ON BAZILEVIC FUNCTIONS

KHALIDA I. NOOR and SUMAYYA A. AL-BANY

Mathematics Department, Girls College of Education (Science Section) Sitteen Road, Malaz, Riyadh, Saudi Arabia.

(Received January 23, 1985 and in revised form June 28, 1986)

ABSTRACT. Let B(β) be the class of Bazilevic functions of type $\beta(\beta>0)$. A function f ϵ B(β) if it is analytic in the unit disc E and Re $\frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)}>0$,

where g is a starlike function. We generalize the class $B(\beta)$ by taking g to be a function of radius rotation at most $k\pi(k \ge 2)$. Archlength, difference of coefficient, Hankel determinant and some other problems are solved for this generalized class. For k=2, we obtain some of these results for the class $B(\beta)$ of Bazilevic functions of type β .

KEY WORDS AND PHRASES. Bazilevic functions, functions of bounded boundary rotation; Hankel determinant, close-to-convex functions, radius of α-convexity. 1980 MATHEMATICS SUBJECT CLASSIFICATION CODES 30A 32, 30A34.

1. INTRODUCTION.

Bazilevic [1] introduced a class of analytic function f defined by the following relation. For $z \in E$: $E = \{z : |z| < 1\}$ let

$$f(z) = \frac{\beta}{1+a^2} \left[\int_0^z \frac{-\beta a i}{(h(\xi)-a i)\xi^2} - 1 \frac{\beta}{g^{1+a^2}} \frac{1+a i}{(\xi) d\xi} \right]$$
(1.1)

where a is real, $\beta > 0$, Re h(z)>0 and g belongs to the class S^{*} of starlike functions. Such functions, he showed, are univalent [1]. With a=0 in (1.1), we have for $z \in E$

$$\operatorname{Re} \frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} > 0$$
(1.2)

This class of Bazilevic functions of type β was considered in [2]. We denote this class of functions by B(β). We notice that if β =1 in (1.2), we have the class K of close-to-convex functions. We need the following definations.

Definition 1.1

A function f analytic in E belongs to the vlass V_k of functions with bounded boundary rotation, if f(0) = 0, f'(0) = 1, $f'(z) \neq 0$, such that for $z = re^{i\theta} \epsilon E$, 0 < r < 1

$$\int_{0}^{2\pi} |\operatorname{Re} \frac{(zf'(z))'}{f'(z)}| d\theta \leq k\pi , \quad k \geq 2 \qquad (1.3)$$

For k=2, we obtain the class C of convex functions. It is known [3] that for $2 \le k \le 4$, V_k consists entirely of univalent functions. The class V_k has been studied by many authors, see [3], [4], [5] etc. Definition 1.2

Let f be analytic in E and f(0)=0, f'(0)=1. Then f is said to belong to the class R of functions with bounded radius rotation, if $z=re^{i\theta}\varepsilon E$, 0<r<1

$$\int_{0}^{2\pi} |\operatorname{Re} \frac{zf'(z)}{f(z)}| d\theta \leq k\pi , \quad k \geq 2 \qquad (1.4)$$

It is clear that $f \in V_k$ if and only if $zf' \in R_k$. We also note that $R_2 = S^*$. We now give the following generalized form of the class $B(\beta)$.

Definition 1.3

Let f be analytic in E and f(0)=1, f'(0)=1. Then f belongs to the class $B_k(\beta)$, $\beta>0$ if there exists a $g \in R_k$; k>2 such that

$$\operatorname{Re} \frac{zf'(z)}{f^{1-\beta}(z) g^{\beta}(z)} > 0, \qquad z \in E$$
(1.5)

We notice that, when $\beta=1$, $B_k(1) \equiv T_k$, a class of analytic functions introduced and discussed in [6]. Also $B_2(\beta) = B(\beta)$ and $B_2(1) = K$, the class of close-to-convex functions.

2. PRELIMINARIES

We shall give here the results needed to prove our main theorems in the preceeding section.

Lemma 2.1 [3].

