CHARACTERIZATIONS OF MULTINOMIAL DISTRIBUTIONS BASED ON CONDITIONAL DISTRIBUTIONS

KHOAN T. DINH¹, TRUC T. NGUYEN² and YINING WANG²

¹U.S. Environmental Protection Agency
 Washington, DC 20460

²Department of Mathematics and Statistics
 Bowling Green State University
 Bowling Green, OH 43403-0221

(Received March 8, 1994 and in revised form October 5, 1994)

ABSTRACT. Several characterizations of the joint multinomial distribution of two discrete random vectors are derived assuming conditional multinomial distributions.

KEY WORDS AND PHRASES. Binomial distribution, joint distribution, conditional density, identically distributed, exchangeable distribution.

AMS 1992 SUBJECT CLASSIFICATION CODE. 62H05.

1. INTRODUCTION.

Suppose that the distributions of $X \mid Y = y$ and $Y \mid X = x$ both are given for every real values x, y, then the joint distribution of X and Y is tried to be reconstructed. Brucker [4], then Fraser and Streit [6], Castillo and Galambos [5] characterized a bivariate normal distribution given that $X \mid Y = y$ and $Y \mid X = x$ both have normal distribution under some given conditions. Bischoff and Fieger [3], then Hamedani [8] gave characterizations of multivariate normal distribution, Dinh and Nguyen [9] gave a characterization of matrix variate normal distribution. In the case X and Y are identically distributed, and $Y \mid X = x$ has a normal distribution of mean $ax + b$ and variance σ^2, Ahsanullah [1] showed that $|a| < 1$ and X and Y have a joint bivariate normal distribution. In his paper Ahsanullah also proposed a conjecture for a multidimensional version of his result. Hamedani [7], then Arnold and Pourahmadi [2] gave counterexamples to this conjecture, and they also gave different characterizations for multivariate normal distribution based on conditional multivariate normality. Nguyen [10] gave a characterization for matrix variate normal distribution having identically distributed row vectors. In this note we consider the problem of characterization of multinomial distribution based on conditional multinomial distributions. In Section 2 a characterization of multinomial distribution is given based on two conditional multinomial distributions. In Section 3 a characterization of the joint multinomial of two identically distributed random vectors based on one conditional multinomial
distribution is given. A conjecture similar to a conjecture proposed by Ahsanullah [1] is also raised and answered by a counterexample. Some supplementary conditions are added to this conjecture making it to be sufficient to characterize a multinomial distribution.

2. THE FIRST CHARACTERIZATION.

In this section we go to characterize a joint multinomial distribution of two discrete random vectors based on the conditional multinomial distribution of one vector given the other vector. A discrete random vector \(X = (X_1, \ldots, X_k)' \) is defined to have a multinomial \((n, p_1, \ldots, p_k) \) distribution if its density is given by

\[
p(x_1, \ldots, x_k) = \frac{n!}{\prod_{i=1}^{k} x_i! \prod_{i=1}^{k} \left(n - \sum_{i=1}^{k} x_i \right)} \prod_{i=1}^{k} p_i^{x_i} (1 - P)^{n - \sum_{i=1}^{k} x_i},
\]

(2.1)

where \(p_i > 0, i = 1, \ldots, k, \sum_{i=1}^{k} p_i < 1, 0 \leq \sum_{i=1}^{k} x_i \leq n, x_i \) nonnegative integer, \(i = 1, \ldots, k, \)

\(P = \sum_{i=1}^{k} p_i \). Its moment generating function (m.g.f.) is given by

\[
M(s_1, \ldots, s_k) = \left(\sum_{i=1}^{k} p_i s_i + 1 - P \right)^n,
\]

(2.2)

for all real numbers \(s_1, \ldots, s_k \). It is clear that \(M \) is a continuous function in \((s_1, \ldots, s_k) \).

