SOME SUFFICIENT CONDITIONS FOR STRONGLY STARLIKENESS

MILUTIN OBRADOVIĆ and SHIGEYOSHI OWA

(Received 22 November 1999)

Abstract. We consider strongly starlikeness of order \(\alpha \) of functions \(f(z) = z + a_n + 1 + \cdots \) which are analytic in the unit disc and satisfy the condition of the form
\[
|f'(z)\left(\frac{z}{f(z)}\right)^{1+\mu} - 1| < \lambda, \quad 0 < \mu < 1, \quad 0 < \lambda < 1.
\]

Keywords and phrases. Analytic function, strongly starlikeness, subordination.

2000 Mathematics Subject Classification. Primary 30C45.

1. Introduction and preliminaries. Let \(H \) denote the class of functions analytic in the unit disc \(U = \{z : |z| < 1\} \) and let \(A \subset H \) be the class of normalized analytic functions \(f \) in \(U \) such that \(f(0) = f'(0) - 1 = 0 \). For \(n \geq 1 \) we put
\[
A_n = \{f : f(z) = z + a_n + 1 + \cdots \text{ is analytic in } U\} \quad (1.1)
\]
and \(A_1 = A \).

A function \(f \in A \) is said to be strongly starlike of order \(\alpha \), \(0 < \alpha \leq 1 \), if and only if
\[
\frac{zf'(z)}{f(z)} < \left(\frac{1+z}{1-z}\right)^\alpha, \quad (1.2)
\]
where \(\prec \) denotes the usual subordination. We denote this class by \(S(\alpha) \). If \(\alpha = 1 \), then \(S(1) \equiv S^* \) is the well-known class of starlike functions in \(U \) (cf. [1]).

In this paper, we find a condition so that \(f \in A_n \) satisfying
\[
f'(z)\left(\frac{z}{f(z)}\right)^{1+\mu} < 1 + \lambda z, \quad 0 < \mu < 1, \quad 0 < \lambda < 1, \quad (1.3)
\]
is in \(S(\alpha) \). Also, we consider an integral transformation.

We note that the author in [4] determined the values for \(\lambda \) in (1.3) which implies starlikeness in \(U \). Recently, Ponnusamy and Singh [5] found the condition which implies the strongly starlikeness of order \(\alpha \), but for \(\mu < 0 \) in (1.3). By using the similar method as in [5] we consider strongly starlikeness in the case (1.3).

First, we cite the following lemma.

Lemma 1.1. Let \(Q \in H \) satisfy the subordination condition
\[
Q(z) < 1 + \lambda_1 z, \quad Q(0) = 1, \quad (1.4)
\]
where \(0 < \lambda_1 \leq 1 \). For \(0 < \alpha \leq 1 \), let \(p \in H \), \(p(0) = 1 \) and \(p \) satisfy the condition
\[
Q(z)p^\alpha(z) < 1 + \lambda z, \quad 0 < \lambda \leq 1. \quad (1.5)
\]
Then for
\[
\sin^{-1} \lambda + \sin^{-1} \lambda_1 \leq \frac{\alpha \pi}{2}
\]
(1.6)
we have \(\text{Re}\{p(z)\} > 0 \) in \(U \).

This is the special case of the more general lemma given in [5].

2. Results and consequences. For our results we also need the following two lemmas.

Lemma 2.1. Let \(p \in H \), \(p(z) = 1 + p_n z^n + \cdots, \) \(n \geq 1 \), satisfy the condition
\[
p(z) - \frac{1}{\mu} z p'(z) < 1 + \lambda z, \quad 0 < \mu < 1, \quad 0 < \lambda \leq 1.
\]
(2.1)
Then
\[
p(z) \prec 1 + \lambda_1 z,
\]
(2.2)
where
\[
\lambda_1 = \frac{\lambda \mu}{n - \mu}.
\]
(2.3)
The proof of this lemma for \(n = 1 \) is given by [4]. For any \(n \in \mathbb{N} \) we also can apply Jack’s lemma [3].

Lemma 2.2. If \(0 < \mu < 1, \) \(0 < \lambda \leq 1 \) and \(Q \in H \) satisfying
\[
Q(z) < 1 + \frac{\lambda \mu}{n - \mu} z, \quad Q(0) = 1, \quad n \in \mathbb{N},
\]
(2.4)
and if \(p \in H \), \(p(0) = 1 \) and satisfies
\[
Q(z) p^\alpha(z) < 1 + \lambda z,
\]
(2.5)
where
\[
0 < \lambda \leq \frac{(n - \mu) \sin(\pi \alpha/2)}{\left| \mu + (n - \mu)e^{i\pi \alpha/2} \right|},
\]
(2.6)
then \(\text{Re}\{p(z)\} > 0 \) in \(U \).

Proof. If in Lemma 1.1 we put \(\lambda_1 = \lambda \mu/(n - \mu) \), then the condition (1.6) is equivalent to
\[
\sin^{-1} \lambda + \sin^{-1} \frac{\lambda \mu}{n - \mu} \leq \frac{\alpha \pi}{2}.
\]
(2.7)
This inequality is equivalent to
\[
\sin^{-1} \left(\sqrt{1 - \frac{\lambda^2 \mu^2}{(n - \mu)^2}} + \frac{\lambda \mu}{n - \mu} \sqrt{1 - \lambda^2} \right) \leq \frac{\alpha \pi}{2},
\]
(2.8)
SOME SUFFICIENT CONDITIONS FOR STRONGLY STARLIKENESS

or to the inequality
\[\lambda \left[\sqrt{(n-\mu)^2 - \lambda^2 \mu^2 + \mu \sqrt{1-\lambda^2}} \right] \leq (n-\mu) \sin \left(\frac{\alpha \pi}{2} \right). \] (2.9)

From there, after some transformations, we get the following equivalent inequality
\[\left\{ \left[\mu^2 + (n-\mu)^2 \right]^2 - 4\mu^2(n-\mu)^2 \cos^2 \left(\frac{\alpha \pi}{2} \right) \right\} \lambda^4
- 2(n-\mu)^2 \mu^2 \sin^2 \left(\frac{\alpha \pi}{2} \right) \lambda^2 + (1-\mu)^4 \sin^4 \left(\frac{\alpha \pi}{2} \right) \geq 0 \] (2.10)

which is equivalent to the condition (2.6).

By Lemma 1.1 we have that \(\text{Re} \{ p(z) \} > 0 \) in \(U \).

Theorem 2.3. Let \(f \in A_n, \) \(0 < \mu < 1 \) and \(f \) satisfy the subordination
\[f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} < 1 + \lambda z, \] (2.11)
where
\[0 < \lambda \leq \frac{n-\mu}{\sqrt{\mu^2 + (n-\mu)^2}}. \] (2.12)

Then \(f \in S^* \).

Proof. If we put \(Q(z) = (z/f(z))^\mu = 1 + q_n z^n + \cdots \), then after some calculations, we get
\[Q(z) - \frac{1}{\mu} z Q'(z) = f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} < 1 + \lambda z. \] (2.13)

From Lemma 2.1 we have
\[Q(z) < 1 + \lambda_1 z, \quad \lambda_1 = \frac{\lambda \mu}{n-\mu}. \] (2.14)

The rest part of the proof is the same as in the case \(n = 1 \) (see [4, Theorem 1]) and we omit the details. \(\square \)

Theorem 2.4. Let \(0 < \mu < 1 \) and \(0 < \alpha \leq 1 \). If \(f \in A_n \) satisfies
\[\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| \leq \frac{(n-\mu) \sin(\pi \alpha/2)}{|\mu + (n-\mu)e^{i\pi \alpha/2}|}, \quad z \in U, \] (2.15)
then \(f \in S(\alpha) \).

Proof. If we put \(\lambda = (n-\mu) \sin(\pi \alpha/2)/|\mu + (n-\mu)e^{i\pi \alpha/2}| \), then, since \(0 < \alpha \leq 1 \), we have \(0 < \lambda \leq (n-\mu)/\sqrt{\mu^2 + (n-\mu)^2} \), and by Theorem 2.3, \(f \in S^* \). Later, the function \(Q(z) = (z/f(z))^\mu = 1 + q_n z^n + \cdots \) is analytic in \(U \) and satisfies \(Q(z) < 1 + \lambda_1 z, \lambda_1 = \lambda \mu/(n-\mu) \). Now, if we define
\[p(z) = \left(\frac{z f'(z)}{f(z)} \right)^{1/\alpha}, \] (2.16)
then \(p \) is analytic in \(U \), \(p(0) = 1 \) and condition (2.15) is equivalent to
\[
Q(z)p^\alpha(z) < 1 + \lambda z. \tag{2.17}
\]

Finally, from Lemma 2.2 we obtain
\[
\left(\frac{zf'(z)}{f(z)} \right)^{1/\alpha} < \frac{1 + z}{1 - z} \quad \iff \quad \frac{zf'(z)}{f(z)} < \left(\frac{1 + z}{1 - z} \right)^{\alpha}, \tag{2.18}
\]
that is, \(f \in S(\alpha) \).

