A NOTE ON KAKUTANI TYPE FIXED POINT THEOREMS

A. R. KHAN, N. HUSSAIN, and L. A. KHAN

(Received 3 September 1998 and in revised form 29 November 1999)

ABSTRACT. We present Kakutani type fixed point theorems for certain semigroups of self maps by relaxing conditions on the underlying set, family of self maps, and the mappings themselves in a locally convex space setting.

Keywords and phrases. Fixed point, semigroup of self maps, locally convex space, non-expansive map.

2000 Mathematics Subject Classification. Primary 41A65, 46A03, 47H10.

1. Introduction. Using a technique of Tarafdar [9], we establish fixed point theorems by utilizing following semigroups under composition of self maps T on a subset M of a Hausdorff locally convex space

(i) $\mathcal{F} = C_T = \{f : M \to M \mid fT = Tf\}$,

(ii) $\mathcal{F} = \{T^n : n \in \mathbb{N} \cup \{0\}\}$,

(iii) $\mathcal{F} =$ identity map.

In the sequel (E, τ) will be a Hausdorff locally convex topological vector space. A family $\{p_\alpha : \alpha \in I\}$ of seminorms defined on E is said to be an associated family of seminorms for τ if the family $\{rU : r > 0\}$, where $U = \bigcap_{i=1}^{n} U_{\alpha_i}$ and $U_{\alpha_i} = \{x : p_{\alpha_i}(x) < 1\}$, forms a base of neighbourhoods of zero for τ. A family $\{p_\alpha : \alpha \in I\}$ of seminorms defined on E is called an augmented associated family for τ if $\{p_\alpha : \alpha \in I\}$ is an associated family with the property that the seminorm $\max\{p_\alpha, p_\beta\} \in \{p_\alpha : \alpha \in I\}$ for any $\alpha, \beta \in I$. The associated and augmented associated families of seminorms shall be denoted by $A(\tau)$ and $A^*(\tau)$, respectively. It is well known that given a locally convex space (E, τ), there always exists a family $\{p_\alpha : \alpha \in I\}$ of seminorms defined on E such that $\{p_\alpha : \alpha \in I\} = A^*(\tau)$ (see [7, page 203]).

The following construction will be crucial. Suppose that M is a τ-bounded subset of E. For this set M we can select a number $\lambda_\alpha > 0$ for each $\alpha \in I$ such that $M \subset \lambda_\alpha U_{\alpha}$, where $U_{\alpha} = \{x : p_{\alpha}(x) \leq 1\}$. Clearly, $B = \bigcap_{\alpha} \lambda_\alpha U_{\alpha}$ is τ-bounded, τ-closed, absolutely convex, and contains M. The linear span E_B of B in E is $\bigcup_{n=1}^{\infty} nB$. The Minkowski functional of B is a norm $\|\cdot\|_B$ on E_B. Thus $(E_B, \|\cdot\|_B)$ is a normed space with B as its closed unit ball and $\sup_{\alpha} p_{\alpha}(x/\lambda_\alpha) = \|x\|_B$ for each $x \in E_B$.

A self map T on M is said to be

(i) $A^*(\tau)$-nonexpansive if for all $x, y \in M$,

$$p_{\alpha}(Tx - Ty) \leq p_{\alpha}(x - y) \quad \text{for each } p_{\alpha} \in A^*(\tau). \quad (1.1)$$

(ii) $A^*(\tau)$-asymptotically nonexpansive if for each $x, y \in M$,

...
\[p_\alpha(T^n x - T^n y) \leq k_n p_\alpha(x - y), \quad n = 1, 2, 3, \ldots, \text{ for each } p_\alpha \in A^*(\tau), \quad (1.2) \]

where \(\{k_n\} \) is a fixed sequence of real numbers such that \(k_n \to 1 \) as \(n \to \infty \).

In sequel, for simplicity, we shall call \(A^*(\tau) \)-nonexpansive (\(A^*(\tau) \)-asymptotically nonexpansive) maps to be nonexpansive (asymptotically nonexpansive).

Common fixed points of nonexpansive maps and best approximations have been considered in normed spaces (see [1, 3]). We prove common fixed point theorems for asymptotically nonexpansive maps in the setting of a locally convex space.

2. Results

Lemma 2.1. Let \(M \) be a \(\tau \)-bounded subset of a Hausdorff locally convex space \((E, \tau)\) and \(T : M \to M \) be asymptotically nonexpansive map. Then \(T \) is asymptotically nonexpansive on \(M \) with respect to \(\| \cdot \|_B \).

Proof. By hypothesis for \(x, y \in M \) and \(n = 1, 2, 3, \ldots, \)
\[p_\alpha(T^n x - T^n y) \leq k_n p_\alpha(x - y) \quad \text{for each } p_\alpha \in A^*(\tau), \quad (2.1) \]

where \(\{k_n\} \) is a real sequence converging to 1,
\[
\sup_\alpha p_\alpha \left(\frac{T^n x - T^n y}{\lambda_\alpha} \right) \leq k_n \sup_\alpha p_\alpha \left(\frac{x - y}{\lambda_\alpha} \right),
\]
\[\| T^n x - T^n y \|_B \leq k_n \| x - y \|_B, \quad (2.2) \]

where \(\{k_n\} \to 1 \) as \(n \to \infty \) and is a fixed real sequence. This completes the proof. \(\square \)

Note that \((E_B, \tau) \subset (E_B, \| \cdot \|_B)\) so a set compact in \((E_B, \tau)\) need not be compact in \((E_B, \| \cdot \|_B)\) (cf. [8, page 159, problem 3(c)]). To overcome this difficulty we use finite dimensionality to obtain following generalization of [9, Theorem 2.1].

Theorem 2.2. Let \(M \) be a nonempty convex \(\tau \)-bounded, \(\tau \)-sequentially closed and finite dimensional subset of a Hausdorff locally convex space \((E, \tau)\). Suppose \(\mathcal{F} \) is a commutative semigroup of asymptotically nonexpansive self maps of \(M \). Then there exists a point \(a \in M \) such that
\[T(a) = a \quad \text{for all } T \in \mathcal{F}. \quad (2.3) \]

Proof. Since \(M \) is \(\tau \)-complete, it follows that \((E_B, \| \cdot \|_B)\) is a Banach space and \(M \) is complete in it. A closed, bounded and finite dimensional subset of a normed space is compact by [2, Theorem on page 10] so \(M \) is compact in \((E_B, \| \cdot \|_B)\). By Lemma 2.1, each \(T \in \mathcal{F} \) is \(\| \cdot \|_B \)-asymptotically nonexpansive. Hence \(\mathcal{F} \) is a commutative semigroup of asymptotically nonexpansive self maps of a compact convex subset \(M \) of the Banach space \((E_B, \| \cdot \|_B)\). The family \(\mathcal{F} \) has a common fixed point by [4, Theorem 3.1]. \(\square \)

We now prove another fixed point theorem for locally convex spaces by making use of Jungck and Sessa [6, Theorem 3]; see also [1, Corollary 2.3] and [5, Theorem 1].

Theorem 2.3. Let \(M \) be a \(\tau \)-bounded, \(\tau \)-sequentially closed and finite dimensional subset of a Hausdorff locally convex space \((E, \tau)\). Suppose that \(M \) is starshaped with
starcentre \(q \in M \) and \(T : M \to M \) is nonexpansive. Let \(\mathcal{F} \) be a family of affine nonexpansive self maps of \(M \) commuting with \(T \) and leaving \(q \) fixed. Suppose for each pair \((x, y) \in M^2\), there exists \(f = f(x, y) \) and \(g = g(x, y) \) in \(\mathcal{F} \) such that

\[
p_\alpha(Tx - Ty) \leq p_\alpha(fx - gy) \quad \text{for all } p_\alpha \in A^*(\tau).
\]

Then there exists \(a \in M \) such that

\[
a = T(a) = h(a) \quad \text{for all } h \in \mathcal{F}.
\]

Proof. Since \(\| \cdot \|_B \)-topology is finer than the relative \(\tau \)-topology on \(E_B, \| \cdot \|_B \)-cl\((M) \subset \tau\)-sequential-cl\((M) = M \). Therefore, \(M \) is \(\| \cdot \|_B \)-closed in the normed space \((E_B, \| \cdot \|_B)\). As above, \(M \) is a compact subset of \((E_B, \| \cdot \|_B)\). Moreover, \(T \) and each \(h \in \mathcal{F} \) is nonexpansive in \((E, \tau)\), which by Lemma 2.1 implies that \(T \) and each \(h \in \mathcal{F} \) is \(\| \cdot \|_B \)-nonexpansive—so certainly \(\| \cdot \|_B \)-continuous. And from (2.4) we obtain for \(x, y \in M \),

\[
\sup_\alpha p_\alpha\left(\frac{Tx - Ty}{\lambda_\alpha}\right) \leq \sup_\alpha p_\alpha\left(\frac{fx - gy}{\lambda_\alpha}\right).
\]

Thus

\[
\|Tx - Ty\|_B \leq \|fx - gy\|_B \quad \text{for } x, y \in M.
\]

A comparison of our hypothesis with that of [6, Theorem 3] tells us that we can now apply [6, Theorem 3] to \(M \) as a subset of \((E_B, \| \cdot \|_B)\) to conclude that there exists \(a \in M \) such that \(a = T(a) = h(a) \) for all \(h \in \mathcal{F} \).

Corollary 2.4. Let \(M \) be a \(\tau \)-bounded, \(\tau \)-sequentially closed, and finite dimensional subset of a Hausdorff locally convex space \((E, \tau)\). Assume \(M \) is starshaped with starcentre \(q \in M \). Suppose \(T, I : M \to M \) are nonexpansive, \(I \) is affine and leaving \(q \) fixed and \(TI = IT \). Suppose for \(x, y \in M \), there exist \(n = n(x, y) \), \(m = m(x, y) \) in \(\mathbb{N}_0 = \{0, 1, 2, \ldots\} \) such that

\[
p_\alpha(Tx - Ty) \leq p_\alpha(l^n x - I^n y) \quad \text{for each } p_\alpha \in A^*(\tau).
\]

Then \(T \) and \(I \) have a common fixed point.

Proof. Let \(\mathcal{F} = \{I^n : n \in \mathbb{N}_0\} \) \((I^0 x = x) \). For each \(n \), \(I^n \) is affine, \(TI^n = I^n T \) and \(I^n : M \to M \) since \(I \) has these properties. Further (2.8) assures that \(\mathcal{F} \) and its members satisfy (2.4) and the hypotheses of Theorem 2.3; consequently, the conclusion of the corollary follows.

Corollary 2.5. Let \(M \) be a \(\tau \)-bounded, \(\tau \)-closed finite dimensional starshaped subset of a Hausdorff locally convex space \((E, \tau)\) and \(T \) a nonexpansive self map of \(M \). Then \(T \) has a fixed point.

Finally, we consider an application of Corollary 2.4 to best approximation theory. A related result for normed spaces was given in [6, Theorem 4]. For any \(\hat{x} \in E, C \subseteq E \)
and \(p_\alpha \in A^* (\tau) \), let
\[
d_{p_\alpha} (\bar{x}, C) = \inf \{ p_\alpha (y - \bar{x}) : y \in C \}
\] (2.9)

and let
\[
D = \{ y \in C : p_\alpha (y - \bar{x}) = d_{p_\alpha} (\bar{x}, C) \text{ for all } p_\alpha \in A^* (\tau) \}. \tag{2.10}
\]

Theorem 2.6. Let \(T \) and \(I \) be self maps of a Hausdorff locally convex space \((E, \tau)\) and let \(C \subseteq E \) be such that \(T : \partial C \to C \). Let \(T \) and \(I \) leave \(\bar{x} \in E \) fixed and satisfy (2.8) for all \(x, y \in D \cup \{ \bar{x} \} \). Suppose \(I \) is nonexpansive and affine, \(T \) is nonexpansive on \(D \), \(IT = TI \) on \(D \), and \(D \) is nonempty \(\tau \)-bounded, \(\tau \)-sequentially closed, finite dimensional and starshaped with respect to \(q \). If \(I \) leaves \(q \) invariant and \(I(D) \subseteq D \), then there exists \(a \in D \) such that \(a = I(a) = T(a) \).

Proof. Let \(y \in D \). Then \(I^n y \in D \) for \(n \in \mathbb{N}_0 \) since \(I(D) \subseteq D \). By definition of \(D \), \(y \in \partial C \) and since \(T : \partial C \to C \), it follows that \(Ty \in C \). By (2.8), for each \(p_\alpha \in A^* (\tau) \),
\[
p_\alpha (Ty - \bar{x}) = p_\alpha (Ty - T\bar{x}) \leq p_\alpha (I^n y - I^n \bar{x})
\] (2.11)

for some \(n, m \in \mathbb{N}_0 \). As \(I^n \bar{x} = \bar{x} \), we get
\[
p_\alpha (Ty - \bar{x}) \leq p_\alpha (I^n y - \bar{x}) \quad \text{for all } p_\alpha \in A^* (\tau). \tag{2.12}
\]

Again since \(Ty \in C \) and \(I^n y \in D \), the definition of \(D \) further implies that \(Ty \in D \). Consequently, \(T, I : D \to D \) and the conditions of Corollary 2.4 are satisfied. Hence there exists \(a \in D \) such that \(a = I(a) = T(a) \).

Acknowledgements. The first author acknowledges gratefully the support provided by the King Fahd University of Petroleum and Minerals during this research. The authors thank Naseer Shahzad for useful discussions and the referee for pointing out a short proof of Theorem 2.3.

References

A. R. Khan: Bahauddin Zakariya University, Multan 60800, Pakistan
Current address: Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
E-mail address: arahim@kfupm.edu.sa

N. Hussain: Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan 60800, Pakistan

L. A. Khan: Department of Mathematics, King Abdul Aziz University, P.O. Box 9028, Jeddah-21413, Saudi Arabia
Special Issue on
Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation
http://www.hindawi.com