THEOREM 2.1. Let \(X = (X_1, \ldots, X_m)' \) and \(Y = (Y_1, \ldots, Y_k)' \) be two discrete random vectors, whose components taking values on the set of nonnegative integers. Suppose \(X \mid Y = y = (y_1, \ldots, y_k) \) has a multinomial \(\left(n - \sum_{j=1}^{k} y_j, p_1, \ldots, p_m \right) \) distribution for all nonnegative integers \(y_1, \ldots, y_k, \sum_{j=1}^{k} y_j \leq n, \) and \(Y \mid X = x = (x_1, \ldots, x_m) \) has a multinomial \(\left(n - \sum_{i=1}^{m} x_i, q_1, \ldots, q_k \right) \) distribution for all nonnegative integers \(x_1, \ldots, x_m, \)

\(\sum_{i=1}^{m} x_i \leq n. \) Then \(X \) and \(Y \) have a joint multinomial distribution.

PROOF. From the conditional distribution of \(X \mid Y = y, \)

\[
P_{X,Y}(x,y) = \frac{\left(n - \sum_{j=1}^{k} y_j \right)!}{\prod_{i=1}^{m} x_i! \prod_{i=1}^{m} \left(n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{k} y_j \right)!} \prod_{i=1}^{k} p_i^{x_i} (1 - P)^{n - \sum_{i=1}^{k} x_i - \sum_{j=1}^{k} y_j} P_Y(y),
\]

(2.3)

and from the conditional distribution of \(Y \mid X = x, \)
CHARACTERIZATIONS OF MULTINOMIAL DISTRIBUTIONS

\[P_{X,Y}(x,y) = \frac{\left(\frac{n - \sum_{i=1}^{m} x_i}{x_i} \right)!}{\prod_{j=1}^{k} y_j! \left(\frac{n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{k} y_j}{x_i} \right)!} \prod_{i=1}^{k} q_i^{y_j} (1 - Q) \sum_{i=1}^{m} x_i \sum_{j=1}^{k} y_j \ P_X(x), \]

(2.4)

where \(Q = \sum_{i=1}^{k} q_i \). Equating (2.3) and (2.4), then simplifying,

\[\frac{P_X(x) \prod_{i=1}^{m} x_i! \left(\frac{n - \sum_{i=1}^{m} x_i}{x_i} \right)!}{\prod_{i=1}^{m} p_i x_i (1 - Q)} = \frac{P_Y(y) \prod_{j=1}^{k} y_j! \left(\frac{n - \sum_{j=1}^{k} y_j}{x_i} \right)!}{\prod_{j=1}^{k} q_j y_j (1 - P)} \]

(2.5)

for all nonnegative integers \(x_1, x_m, y_1, y_k \), \(\sum_{i=1}^{m} x_i + \sum_{j=1}^{k} y_j \leq n \). The left side of (2.5)

depends only on \(x_1, x_m \), meanwhile the right side of (2.5) depends only on \(y_1, y_k \), therefore their common value \(K \) does not depend on \(x \) and \(y \). Hence,

\[P_X(x) = \frac{K \prod_{i=1}^{m} p_i x_i (1 - Q)}{\prod_{i=1}^{m} x_i! \left(\frac{n - \sum_{i=1}^{m} x_i}{x_i} \right)!} \]

(2.6)

for all nonnegative integers \(x_1, x_m, \sum_{i=1}^{m} x_i \leq n \), and

\[P_Y(y) = \frac{K \prod_{j=1}^{k} q_j y_j (1 - P)}{\prod_{j=1}^{k} y_j! \left(\frac{n - \sum_{j=1}^{k} y_j}{x_i} \right)!} \]

(2.7)

for all nonnegative integers \(y_1, y_k, \sum_{j=1}^{k} y_j \leq n \). To find \(K \), sum up (2.6) on all possible values of \(x \) or sum up (2.7) on all possible values of \(y \), and using the fact that they are density functions,

\[\sum_{x} P_X(x) = \frac{K}{n!} \sum_{x_1 + \ldots + x_m \leq n} \prod_{i=1}^{m} \frac{x_i!}{x_i!} \prod_{i=1}^{m} p_i (1 - Q) x_i (1 - P)^{n - \sum_{i=1}^{m} x_i} \]
\[
= \frac{K}{n!} \left(\sum_{i=1}^{m} p_i (1 - Q) + 1 - P \right)^n \\
= \frac{K}{n!} [1 - PQ]^n = 1.
\]

Hence,

\[
K = \frac{n!}{[1 - PQ]^n}. \quad (2.8)
\]

Substitute \(K\) in (2.6),

\[
P_X(x) = \frac{n!}{\prod_{i=1}^{m} x_i!} \left(n - \sum_{i=1}^{m} x_i \right)! \prod_{i=1}^{m} \left[p_i (1 - Q) \right]^{x_i} \left[\frac{1 - P}{1 - P(1 - Q)} \right]^{n - \sum_{i=1}^{m} x_i} \quad (2.9)
\]

and then substitute (2.9) in (2.4),

\[
P_{X,Y}(x,y) = \frac{n!}{\prod_{i=1}^{m} x_i! \prod_{j=1}^{k} y_j!} \left(n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{k} y_j \right)! \prod_{i=1}^{m} \left[p_i (1 - Q) \right]^{x_i} \left[\frac{1 - P}{1 - P(1 - Q)} \right]^{n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{k} y_j} \\
\cdot \prod_{j=1}^{k} \left[q_j (1 - P) \right] y_j \left[\frac{1 - P}{1 - P(1 - Q)} \right]^{n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{k} y_j}, \quad (2.10)
\]

for all nonnegative integers \(x_1, \ldots, x_m, y_1, \ldots, y_k, \sum_{i=1}^{m} x_i + \sum_{j=1}^{k} y_j \leq n\). Then \(X\) and \(Y\) have a joint multinomial distribution.

3. THE SECOND CHARACTERIZATION.

A characterization of the joint multinomial distribution of two identically distributed random vectors in this section is based on only one conditional multinomial distribution. It is trivial that if \(X\) and \(Y\) are random vectors whose components have values on the set of nonnegative integers and if \(Y\) has a multinomial \((n,q_1,\ldots,q_k)\) distribution and \(X \mid Y=y=(y_1,\ldots,y_k)\) has a multinomial \(\left(n - \sum_{j=1}^{k} y_j, p_2, \ldots, p_m \right)\) distribution for all \(y_1,\ldots,y_k, \sum_{j=1}^{k} y_j \leq n\), then the joint distribution of \(X\) and \(Y\) is multinomial with density given by

\[
P_{X,Y}(x,y) = \frac{n!}{\prod_{i=1}^{m} x_i! \prod_{j=1}^{k} y_j!} \left(n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{k} y_j \right)! \prod_{i=1}^{m} \left[p_i (1 - Q) \right]^{x_i} \left[\frac{1 - P}{1 - P(1 - Q)} \right]^{n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{k} y_j} \\
\cdot \left[\frac{(1 - P)(1 - Q)}{1 - P(1 - Q)} \right]^{n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{k} y_j}, \quad (3.1)
\]

for all nonnegative integers \(x_1, \ldots, x_m, y_1, \ldots, y_n\) such that \(\sum_{i=1}^{m} x_i + \sum_{j=1}^{k} y_j \leq n\).
If \(X \) and \(Y \) are identically distributed and if their joint distribution is a multinomial
\((n,p_1,\ldots,p_m,p_1,\ldots,p_m)\) distribution, then \(\sum_{i=1}^{m} p_i < \frac{1}{2} \) and the marginal distribution of \(X \) and \(Y \) is a multinomial \((n,p_1,\ldots,p_m)\) distribution. The conditional distribution of \(X \) given \(Y = y = (y_1,\ldots,y_m) \) is a multinomial distribution with density given by

\[
P_{X \mid Y = y}(x \mid y) = \frac{\left(n - \sum_{j=1}^{m} y_j\right)!}{\prod_{i=1}^{m} x_i! \left(n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{m} y_j\right)!} \left(\prod_{i=1}^{m} \left(\frac{p_i}{1 - P}\right)^{x_i}\right)^n \sum_{i=1}^{m} y_j^{\sum_{i=1}^{m} x_i},
\]

for all nonnegative integers \(x_1,\ldots,x_m \) such that \(\sum_{i=1}^{m} x_i \leq n - \sum_{j=1}^{m} y_j \).

THEOREM 3.1. Let \(X = (X_1,\ldots,X_m)' \) and \(Y = (Y_1,\ldots,Y_m)' \) be two identically distributed discrete random vectors whose components have values on the set of nonnegative integers. Suppose \(X \mid Y = y = (y_1,\ldots,y_m)' \) has a multinomial \(\left(n - \sum_{j=1}^{m} y_j,p_1,\ldots,p_k\right) \) distribution for all nonnegative integers \(y_1,\ldots,y_m, \sum_{j=1}^{m} y_j \leq n \), then \(X \) and \(Y \) have a joint multinomial distribution.

PROOF. Since \(X \mid Y = y = (y_1,\ldots,y_m) \) has a multinomial \(\left(n - \sum_{j=1}^{m} y_j,p_1,\ldots,p_k\right) \) distribution, the joint distribution of \(X \) and \(Y \) is given by

\[
P_{X,Y}(x,y) = \frac{\left(n - \sum_{j=1}^{m} y_j\right)!}{\prod_{i=1}^{m} x_i! \left(n - \sum_{i=1}^{m} x_i - \sum_{j=1}^{m} y_j\right)!} \left(\prod_{i=1}^{m} \left(\frac{p_i}{1 - P}\right)^{x_i}\right)^n \sum_{i=1}^{m} y_j^{\sum_{i=1}^{m} x_i} P(y),
\]

where \(P \) is the marginal density function of \(X \) and \(Y \), \(x_1,\ldots,x_m, y_1,\ldots,y_m \) are nonnegative integers, \(\sum_{i=1}^{m} x_i + \sum_{j=1}^{m} y_j \leq n \). Hence, the range of each component is from 0 to \(n \), and the m.g.f. \(M(s_1,\ldots,s_m) \) of \(X \) and \(Y \) is a continuous function in \(R^m, M > 0 \) for all \((s_1,\ldots,s_m) \) of \(R^m \). The joint m.g.f. of \(X \) and \(Y \) is given by

\[
M_{X,Y}(s,t) = E[e^{s'X+t'Y}] = E[e^{t'Y} E[e^{s'X} \mid Y]]
\]

\[
= E\left[e^{t'Y} \left(\sum_{i=1}^{m} p_i e^{s_i} + 1 - P\right)^n \sum_{i=1}^{m} y_i\right]
\]

\[
= \left(\sum_{i=1}^{m} p_i e^{s_i} + 1 - P\right)^n E\left[e^{t'\left(\sum_{i=1}^{m} p_i e^{s_i} + 1 - P\right) y}\right]
\]
\[\Pi + Y \Pi + 1 - P_{i=1} \]

where \(\mathbf{1} = (1, \ldots, 1)^t \) of \(\mathbb{R}^m \), for all \(s = (s_1, \ldots, s_m)^t, t = (t_1, \ldots, t_m)^t \) of \(\mathbb{R}^m \). Hence,

\[
M(s) = \left(\sum_{i=1}^m p_i e^{s_i} + 1 - P \right)^n M \left(-1 \ln \left(\sum_{i=1}^m p_i e^{s_i} + 1 - P \right) \right),
\]

for all \(s \in \mathbb{R}^m \).

Let \(M_1 \) and \(M_2 \) be two m.g.f. solutions of (3.4). Set \(\frac{M_1(s)}{M_2(s)} = h(s) \). Then \(h(s) \) is continuous on \(\mathbb{R}^m \) and \(h(0) = 1 \). From

\[
M_1(s) = \left(\sum_{i=1}^m p_i e^{s_i} + 1 - \sum_{i=1}^m p_i \right)^n M \left(-1 \ln \left(\sum_{i=1}^m p_i e^{s_i} + 1 - \sum_{i=1}^m p_i \right) \right),
\]

and

\[
M_2(s) = \left(\sum_{i=1}^m p_i e^{s_i} + 1 - \sum_{i=1}^m p_i \right)^n M_2 \left(-1 \ln \left(\sum_{i=1}^m p_i e^{s_i} + 1 - \sum_{i=1}^m p_i \right) \right),
\]

for all \(s \) of \(\mathbb{R}^m \).

Iterating the right side of (3.7) using (3.7) itself,

\[
h(s) = h(1 \ln A_1) h(1 \ln A_2) \cdots h(1 \ln A_l) \cdots,
\]

where the sequence \(\{A_\ell\}, \ell = 1, 2, 3, \ldots \) is defined recursively by

\[
A_1 = \frac{1}{\sum_{i=1}^m p_i e^{s_i} + 1 - P}, \quad A_\ell = \frac{1}{PA_{\ell-1} + 1 - P} \quad \text{for all } \ell = 2, 3, \ldots.
\]

It is trivial to show that if \(A_1 \geq 1 \), then \(A_1 \geq A_3 \geq A_5 \geq \cdots \geq 1 \) and \(A_2 \leq A_4 \leq \cdots \leq 1 \), and if \(A_1 \leq 1 \), \(A_1 \leq A_3 \leq A_5 \leq \cdots \leq 1 \) and \(A_2 \geq A_4 \geq \cdots \geq 1 \). The two sequences \(\{A_{2 \ell-1}\} \) and \(\{A_\ell\} \) are convergent and both of them converge to \(1 \). Hence, by the fact that the function \(h \) is continuous on \(\mathbb{R}^m \) and the function \(\ln \) is continuous on \((0, \infty) \),

\[
h(s) = h(1 \ln(\lim_{n \to \infty} A_n)) = h(1) = h(0) = 1.
\]

Therefore the equation (3.4) has a unique solution. By (3.2) this solution is the m.g.f. of a multinomial distribution, and \(Y \) has a multinomial distribution. By the result (3.1), the joint distribution of \(X \) and \(Y \) is multinomial.

The following question will be studied regarding multinomial distribution. If \(X_1, \ldots, X_k \) are identically distributed discrete random variables having values on the set of nonnegative integers, where \(k \geq 3 \) and if \(X_1 \mid X_2 = x_2, \ldots, X_k = x_k \) has a binomial

\[
\left(n - \sum_{i=2}^k x_i p \right) \text{ distribution } 0 < p < 1 \text{ for all } x_2, \ldots, x_k \text{ nonnegative integers, } \sum_{i=2}^k x_i \leq n,
\]

does it imply that \(X_1, \ldots, X_k \) have a joint multinomial distribution? The answer for this question is given by the following counterexample.

EXAMPLE 3.1. Let \(X_1, X_2, X_3 \) be three discrete random variables having a joint density function
Then it is trivial that X_1, X_2, X_3 are identically distributed with density function

$$P(0) = 11/18, \quad P(1) = 5/18, \quad P(2) = 2/18,$$

and this is not a binomial $(2,p)$ distribution, since there does not exist any p for a binomial $(2,p)$ distribution to fit to this distribution. This fact shows that the joint distribution of X_1, X_2, X_3 is not a trinomial distribution, meanwhile, it is easy to check that $X_1 | X_2 = x_2, X_3 = x_3$ has a binomial \(\binom{2 - x_2 - x_3}{2} \) distribution for all $x_2, x_3, x_2 + x_3 \leq 2$.

In addition to the given conditions of the above question, if X_1, \ldots, X_k are supposed to have an exchangeable distribution in x_1, \ldots, x_k, we go to show that the joint distribution of X_1, \ldots, X_k is a multinomial distribution.

If $k = 2$, since X_1 and X_2 are identically distributed and $X_1 | X_2 = x_2$ has a binomial $(n - x_2, p)$ distribution, by Theorem 3.1, X_1 and X_2 have a joint trinomial distribution.