We note that for \(\alpha = 1 \) we have the statement of Theorem 2.3.

For \(n = 1, \mu = 1/2, \alpha = 2/3 \) we get the following corollary.

Corollary 2.5. Let \(f \in A \) and let
\[
\left| f'(z) \left(\frac{z}{f(z)} \right)^{3/2} - 1 \right| < \frac{1}{2}, \quad z \in U. \tag{2.19}
\]

Then
\[
\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\pi}{3}, \quad z \in U, \tag{2.20}
\]
that is, \(f \in S(2/3) \).

Theorem 2.6. Let \(0 < \mu < 1, \Re\{c\} > -\mu, \) and \(0 < \alpha \leq 1 \). If \(f \in A_n \) satisfies
\[
\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \left| \frac{n + c - \mu}{c - \mu} \right| \left| \frac{(n - \mu) \sin(\pi \alpha/2)}{\mu + (n - \mu) e^{i\pi \alpha/2}} \right|, \quad z \in U, \tag{2.21}
\]
then the function
\[
F(z) = z \left[\frac{c - \mu}{z^{c - \mu}} \int_0^z \left(\frac{t}{f(t)} \right)^\mu t^{c-\mu-1} dt \right]^{-1/\mu} \tag{2.22}
\]
belongs to \(S(\alpha) \).

Proof. If we put that \(\lambda \) is equal to the right-hand side of the inequality (2.21) and
\[
Q(z) = F'(z) \left(\frac{z}{F(z)} \right)^{1+\mu} (= 1 + q_n z^n + \cdots), \tag{2.23}
\]
then from (2.21) and (2.22) we obtain
\[
Q(z) + \frac{1}{c - \mu} zQ'(z) = f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} < 1 + \lambda z. \tag{2.24}
\]
Hence, by using the result of Hallenbeck and Ruscheweyh [2, Theorem 1] we have that
\[
Q(z) < 1 + \lambda_1 z, \quad \lambda_1 = \frac{|(c - \mu)|}{n + c - \mu} = \frac{(n - \mu) \sin(\pi \alpha/2)}{|\mu + (n - \mu) e^{i\pi \alpha/2}|}, \tag{2.25}
\]
and the desired result easily follows from Theorem 2.4. \(\square \)
Remark 2.7. For \(\alpha = 1 \) and \(n = 1 \) we have the corresponding result given earlier in [4]. For \(c = \mu + 1 \), we have

Corollary 2.8. Let \(0 < \mu < 1 \) and \(0 < \alpha \leq 1 \). If \(f \in A_n \) satisfies the condition

\[
\left| f'(z) \left(\frac{z}{f(z)} \right)^{1+\mu} - 1 \right| < \frac{n(n-\mu) \sin(\pi \alpha/2)}{|\mu + (n-\mu)e^{i\pi \alpha/2}|}, \quad z \in U,
\]

then the function

\[
F(z) = z \left[\frac{1}{z} \int_0^z \left(\frac{t}{f(t)} \right)^\mu \, dt \right]^{-1/\mu}
\]

belongs to \(S(\alpha) \).

Acknowledgement. The work of the first author was supported by Grant No. 04M03 of MNTRS through Math. Institute SANU.

References

Milutin Obradović: Department of Mathematics, Faculty of Technology and Metallurgy, 4 Karnegijova Street, 11000 Belgrade, Yugoslavia

E-mail address: obrad@clab.tmf.bg.ac.yu

Shigeyoshi Owa: Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

E-mail address: owa@math.kindai.ac.jp
Special Issue on
Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today’s economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems).

This special issue will include (but not be limited to) the following topics:

- **Computational methods**: artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning
- **Application fields**: asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects**: decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site http://www.hindawi.com/journals/jamds/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>December 1, 2008</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>June 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk