeomorphism
d : E(ζ^q) # ζ^{p+q} → E(ζ^q), that is,

d : (D^{q+1}_1 × S^p ∪ D^{q+1}_2 × S^p) # ζ^{p+q} → D^q_1 × S^p ∪ D^q_2 × S^p

since p < q then π_p(E(ζ^q)) is infinitely cyclic and d(α×ζ^q) represents a generator and
so is homotopic to the inclusion 0 × S^p → E(ζ^q). By Haefliger's theorem [14], d|0 × S^p
and the inclusion 0 × S^p → E(ζ^q) are isotopic and by isotopy extension theorem and
tubular neighborhood theorem, d is isotopic to a map which we shall again denote by d
such that d(D^q × S^p = D^q) × S^p where d(x,y) = (a(y)×x,y) for [a] ∈ π_pSO(q) and (x,y) ∈ D^q × S^p. We now remove D^q × S^p from E(ζ^q) # ζ^{p+q} = (D^q × S^p ∪ D^q × S^p) # ζ^{p+q}
by surgery away from the connected sum and replace it with S^{q-1} × D^{p+1}. After this opera-
tion on the summand E(ζ^q) of the connected sum, we have the manifold S^{q-1} × D^{p+1}

U (φ×id)⋅fb

D^q × S^p. Since the diffeomorphism (φ×id)⋅fb : S^{q-1} × S^p → S^{q-1} × S^p extend to
the diffeomorphism of S^{q-1} × D^{p+1} onto itself then S^{q-1} × D^{p+1} U D^q × S^p is
diffeomorphic to S^{q-1} × D^{p+1} U D^q × S^p, the diffeomorphism g is defined thus

\[
\begin{array}{c}
\text{S}^{q-1} \times D^{p+1} \quad \text{id} \\
\downarrow (φ×id)⋅fb \\
\text{S}^{q-1} \times D^{p+1} \quad \text{id}
\end{array}
\]

where

\[
g(x,y) = \begin{cases}
(x,y) & \text{if } (x,y) \in D^q × S^p \\
((φ×id)⋅fb)(x,y) & \text{if } (x,y) \in S^{q-1} × D^{p+1}.
\end{cases}
\]

However, by [7, Lemma 2.1.2], S^{q-1} × D^{p+1} U D^q × S^p is diffeomorphic to the standard
(p+q)-sphere S^{p+q}, hence after this surgery E(ζ^q) is reduced to S^{p+q} and so E(ζ^q) # ζ^{p+q}
is reduced to S^{p+q} × ζ^{p+q} = ζ^{p+q}.

We perform the corresponding modification (under d) on $E(\mathcal{E}^q)$ to remove the p-sphere $0 \times S^p$ with product structure $d(DQ \times S^p)$ in $E(\mathcal{E}^q)$. From this modification we obtain a manifold $S^{q-1} \times D^{p+1} \cup D^q \times S^p$ where $\psi = (d^{-1}|S^{q-1} \times S^p) \cdot (q \times \text{id}) \cdot f_b$ and this is diffeomorphic to Σ^{p+q} because of the way we performed the surgery using d. However, this manifold $S^{q-1} \times D^{p+1} \cup D^q \times S^p = G_{\phi \cdot \beta} (a)$ by the definition of $G_{\phi \cdot \beta}$, thus there exists an element $a \in \pi_1 \text{SO}(q)$ (namely) $d|D^q \times S^p$ which gives $a \in \pi_1 \text{SO}(q)$ such that $\Sigma^{p+q} = G_{\phi \cdot \beta} (a)$ and so $\Sigma^{p+q} \in G_{\phi \cdot \beta} (\pi_1 \text{SO}(q))$, hence $I(E(\mathcal{E}^q)) \subseteq G_{\phi \cdot \beta} (\pi_1 \text{SO}(q))$. Conversely suppose $\Sigma^{p+q} \in G_{\phi \cdot \beta} (\pi_1 \text{SO}(q))$ then for some $a \in \pi_1 \text{SO}(q)$, $\Sigma^{p+q} = S^{q-1} \times D^{p+1} \cup (a-1)^{-1} \cdot (q \times \text{id}) \cdot f_b$ $D^q \times S^p$ where ϕ is a diffeomorphism of S^{q-1} onto itself representing $\Sigma^q = D^q \cup \Delta^q$ and f_a and f_b are as defined earlier. Notice that $G_{\phi \cdot \beta} (a)$ is thus the obstruction to the construction of a diffeomorphism $S^{p+q} \to \Sigma^{p+q}$. To construct a diffeomorphism from $S^{p+q} \to \Sigma^{p+q}$, we map $S^{q-1} \times D^{p+1} \subseteq S^{p+q}$ to itself using $(q \times \text{id}) \cdot f_b$ to have $S^{p+q} = S^{q-1} \times D^{p+1} \cup D^q \times S^p$ $(\phi \times \text{id}) \cdot f_b \upharpoonright \Sigma^{p+q} = S^{q-1} \times D^{p+1} \cup (a-1)^{-1} \cdot (q \times \text{id}) \cdot f_b$ $D^q \times S^p$ and try to extend it to $D^q \times S^p$. On the boundary $S^{q-1} \times S^p$ of $D^q \times S^p$, the map is $f_{b-1} \cdot (\phi^{-1} \times \text{id}) \cdot f_a \cdot (q \times \text{id}) \cdot f_b$. So this means that $\Sigma^{p+q} = G_{\phi \cdot \beta} (a)$ is the obstruction to extending the diffeomorphism $f_{b-1} \cdot (\phi^{-1} \times \text{id}) \cdot f_a \cdot (q \times \text{id}) \cdot f_b : S^{q-1} \times S^p \to S^{q-1} \times S^p$ to a diffeomorphism of $D^q \times S^p$ onto itself. We can then define a map $E(\mathcal{E}^P) \to E(\mathcal{E}^Q)$ using the diffeomorphism $f_a : D^q \times S^p \to D^q \times S^p$ where $f_a(x,y) = (a(y), x, y)$ $(x, y) \in D^q \times S^p$ we then have $E(\mathcal{E}^P) = D^q \times S^p \cup (q \times \text{id}) \cdot f_b$ $D^q \times S^p$ $f_a \upharpoonright E(\mathcal{E}^Q) = D^q \times S^p \cup (q \times \text{id}) \cdot f_b$ $D^q \times S^p$ On the boundary $S^{q-1} \times S^p$ of $D^q \times S^p$, this map is $f_{b-1} \cdot (\phi^{-1} \times \text{id}) \cdot f_a \cdot (q \times \text{id}) \cdot f_b$ and the obstruction to extending this to a diffeomorphism of $E(\mathcal{E}^Q)$ onto itself is the
obstruction to extending the map \(f_{-1}(\phi^{-1}\times \text{id}) \cdot f_{\phi}(\times \text{id}) \cdot f_{\phi} \) to the diffeomorphism of \(D^2 \times S^p \) onto itself which is \(\mathbb{Z}^{p+q} \). It then follows that \(E(\mathbb{Z}^q) \oplus E(\mathbb{Z}^q) \neq \mathbb{Z}^{p+q} \) is a diffeomorphism and so \(\mathbb{Z}^{p+q} \in I(E(\mathbb{Z}^q)) \) hence