Let $f_{\varepsilon}v_k$. Then there exist two starlike functions s_1, s_2 such that for $z_{\varepsilon} \varepsilon$

$$f'(z) = \frac{(S_1(z)/z)^{\frac{k}{4} + \frac{1}{2}}}{(S_2(z)/z)^{\frac{k}{4} - \frac{1}{2}}}, \ k \ge 2$$
(2.1)

Lemma 2.2

Let H be analytic in E, $|H(0)| \le 1$ and be defined as

$$H(z) = (\frac{k}{2} + \frac{1}{2})h_1(z) - (\frac{k}{4} - \frac{1}{2})h_2(z), \text{ Reh}_i(z)^{0}, \quad i=1,2,k \ge 2.$$

For $z = re^{i\theta}$.

Then, for $z = re^{10}$,

(i)
$$\frac{1}{2\pi} \int_{0}^{2\pi} |H(z)|^2 d\theta \leq \frac{1 - (k^2 - 1)r^2}{1 - r^2}$$
 (2.2)

and

(11)
$$\frac{1}{2\pi} \int_{0}^{2\pi} |H'(z)| d\theta \leq \frac{k}{1-r^2}$$
 (2.3)

This result is known [6] and, for k=2, we obtain Pommerenke's result [7] for functions of positive real parts. Lemma 2.3

Let S_1 be univalent in E. Then:

(i) there exists a z_1 with $|z_1| = r$ such that for all $z_1 | z_1 = r$

$$|z-z_1||S_1(z)| \leq \frac{2r^2}{1-r^2}$$
, see [8] (2.4)

and

(ii)
$$\frac{r}{(1+r)^2} \leq |S_1(z)| \leq \frac{r}{(1-r)^2}$$
, see [9] (2.5)

Definition 2.1.

Let f be analytic in E and be given by $f(z) = z + \sum_{n=1}^{\infty} a_n z^n$. Then the qth Hankel determinant of f is defined for $q \ge 1$, $n \ge 1$ by p^2

$$H_{q}(n) = \begin{vmatrix} a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & \cdots & \vdots \\ \vdots & \vdots & \vdots \\ a_{n+q-1} & \cdots & a_{n+2q-2} \end{vmatrix}$$
(2.6)

Definition 2.2.

Let z_1 be a non-zero complex number. Then, with $\Delta_0(n,z_1,f) = a_n$; $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, we define for $j \ge 1$, $\Delta_{i}(n,z_{1},f) = \Delta_{i-1}(n,z_{1},f) - \Delta_{i-1}(n+1,z_{1},f)$ (2.7)

Lemma 2.4

Let f be analytic in E and let the Hankel determinant of f be defined by (2.6). Then, writing $\Delta_i = \Delta_i (n, z_1, f)$, we have

$$H_{q}(n) = \begin{vmatrix} \Delta_{2q-2}(n) & \Delta_{2q-3}(n+1) & \Delta_{q-1}(n+q-1) \\ \Delta_{2q+3}(n+1) & \Delta_{2q-4}(n+2) & \Delta_{q-2}(n+q) \\ \vdots & & & \\ \vdots & & & \\ \Delta_{q-1}(n+q-1) & \Delta_{q-2}(n+q) & \dots & \Delta_{q}(n+2q-3) \end{vmatrix}$$
(2.8)

Lemma 2.5

With $z_1 = \frac{n}{n+1}y$, and $v \ge 0$ any integer,

$$\Delta_{j}(n+v,z_{1},zf') = \sum_{k=0}^{j} {\binom{j}{k}} \frac{y^{k}(v-(k-1)n)}{(n+1)^{k}} \Delta_{j-k}(n+v+k,y,f)$$

Lemmas 2.4 and 2.5 are due to Noonan and Thomas [10].

Lemma 2.6 [11].

Let N and D be anlytic in E, N(0)=D(0) and D maps E onto many sheeted region which is starlike with respect to the origin. Then Re $\frac{N'(z)}{D'(z)} > 0$ implies Re $\frac{N(z)}{D(z)} > 0$.

3. MAIN RESULTS.

THEOREM 3.1: Let $f \in B_k(\beta)$; $k \ge 2$, $0 < \beta \le 1$. Then

$$L_{r}(f) \leq C(k,\beta) M^{1-\beta}(r) (\frac{1}{1-r})^{\beta(\frac{k}{2} + 1)}$$
, where

 $C(k,\beta)$ is a constant depending on k,β only. $L_r(f)$ denotes the length of the closed curve f(|z|=r<1) and $M(r) = \max_{|z|=r} |f(z)|$

PROOF: We have

$$\begin{split} L_{r}(f) &= \int_{0}^{2\pi} |zf'(z)| d\theta, \qquad z = re^{i\theta} \\ &= \int_{0}^{2\pi} |f^{1-\beta}(z)g^{\beta}(z)h(z)| d\theta, \qquad using (1.5), \text{ where } gcR_{k} \text{ and } \\ &= h(z) > 0. \\ &\leq M^{1-\beta}(r) = \int_{0}^{2\pi} |g^{\beta}(z)-h(z)| d\theta \\ &\leq M^{1-\beta}(r) \int_{0}^{2\pi} \int_{0}^{r} |\beta g'(z)g^{\beta-1}(z)h(z) + g^{\beta}(z)h'(z)| drd\theta. \\ &\leq M^{1-\beta}(r) \left\{ \int_{0}^{2\pi} \int_{0}^{r} \frac{\beta}{r} |\frac{zg'(z)}{g(z)} g^{\beta}(z)h(z)| drd\theta \right\} \\ &+ \int_{0}^{2\pi} \int_{0}^{r} |g^{\beta}(z)zh'(z)| drd\theta \} \\ \\ M^{1-\beta}(r) \left\{ \int_{0}^{2\pi} \int_{0}^{r} \frac{\beta}{r} |H(z)g^{\beta}(z)h(z)| drd\theta + \int_{0}^{2\pi} \int_{0}^{r} \frac{1}{r} |g^{\beta}(z)zh'(z)| drd\theta \right\} \end{split}$$

where $\frac{zg'(z)}{g(z)} = H(z)$ is defined as in Lemma 2.2 Using Lemma 2.1, Lemma 2.3 (ii), Schwarz inequality and then Lemma 2.2 for both general and special cases $(k \ge 2, k=2)$, we have

$$L_{r}(f) \leq C(k,\beta) M^{1-\beta}(r) \left(\frac{1}{1-r}\right)^{\beta(\frac{K}{2}+1)}, \quad 0 \leq \beta \leq 1, \quad C(k,\beta) \text{ is a constant}$$

depending on k, β only.

Corollary 3.1 For k=2, fEB(β) and L_r(f) $\leq C(\beta)M^{1-\beta}(r) (\frac{1}{1-r})^{2\beta}$ THEOREM 3.2. œ

Let
$$f \in B_k(\beta)$$
, $0 < \beta \le 1$, $k \ge 2$ and $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then for $n \ge 2$
 $|a_n| \le C_1(\beta, k) M^{1-\beta} (1-\frac{1}{n}) \cdot n^{-\beta} (\frac{k}{2}+1) - 1$,

 $C_1(\beta,k)$ is a constant depending only upon k and β .

82

BAZILEVIC FUNCTIONS

PROOF: Since, with $z=re^{i\theta}$, Cauchy's theorem gives

$$n a_{n} = \frac{1}{2\pi r^{n}} \int_{0}^{2\pi} z f'(z) e^{-in\theta} d\theta,$$

then

$$n |a_{n}| \leq \frac{1}{2\pi r^{n}} \int_{0}^{2\pi} |zf'(z)| d\theta = \frac{1}{2\pi r^{n}} L_{r}(f)$$

Using theorem 3.1 and putting $r=1 - \frac{1}{n}$, we obtain the required result. Corollary 3.2

When $\beta = 1, f \in T_k$ and from theorem 3.2 we have

 $|a_n| \leq A(k) n^{k/2}$, A(k) being a constant depending on k only. This result was proved in [6].

Corollary 3.3

For k=2, $f \in B(\beta)$ and

$$|a_n| \leq A_1(\beta) M^{1-\beta}(1-\frac{1}{n}) \cdot n^{2\beta-1}$$
, $n \geq 2$.

THEOREM 3.3.

Let f be as defined in theorem 3.2. Then, for $n \ge 2$, $k \ge \frac{5}{\beta} - 2$, $||a_{n+1}| - |a_n|| = 0(1)M^{1-\beta}(1-\frac{1}{n}) \cdot n^{\beta(\frac{k}{2}+1)-2}$

where O(1) depends only on k and β .

PROOF:For $z_1 \in E$, $n \ge 2$ and $z = re^{i\theta} \in E$, we have

$$|(n+1)z_{1}|a_{n+1}|-n|a_{n}|| \leq \frac{1}{2\pi r^{n+1}} \int_{0}^{2\pi} |z-z_{1}|| zf'(z)|d\theta$$
$$= \frac{1}{2\pi r^{n+1}} \int_{0}^{2\pi} |z-z_{1}|| f(z)^{1-\beta} g^{\beta}(z)h(z)|d\theta, \text{ where we have}$$

Taking M(r)=max f(z), and using (2.1) (2.4) and (2.5), we have |x|=r $|(n+1)z_{1}|a_{n+1}|-n|a_{n}|| \leq \frac{M^{1-\beta}(r)}{2\pi r^{n+1}}(\frac{4}{r})^{\beta}(\frac{k}{4}-\frac{1}{2}) \cdot \frac{2r^{2}}{1-r^{2}} \int_{0}^{2\pi} |s_{1}(z)|^{\beta}(\frac{k+2}{4}-1) |h(z)|d\theta,$

where S₁ is a starlike function. Schwarz inequality, together with Lemma 2.2 (k=2) and subordination for starlike functions [12] yields

$$\begin{split} |(n+1)z_{1}|a_{n+1}|-n|a_{n}|| &\leq \frac{M^{1-\beta}(r)}{2\pi r^{n+1}} \cdot \frac{4^{\beta} \binom{k-2}{4}}{r^{2}} \frac{2r^{2}}{1-r^{2}} \left(\int_{0}^{2\pi} \frac{\beta(\frac{k}{2}+1)-2}{|1-re^{1\theta}|^{\beta}(k+2)-4} d\theta \right)^{\frac{1}{2}} \cdot (2\pi \frac{1+3r^{2}}{1-r^{2}})^{\frac{1}{2}} \\ &\leq C(k,\beta)M^{1-\beta}(r) \cdot (\frac{1}{1-r})^{\beta(\frac{k}{2}+1)-1} , \end{split}$$

where $C(k,\beta)$ is a constant depending only on k and β . Choosing $|z_1| = r = \frac{n}{n+1}$, we obtain the required result.

Corollary 3.4

If
$$\beta = 1$$
, $f \in T_k$ and we obtain a known [6] result, for $k > 3$,
 $||a_{n+1}| - |a_n|| = 0(1) \cdot n^2$

We now proceed to study the Hankel determinant problem for the class $B_{\iota}(\beta)$.

Let $f \in B_k(\beta)$, $0 \le \beta \le 1$, $k \ge 2$ and let the Hankel determinant $H_q(n)$ of f be defined as in definition 2. Then

$$H_{q}(n) = 0(1)M^{1-\beta}(r) \begin{cases} \beta(\frac{k}{2} + 1) - 1, & q = 1 \\ n & \\ n^{\beta}(\frac{k}{2} + 1) & q - q^{2} \end{cases}, \quad q \ge 2, \quad k \ge \frac{8q-8}{\beta} - 2 \end{cases}$$

PROOF: Since $f \in B_k(\beta)$, we can write

$$zf'(z) = f^{1-\beta}(z) g^{\beta}(z)h(z), \text{ Re } h(z)>0, g \in \mathbb{R}_{L}.$$

Let F(z)=zf'(z). Then for $j\geq 1$, z_1 any non-zero complex number and $z=re^{i\theta}$, consider $\Delta_{i}(n, z_{1}, F)$ as defined by (2.7). Then

$$\Delta_{j}(n, z_{1}, F) = \frac{1}{2\pi r^{n+j}} \int_{0}^{2\pi} (z - z_{1})^{j} F(z) e^{-i(n+j)\theta} d\theta$$

$$\leq \frac{1}{2\pi r^{n+j}} \int_{0}^{2\pi} |z - z_{1}|^{j} |f^{1-\beta}(z)g^{\beta}(z) h(z)| d\theta$$

$$\leq \frac{M^{1-\beta}(r)}{2\pi r^{n+j}} \int_{0}^{2\pi} |z - z_{1}|^{j} |g^{\beta}(z)| |h(z)| d\theta$$

Using (2.1), (2.4) and (2.5), we have

$$|\Delta_{j}(n,z_{1},F)| \leq \frac{M^{1-\beta}(r)}{2\pi r^{n+j}} \left(\frac{4}{r}\right)^{\beta} \left(\frac{k-2}{4}\right) \left(\frac{2r^{2}}{1-r^{2}}\right)^{j} \int_{0}^{2\pi} |S_{1}(z)|^{\beta} \left(\frac{k}{4} + \frac{1}{2}\right) - j |h(z)| d\theta$$

Schwarz inequality together with subordination for starlike functions [12] and (2.2) gives us, for $\beta(\frac{k}{4} + \frac{1}{2}) - j \ge 0$,

$$\left| \Delta_{j}(n,z_{1},F) \right| \leq C(k,\beta,j) M^{1-\beta}(r) \left(\frac{1}{1-r}\right)^{\beta} \left(\frac{k}{2} + 1\right) - j ,$$

where $C(k,\beta,j)$ is a constant which depends upon k, β and j only. Applying lemma 2.5 and putting $z_1 = (\frac{n}{n+1})e^{-1\beta n}$, $(n^{+\infty})$, $r=1 - \frac{1}{n}$, we have for $k \ge \frac{4j}{\beta} - 2$

$$\Delta_{j}(n,e^{i\theta},f)=0(1)M^{1-\beta}(r)n^{\beta(\frac{k}{2}+1)-j-1}$$

where 0(1) depends on k,β and j only. We now estimate the rate of growth of $H_{a}(n)$

For
$$q=1$$
, $H_q(n) = a_n = \Delta_0(n)$ and

84

$$H_q(n) = 0(1)M^{1-\beta} n^{\beta(\frac{k}{2} + 1)-1}, q=1$$

For $q \ge 2$, we use the Remark due to Noonan and Thomas in [10] and we have

$$H_{q}(n) = 0(1)M^{1-\beta}(r)n^{\beta(\frac{k}{2}+1)q-q^{2}}, \quad q \ge 2, \quad 0 \le \beta \le 1,$$

and $k \ge \frac{8(q-1)}{\beta} - 2$. This completes the proof. Corollary 3.5

When $\beta=1$, $f \in T_k$ and

$$H_{q}(n) = 0(1) \begin{cases} n^{k/2}, q = 1 \\ (\frac{k}{2} + 1)q - q^{2} \\ n & , q \ge 2, k \ge 8q - 10 \end{cases}$$

This result is known [13]. Definition 3.1

A function f is called α -convex if, for $\alpha \ge 0$,

Re {
$$(1-\alpha) \frac{zf'(z)}{f(z)} + \alpha \frac{(zf'(z))'}{f'(z)} > 0, z \in E$$

We now prove the following THEOREM 3.5.

Let
$$f \in B_k(\beta)$$
, $k \ge 2$ and $\beta \ge 1$. Then f is $\frac{1}{\beta}$ - convex for $|z| < r_0$, where
 $r_0 = \frac{1}{2\beta} [(k\beta + 2) - \sqrt{(k\beta + 2)^2 - 4\beta^2}]$
(3.1)

PROOF:Since $f \in B_k(\beta)$, we have

$$zf'(z) = f^{1-\beta}(z)g^{\beta}(z) h(z); Reh(z)>0, g \in \mathbb{R}_{k}, \text{ from which it follows that}$$
$$\frac{1}{\beta} \frac{(zf'(z))'}{f'(z)} + (1 - \frac{1}{\beta}) \frac{zf'(z)}{f(z)} = \frac{zg'(z)}{g(z)} + \frac{1}{\beta} \frac{zh'(z)}{h(z)}, (\beta \ge 1)$$

