ABSTRACT. A series representation of the Macdonald function is obtained using the properties of a probability density function and its moment generating function. Some applications of the result are discussed and an open problem is posed.

KEY WORDS AND PHRASES. Non-central moments, moment generating function, inverse Gaussian distribution.

1991 AMS SUBJECT CLASSIFICATION CODES. 33-02 60E05.

1. INTRODUCTION.

Kadell [8] used the probabilistic approach to prove Ramanujan's \(\psi \) sum. Ismail [6] gave the most natural proof of Ramanujan \(\psi \) sum that extended to multivariate hypergeometric functions. Some algebraic and other techniques are used to provide simple proofs of the established identities, see [1, 4, 5, 6, 8, 9]. In this paper we have used probabilistic approach to derive a series representation [2, p. 100] of the Macdonald function. Some applications of the result are discussed and an open problem is posed.

2. MAIN RESULTS.

LEMMA 2.1. For \(\text{Re}(z) > 0 \)

\[
\frac{\partial^n K_\alpha(z)}{\partial \alpha^n} = \begin{cases}
\int_0^\infty t^n \exp(-z \cosh t) \cosh at \, dt & \text{if } n \text{ is even,} \\
\int_0^\infty t^n \exp(-z \cosh t) \sinh at \, dt & \text{if } n \text{ is odd.}
\end{cases}
\]

PROOF. It follows from the integral representation [3, p. 358]

\[
K_\alpha(z) = \int_0^\infty \exp(-z \cosh t) \cosh(\alpha t) dt,
\]

of the Macdonald function \(K_\alpha(z) \), \(\text{Re} \, z > 0 \).
THEOREM 2.1. Let $0 < t < 1$ and $\Re z > 0$. Then,

$$K_\alpha(2z\sqrt{1-t}) = (1-t)^{\alpha/2} \sum_{r=0}^{\infty} K_{\alpha+r}(2z)(z)^r/r!$$

(2.1)

PROOF. Let us define the function $I(\alpha, \beta)$ by

$$I(\alpha, \beta) = \int_0^\infty x^{\alpha-1} \exp(-x - \beta x^{-1}) \, dx, \quad -\infty < \alpha < \infty, \ \beta > 0.$$ \tag{2.2}

Then, the function defined by

$$f(z) = (I(\alpha, \beta))^{-1} x^{\alpha-1} \exp(-x - \beta x^{-1}), \quad x > 0, \ \beta > 0$$

(2.3)

is the probability density function (pdf). It may be noted that the pdf (2.3) has appeared in an earlier work. This is the limiting case $\alpha \to 0$ of theorem 1.11 in [7].

The r-th non-central moment of the random variable X having (2.3) as its pdf is given by

$$E(X^r) = \int_0^\infty x^r f(x) \, dx = \frac{I(\alpha + r, \beta)}{I(\alpha, \beta)}.$$ \tag{2.4}

The moment generating function (mgf) of $f(x)$ is given by

$$E(e^{tx}) = \int_0^\infty e^{tx} f(x) \, dx = \frac{1}{I(\alpha, \beta)} \int_0^\infty x^{\alpha-1} \exp(-(1-t)x - \beta x^{-1}) \, dx, \quad 0 \leq t < 1.$$ \tag{2.5}

Substituting $(1-t)x = \tau$ in (2.5) and simplifying we get

$$E(e^{tx}) = \frac{I(\alpha, \beta)(1-t)}{(1-t)^\alpha I(\alpha, \beta)}.$$ \tag{2.6}

The relation

$$E(e^{tx}) = \sum_{r=0}^{\infty} E(X^r) \frac{t^r}{r!}$$

yields,

$$\frac{I(\alpha, \beta)(1-t)}{(1-t)^\alpha I(\alpha, \beta)} = \sum_{r=0}^{\infty} \frac{I(\alpha + r, \beta)}{I(\alpha, \beta)} \frac{t^r}{r!}$$

or

$$I(\alpha, \beta)(1-t)) = \left[\sum_{r=0}^{\infty} \frac{I(\alpha + r, \beta)}{I(\alpha, \beta)} \frac{t^r}{r!} \right] (1-t)^\alpha.$$ \tag{2.7}