\[
E(E(\mathbb{Z}^q)) = G_{\phi} \cdot \beta^p \cdot SO(q)
\]

REMARK 2. We note that if \(p = 2, 4, 5, 6 \pmod 8 \) and \(p < q-1 \) then \(\pi_p \cdot SO(q) = 0 \) and so the image of \(G \) is trivial and hence in this particular case, the inertial group of \(E(\mathbb{Z}^q) \) is trivial and this coincides with the result of [4, Proposition 1].

REMARK 3. By [15], inertial group \(I(M) \) of a smooth manifold \(M \) is a diffeotopy invariant of \(M \). So if \(2p > q+1 \) then we can deduce that the inertial group \(I(E(\mathbb{Z}^q)) \) of a \(p \)-sphere bundle over an homotopy \(q \)-sphere \(\mathbb{Z}^q \) is equal to the inertial group \(I(E_B) \) of a \(p \)-sphere bundle over the standard \(q \)-sphere, where \(\beta \in \pi_{q-1} \cdot SO(p+1) \) classifies the associated disc bundle. Let \(D(\mathbb{Z}^q) \) be the associated \((p+1)\)-disc bundle over the homotopy \(q \)-sphere where \(E(\mathbb{Z}^q) \) is the boundary of \(D(\mathbb{Z}^q) \). \(\mathbb{Z}^q \) has the homotopy type of \(D(\mathbb{Z}^q) \) and \(\mathbb{Z}^q \) has the homotopy type of \(S^q \), it follows that \(S^q \) has the homotopy type of \(D(\mathbb{Z}^q) \). Since \(2p > q+1 \) then it follows that \(2(p+q+1) > 3q + 3 \) and since \(p + q > 5 \) and \(p = 3 \) then \(D(\mathbb{Z}^q) \) and \(E(\mathbb{Z}^q) \) are simply connected and from [12: Theorem 4.4], it follows that \(D(\mathbb{Z}^q) \) is diffeomorphic to a \((p+1)\)-disc bundle \(D(S^q) \) over the \(q \)-sphere \(S^q \) hence the boundary \(\partial D(\mathbb{Z}^q) = E(\mathbb{Z}^q) \) of \(D(\mathbb{Z}^q) \) is diffeomorphic to the boundary \(\partial D(S^q) = E_B \) of \(D(S^q) \). It then follows by [15] that \(I(E(\mathbb{Z}^q)) = I(E_B) \). This means that the inertial group of \(S_B \) in [13] coincides with Lemma 3.2.

Combination of Lemmas 3.1 and 3.2 give the following.

THEOREM 3.3. Let \(E \) be the total space of a \(p \)-sphere bundle over a \(q \)-sphere with characteristic map \(\beta \in \pi_{q-1} \cdot SO(p+1) \) then the diffeomorphism classes of \(p+q \)-manifolds that are homeomorphic to \(E \) are in one-to-one correspondence with the group

\[
\mathbb{Z}^q \times \frac{\mathbb{Z}^n}{\mathbb{Z}^{n+p}} \times \text{Image } G_B
\]

where \(p+q = n \geq 6 \) and \(p < q \).

REFERENCES

Mathematical Problems in Engineering

Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

- Manuscript Due: December 1, 2008
- First Round of Reviews: March 1, 2009
- Publication Date: June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk

Hindawi Publishing Corporation
http://www.hindawi.com