Thus

$$\operatorname{Re}\left[\frac{1}{\beta} \frac{(zf'(z))'}{f'(z)} + (1 - \frac{1}{\beta}) \frac{zf'(z)}{f(z)}\right] \ge \operatorname{Re}\left[\frac{zg'(z)}{g(z)} - \frac{1}{\beta}\left|\frac{zh'(z)}{h(z)}\right|\right]$$

Since $zG'=g \in \mathbb{R}_k$ implies $G \in \mathbb{V}_k$, we have from a known result [14],

Re
$$\frac{zg'(z)}{g(z)} = \operatorname{Re} \frac{(zG'(z))'}{G'(z)} \ge \frac{1-kr+r^2}{1-r^2}$$
, (3.2)

and for functions h of positive real part, it is known [15] that

$$\left|\frac{zh'(z)}{h(z)}\right| \leq \frac{2r}{1-r^2}$$
(3.3)

Using (3.2) and (3.3), we have

Re
$$\left[\frac{1}{\beta} \frac{(zf'(z))'}{f'(z)} + (1 - \frac{1}{\beta}) \frac{zf'(z)}{f(z)}\right] \ge \frac{\beta(1 - kr + r^2) - 2r}{\beta(1 - r^2)}$$

and this gives us the requaired result.

Corollary 3.6 (i) For k=2, $\beta \ge 1$, $f \in B(\beta)$ is $\frac{1}{\beta}$ - convex for $|z| < r_1 = \frac{(\beta+1) - \sqrt{2\beta+1}}{\beta}$ (ii) $\beta = 1$ implies for $|z| < r_2 = \frac{1}{2} [(k+2) - \sqrt{k^2 + 4k}]$. This result is known, see [6].

(iii) When k=2, and $\beta=1$, fcK and it is convex for $|z| < 2-\sqrt{3}$. THEOREM 3.6.

Let $G \in \mathbb{R}_k$, $k \ge 2$. Let, for β any positive integer, $\frac{1}{\alpha} = 2, 3, \ldots, n$ be defined as

 $h(z) = \int_{0}^{z} \frac{1}{\alpha} - 2 \frac{\beta}{G}(t) dt$

Then h is $(\frac{1}{\alpha} - 1 + \beta)$ - valently starlike for $|z| < r_0$, where

$$r_0 = \frac{1}{2}(k - \sqrt{k^2 - 4})$$
(3.4)

PROOF: $\frac{(zh'(z))'}{h'(z)} = (\frac{1}{\alpha} - 1) + \beta \frac{zG'(z)}{G(z)}$

Since $G \in \mathbb{R}_k$, it is known [16] that $\operatorname{Re} \frac{zG'}{G} > 0$ for $|z| < r_0 = \frac{1}{2}(k - \sqrt{k^2 - 4})$. Hence h is convex and thus starlike in $|z| < r_0$. The $(\frac{1}{\alpha} - 1 + \beta)$ valency follows from the argument principle. THEOREM 3.7.

Let $G \in \mathbb{R}_k$, $k \ge 2$ and

 $g^{\beta}(z) = \frac{1}{\alpha} z^{1-\frac{1}{\alpha}} \begin{bmatrix} z & \frac{1}{\alpha} - 2 \\ t & G^{\beta}(t) dt \end{bmatrix}$, where α and β are defined as in

theorem 3.6. Then g is starlike for $|z| < r_0$, where r_0 is given by (3.4). PROOF: 1 1 8 r Z

$$\beta \frac{zg'(z)}{g(z)} = \frac{\left(1 - \frac{1}{\alpha}\right) \int_{0}^{z} t^{\frac{1}{\alpha} - 2} G^{\beta}(t) dt + z^{\frac{1}{\alpha} - 1} G^{\beta}(z)}{\int_{0}^{z} t^{\frac{1}{\alpha} - 2} G^{\beta}(t) dt} = \frac{N(z)}{D(z)}$$

where $D(z) = \int_{0}^{z} t^{\frac{1}{\alpha} - 2} G^{\beta}(t) dt$, which is $(\beta + \frac{1}{\alpha} - 1)$ - valently starlike for $|z| < r_{0}$, r_{0} given by (3.4) from theorem 3.6.