It is known [3, p. 340] that

$$I(\alpha, \beta) = 2\beta^{\alpha/2} K_\alpha(2\sqrt{\beta}), \quad -\infty < \alpha < \infty, \ \Re \beta > 0.$$ \tag{2.8}

From (2.7) and (2.8) we get

$$K_\alpha(2\sqrt{\beta}(1-t)) = (1-t)^{\alpha/2} \sum_{r=0}^{\infty} \beta^{r/2} K_{\alpha+r}(2\sqrt{\beta}) \frac{t^r}{r!}.$$ \tag{2.9}

The substitution $\beta = z^2$ in (2.9) yields the proof of the theorem.

In particular when $\alpha = 0$ and $\beta = z^2$ in (2.9) we get

$$K_0(2z\sqrt{(1-t)}) = \sum_{n=0}^{\infty} \{z^n K_n(2z)\} \frac{t^n}{n!},$$ \tag{2.10}
which shows that $K_0(z\sqrt{1-t})$ is the generating function of $\frac{1}{n!}(z/2)^nK_n(z)$, $n = 0, 1, 2, 3, \ldots$.

An immediate consequence of the theorem is the following result which provides the closed form solution to the representation of the first derivative with respect to the order of the Macdonald function at the integral values of the order. The problem remains open for the higher derivatives and the other values of the order of the function.

COROLLARY 2.1. For Re(z) > 0,

$$\frac{\partial}{\partial \alpha} [K_\alpha(2z)]_{\alpha=0} = \frac{1}{2} \sum_{j=1}^{\infty} \frac{(z/2)^{n-j}K_{n-j}(2z)}{j(n-j)!}.$$

PROOF. Differentiating both sides of (2.1) with respect to α we get

$$\frac{\partial}{\partial \alpha} [K_\alpha(2z\sqrt{1-t})] = (1-t)^{\alpha/2} \sum_{r=0}^{\infty} \frac{\partial}{\partial \alpha} \{K_{\alpha+r}(2z)\} + \frac{1}{2} \ln(1-t)K_{\alpha+r}(2z) \right\} \frac{(tz)^r}{r!}. \quad (2.11)$$

However, it follows from the lemma that

$$\frac{\partial}{\partial \alpha} [K_\alpha(z)]_{\alpha=0} = 0. \quad (2.12)$$

Therefore, substituting $\alpha = 0$ in (2.10) and using the series representation of $\ln(1-t)$ and (2.11) we get

$$\sum_{r=0}^{\infty} \frac{\partial}{\partial \alpha} [K_{\alpha+r}(2z)]_{\alpha=0} \frac{(zt)^r}{r!} = \frac{1}{2} \left(z + \frac{z^2}{2} + \cdots + \frac{z^n}{n} + \cdots \right) \sum_{r=0}^{\infty} K_r(2z) \frac{(zt)^r}{r!}. \quad (2.13)$$

Equating the coefficients of t^n in (2.12) yields the desired proof.

COROLLARY 2.2. For Re $z > 0$,

$$\int_0^\infty t \exp(-2z \cosh t) \sinh(n t) dt = \frac{n!}{2} \sum_{j=1}^{n} \frac{z^{n-j}K_{n-j}(2z)}{j(n-j)!}.$$

PROOF. This follows from the lemma and Corollary 2.1.

In particular when $n = 2$ we get

$$\int_0^\infty t \exp(-2z \cosh t) \sinh(2t) dt = \frac{1}{2} [K_0(2z) + 2zK_1(2z)], \quad (2.14)$$

which does not seem to be known in the literature.

We state here an open problem the solution to which will have far-reaching consequences in the generalization of the inverse Gaussian distribution.

STATEMENT OF THE OPEN PROBLEM. Find the relationship of $\frac{\partial^n}{\partial \alpha^n} K_\alpha(z)$ with the other special functions for $n \geq 2$.

ACKNOWLEDGEMENTS. Private correspondence with Professor M. Rahman at Carleton University, Ottawa, Canada is appreciated. The authors are indebted to the referee for helpful comments and to the King Fahd University of Petroleum and Minerals for the excellent research facilities.
REFERENCES

Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk