A CRITERION FOR p-VALENTLY STARLIKE FUNCTIONS

SHIGEYOSHI OWA
Department of Mathematics
Kinki University
Higashi-Osaka, Osaka 577, Japan

MAMORU NUNOKAWA
Department of Mathematics
Gunma University
Aramaki, Maebashi, Gunma 371, Japan

SEIICHI FUKUI
Department of Mathematics
Wakayama University
Wakayama 640, Japan

(Received December 22, 1992 and in revised form April 19, 1993)

ABSTRACT. The object of the present paper is to prove a criterion for p-valently starlike functions in the open unit disk.

KEY WORDS AND PHRASES. Analytic, open unit disk, p-valently starlike.

1991 AMS SUBJECT CLASSIFICATION CODE. Primary, 30C45.

1. INTRODUCTION.

Let $A(p)$ be the class of functions of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad (p \in \mathbb{N} \setminus \{1, 2, 3, \ldots\}),$$

which are analytic in the open unit disk $U = \{z : |z| < 1\}$. A function $f(z)$ belonging to $A(p)$ is said to be p-valently starlike in U if it satisfies

$$Re \left\{ \frac{zf'(z)}{f(z)} \right\} > 0 \quad (z \in U).$$

We denote by $S(p)$ the subclass of $A(p)$ consisting of functions $f(z)$ which are p-valently starlike in U (cf. [1]).

Recently, Nunokawa [4] has shown that

THEOREM A. If $f(z) \in A(p)$ satisfies $f(z) \neq 0 (0 < |z| < 1)$ and

$$Re \left\{ \frac{1 + zf''(z)}{zf'(z)} \right\} < 1 + \frac{1}{zp} \quad (z \in U),$$

then $f(z) \in S(p)$.

In the present paper, we derive a new criterion for the class $S(p)$ involving the above result by Nunokawa [4].

2. A NEW CRITERION.

To derive our main result, we have to recall here the following lemma due to Jack [2] (also, due to Miller and Mocanu [3]).

LEMMA. Let $w(z)$ be analytic in U with $w(0) = 0$. If $|w(z)|$ attains its maximum value on the circle $|z| = r < 1$ at a point z_0, then we can write

$$z_0 w'(z_0) = kw(z_0),$$

where k is a real number and $k \geq 1$.

Now, we prove

THEOREM. If \(f(z) \in A(p) \) satisfies \(f(z) \neq 0 (0 < |z| < 1) \) and

\[
\arg \left(\frac{f(z)}{zf'(z)} \left(1 + \frac{z f''(z)}{f'(z)} \right) - \left(1 + \frac{1}{4p} \right) \right) > 0 \quad (z \in U),
\]

then \(f(z) \in S(p) \) and

\[
\left| \frac{zf'(z)}{f(z)} - p \right| < p \quad (z \in U).
\]

PROOF. Define the function \(w(z) \) by

\[
\frac{zf'(z)}{f(z)} = p(1 + w(z)).
\]

Then \(w(z) \) is analytic in \(U \) and \(w(0) = 0 \). It follows from (2.4) that

\[
1 + \frac{z f''(z)}{f'(z)} = p(1 + w(z)) + \frac{zw'(z)}{1 + w(z)},
\]

so that,

\[
\frac{f(z)}{zf'(z)} \left[1 + \frac{z f''(z)}{f'(z)} \right] = 1 + \frac{zw'(z)}{p(1 + w(z))^2}.
\]

Suppose that there exists a point \(z_0 \in U \) such that

\[
|z| \leq |z_0|, \quad |w(z)| = |w(z_0)| = 1 \quad (w(z_0) \neq -1).
\]

Then, applying Lemma, we can write

\[
z_0w'(z_0) = kw(z_0) \quad (k \geq 1)
\]

and \(w(z_0) = e^{i\theta} (\theta \neq \pi) \). Thus we have

\[
\frac{f(z_0)}{z_0f'(z_0)} \left[1 + \frac{z_0 f''(z_0)}{f'(z_0)} \right] = 1 + \frac{k e^{i\theta}}{p(1 + e^{i\theta})^2}
\]

\[
\geq 1 + \frac{1}{4p}.
\]

Note that the condition (2.2) implies

\[
\frac{f(z)}{zf'(z)} \left[1 + \frac{z f''(z)}{f'(z)} \right] \neq \alpha \quad (z \in U),
\]

where \(\alpha \geq 1 + 1/4p \). Therefore, (2.7) contradicts our condition (2.2). Consequently, we conclude that

\[
\left| \frac{zf'(z)}{f(z)} - p \right| < p \quad (z \in U),
\]

that is, that \(f(z) \in S(p) \).

Letting \(p = 1 \) in Theorem, we have

COROLLARY. If \(f(z) \in A(1) \) satisfies \(f(z) \neq 0 (0 < |z| < 1) \) and

\[
\arg \left(\frac{f(z)}{zf'(z)} \left(1 + \frac{z f''(z)}{f'(z)} \right) - \frac{5}{4} \right) > 0 \quad (z \in U),
\]

then \(f(z) \in S(1) \) and

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| < 1 \quad (z \in U).
\]
ACKNOWLEDGEMENT. The research of the first author was supported in part by Japanese Ministry of Education, Science and Culture under Grant-in-Aid for General Scientific Research (No. 04640204).

REFERENCES

4. NUNOKAWA, M., Certain class of starlike functions, to appear.
Mathematical Problems in Engineering

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>December 1, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru

Hindawi Publishing Corporation
http://www.hindawi.com