Now

 $\frac{N'(z)}{\Gamma(z)} = \beta \frac{zG'(z)}{\Gamma(z)},$ and , for $|z| < r_0$, r_0 given by (3.4), we have Re $\frac{N'(z)}{D'(z)} = \beta \operatorname{Re} \frac{zG'(z)}{G(z)} > 0$, since GeR_k . Thus, using lemma 2.6, for $|z| < r_0$, it follows that $\beta \operatorname{Re} \frac{zg'(z)}{g(z)} = \operatorname{Re} \frac{N(z)}{D(z)} > 0$, and this completes the proof.

Corollary 3.7

(i) For k=2, β =1, we obtain Bernardi's result [17] for starlike functions. (ii)Also, for k=2, α =1/2, we obtain a result proved in [18].

Let $\operatorname{FeB}_{k}(\beta)$, $z \in E$ and let $f^{\beta}(z) = \frac{1}{\alpha} z^{1-1/\alpha} \int_{0}^{z} t^{(1/\alpha)-2} F^{\beta}(t) dt$, α and β defined (3.5) as in theorem 3.6. Then $f \in B(\beta)$ for $|z| < r_{0}, r_{0}$ is given by (3.4).

PROOF:Let $G \in \mathbb{R}_k$ and let g be defined as in theorem 3.7. Then g is starlike for $|z| < r_0$, where r_0 is given by (3.4).

Now, from (3.5), we obtain

$$\beta \frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} = \frac{(1-\frac{1}{\alpha})\int_{0}^{z} t^{\frac{1}{\alpha}-2} F^{\beta}(t)dt + z^{\frac{1}{\alpha}-1} F^{\beta}(z)}{\int_{0}^{z} [t^{\frac{1}{\alpha}-2} G^{\beta}(t)]dt} = \frac{N(z)}{D(z)},$$
where $D(z) = \int_{0}^{z} t^{\frac{1}{\alpha}-2} G^{\beta}(t)dt$ is $(\beta+\frac{1}{\alpha}-1)$ valently starlike for

|z|<r. Also

$$\frac{N'(z)}{D'(z)} = \beta \frac{zF'(z)}{F^{1-\beta}(z)G^{\beta}(z)} > 0, \text{ since } F^{\varepsilon}B_{k}(\beta).$$

Thus, using lemma 2.6, we obtain the desired result that $f \in B(\beta)$ for $|z| < r_0$, where r_0 is given by (3.4). Corollary 3.8.

(i) For k=2, FEB(β), zEE and it follows from theorem 3.8 that fEB(β) for |z| < 1.

(ii) For k=2, β =1 implies FcK and from theorem 3.8 it follows that f also belongs to K for |z| < 1.

(111) Let $\beta=1$, then FeT_k, and it follows from theorem 3.8 that f is close-to-convex for $|z| < r_0$, given by (3.4). This is a generalization of a result proved in [13] for $\alpha = \frac{1}{2}$. THEOREM. 3.9

Let $f \in B_k(\beta)$. Then for $z = re^{i\theta}$, $0 < \theta_1 < \theta_2 \leq 2\pi$, $f(z) \neq 0$, $f'(z) \neq 0$ in E and 0 < r < 1, we have

$$\begin{cases} 2 \\ \operatorname{Re} \left\{ \frac{(zf'(z))'}{f'(z)} + (\beta-1) \frac{zf'(z)}{f(z)} \right\} d\theta > - \frac{1}{2}\beta k\pi. \\ \theta_1 \end{cases}$$

PROOF: Sine $f \in B_k(\beta)$ we can write

rθ

$$zf'(z) = f^{1-\beta}(z) g^{\beta}(z)h(z), \text{ Re } h(z)>0, g \in \mathbb{R}_{k},$$

= $f^{1-\beta}(z)g^{\beta}(z)h_{1}(z), \text{ where } h(z)=h_{1}^{\beta}(z), \text{ Re } h_{1}(z)>0$
= $f^{1-\beta}(z)(zT'(z))^{\beta}, \text{ where } T \in \mathbb{T}_{k}.$

Therefore,

$$\frac{(zf'(z))'}{f'(z)} + (\beta-1) \frac{zf'(z)}{f(z)} = \beta \frac{(zT'(z))'}{T'(z)} .$$
(3.5)

88

Using a known result [6] for the class T_k , we have by integrating both sides of (3.5) between θ_1 , θ_2 , $0 < \theta_1 < \theta_2 \leq 2\pi$

$$\int_{\theta_1}^{\theta_2} \operatorname{Re}\left\{\frac{(zf'(z))'}{f'(z)} + (\beta-1)\frac{zf'(z)}{f(z)}\right\} d\theta \ge -\frac{\beta}{2} k\pi$$

The following theorem shows the relationship between the classes $B_k(\beta)$ and $B(\beta)$. More precisely it gives the necessary condition for $f \epsilon B_k(\beta)$ to be univalent.

THEOREM 3.10

Let $f \in B_k(\beta)$. Then f is univalent if $k \leq \frac{2}{\beta}$, where $0 \leq \beta \leq 1$.

PROOF: The proof follows immediately from Theorem 3.9 and the result of Sheil-Small [19].

REFERENCES

- BAZILEVIC, I.E. On a case of integrability of the Lowner-Kufarev equation, <u>Math. sb.</u> <u>37</u>(1955), 471-476 (Russian).
- THOMAS, D.K. On Bazilevic functions, <u>Trans. Amer. Math. Soc</u>. <u>132</u>(1968), 353-361.
- BRANNAN, D.A. On functions of bounded boundary rotation, <u>Proc. Edin</u>. <u>Math. Soc.</u> 2(1968-69), 339-347.
- 4. LOWNER, K. Untersuchungen uber die Verzerrung bei konformen Abbildungen des Einheitskreises |z|<1, die durcg Functionen mit nicht verschwindender ableitung gellefert werden, <u>Leip. Ber</u>. <u>69</u>(1971), 89-106.
- PAATERO, V. Uber die Konforme Abbildung von Gebieten deren Rander von beschrankter Drehung sind, <u>Ann. Acad. Sci. Fenn. Ser. A 33</u>(1933). 77 pp.
- NOOR, K.I. On a generalization of close-to-convexity, <u>Int. J. Math.</u> and <u>Math. Sci., Vol. 6 No.2</u>(1983), 327-334.
- POMMERENKE, CH. On starlike and close-to-convex functions, <u>Proc. Lon-don Math. Sco.</u> (3) <u>13</u>(1963), 290-304.
- GOLUSIN, G.M. On distortion theorems and coefficients of univalent functions, <u>Mat. Sb.</u> <u>19</u>(1946), 183-203.
- 9. HAYMAN, W.K. Multivalent functions, Cambridge, 1958.
- NOONAN J.W. AND THOMAS, D.K. On the Hankel determinant of areally mean p-valent functions, <u>Proc. Lond. Math. Sco.</u> (3) <u>25</u>(1972). 503-524.
- LIBERA, R.J. Some classes of regular univalent functions, <u>Proc. Amer.</u> <u>Math. Soc. 16</u>(1965), 755-758.
- 12. MARX, A. Untersuchungen uber Schliche Abbildungen, <u>Math. Ann.</u> <u>107</u> (1932), 40-67.
- AL-MADIFER, H. On functions of bounded boundary rotation and related topics, M.Sc. Theis, Girls College of Education (Science), Riyadh.1983.
- ROBERTSON, M.S. Coefficients of functions with bounded boundary rotation, <u>Canadian J. Math. XXI</u> (1969), 1417-1482.
- 15. MACGREGOR, T.H. The radius of univalence of certain analytic functions, Proc. Amer. Math. Sco. 14(1963), 514-520.
- PINCHUK, B. Functions of bounded boundary rotation, <u>J. Math.</u> <u>10</u>(1971), 6-16.
- BERNARDI, S.D. Convex and starlike univalent functions, <u>Trans. Amer.</u> <u>Math. Soc. 135</u>(1969), 429-446.
- 18. SINGH, R. On Bazilevic functions, Proc. Amer. Math. Soc. (2) 28 (1973).
- 19. SHEIL-SMALL, T. On Bazilevic functions, Quart. J. Math., 23(1972),135-142