For $k > 2$, the proof follows by mathematical induction. For some positive integer $k \geq 2$, suppose that for any $m = 2, \ldots, k$, if $X_1 | X_2 = x_2, \ldots, X_m = x_m$ has a binomial \(\binom{n - \sum_{i=2}^{m} x_i}{p} \) distribution, then the joint distribution of (X_1, \ldots, X_m) is a multinomial distribution, we go to show that it is also true if the number of random variables is $k + 1$.

From $X_1 | X_2 = x_2, \ldots, X_k = x_k, X_{k+1} = x_{k+1}$ has a binomial \(\binom{n - \sum_{i=2}^{k+1} x_i}{p} \) distribution,

then

$$P(x_1 | x_2, \ldots, x_k, x_{k+1}) = \frac{P(X_1 = x_1, X_2 = x_2, \ldots, X_k = x_k, X_{k+1} = x_{k+1})}{P(X_2 = x_2, \ldots, X_{k+1} = x_{k+1})} = \frac{P(X_1 = x_1, \ldots, X_k = x_k, X_{k+1} = x_{k+1})}{P(X_2 = x_2, \ldots, X_{k+1} = x_{k+1})}. $$

Set $Y_1 = X_1 | X_3 = x_3, \ldots, X_{k+1} = x_{k+1}$ and $Y_2 = X_2 | X_3 = x_3, \ldots, X_{k+1} = x_{k+1}$. Then $P(Y_1 = x_1 | Y_2 = x_2) = P(x_1 | x_2, \ldots, x_{k+1})$ and $Y_1 | Y_2 = x_2$ has a binomial \(\binom{n - \sum_{i=2}^{k} x_i}{p} \) distribution, and Y_1 and Y_2 are identically distributed since X_1, \ldots, X_{k+1} have a joint exchangeable distribution in x_1, \ldots, x_{k+1}. By Theorem 3.1, Y_1 and Y_2 have a binomial \(\binom{n - \sum_{i=3}^{k+1} x_i}{q} \) distribution for some $0 < q < 1$. From $Y_2 = X_2 | X_3 = x_3, \ldots, X_{k+1} = x_{k+1}$ has a binomial \(\binom{n - \sum_{i=3}^{k+1} x_i}{q} \) distribution and by induction hypothesis, X_2, \ldots, X_{k+1} have a joint multinomial distribution. Hence, X_1, \ldots, X_{k+1} have a joint multinomial distribution. By mathematical induction principle, this result of joint multinomial of X_1, \ldots, X_k is true for all $k \geq 2$. Therefore the following result is proved.

Theorem 3.2. Let X_1, \ldots, X_k be identically distributed random variables having values on the set of nonnegative integers. Suppose that their joint density is
exchangeable in x_1,\ldots,x_k, and $X_1 \mid X_2 = x_2,\ldots,X_k = x_k$ has a binomial \(n - \sum_{i=2}^{k} x_i, p \) distribution, then X_1,\ldots,X_k have a joint multinomial distribution.

Theorem 3.2 can be generalized to Theorem 3.3. below in the case of identically distributed random vectors by using the result of Theorem 3.1 and a similar proof for Theorem 3.2.

THEOREM 3.3. Let X_1,\ldots,X_k be identically distributed $m \times 1$ random vectors whose components have values on the set of nonnegative integers. Suppose that the joint density of X_1,\ldots,X_k is exchangeable in x_1,\ldots,x_k and $X_1 \mid X_2 = x_2,\ldots,X_k = x_k$ has a multinomial
\[
\left(n - \sum_{i=2}^{k} \sum_{j=1}^{m} x_{ij}, p_1 \right)
\] distribution, where $x_i = (x_{i1},\ldots,x_{im})'$, $i = 2,\ldots,k$, $p_1 = (p_{11},\ldots,p_{1m})'$, then X_1,\ldots,X_k have a joint multinomial distribution.

ACKNOWLEDGEMENT. The authors would like to thank the referee for helpful suggestions and comments.

REFERENCES

Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management

- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklaicityu.edu.hk