ON nth - ORDER DIFFERENTIAL OPERATORS WITH BOHR-NEUGEBAUER TYPE PROPERTY

ARIBINDI SATYANARAYAN RAO

Department of Mathematics, Concordia Univ., Montreal

(Received July 2, 1985 and in revised form July 31, 1986)

ABSTRACT. Suppose B is a bounded linear operator in a Banach space. If the differential operator $\frac{d^n}{dt^n}$ - B has a Bohr-Neugebauer type property for Bochner almost periodic functions, then, for any Stepanov almost periodic continuous function g(t) and any Stepanov-bounded solution of the differential equation $\frac{d^n}{dt^n} u(t) - Bu(t) = g(t), u^{(n-1)}, \dots, u', u$ are all almost periodic.

KEY WORDS AND PHRASES. Bounded linear operator, Bohr-Neugebauer property, Bochner (Stepanov or weakly) almost periodic function, completely continuous normal operator. 1970 AMS SUBJECT CLASSIFICATION SCHEME. PRIMARY 34C25, 34G05; SECONDARY 43A60.

1. INTRODUCTION.

Suppose X is a Banach space and J is the interval - $\infty < t < \infty$. A function $f \in L^p_{loc}(J;X)$ with $1 \leq p < \infty$ is said to be Stepanov - bounded or S^p -bounded on J if

$$\|f\|_{S^{p}} = \sup_{t \in J} \left[\int_{t}^{t+1} \|f(s)\|^{p} ds \right]^{1/p} < \infty.$$
 (1.1)

For the definitions of almost periodicity, weak almost periodicity and S^{P} -almost periodicity, we refer the reader to pp. 3, 39 and 77, Amerio-Prouse [1].

Suppose that B is a bounded linear operator having domain and range in X. We say that the differential operator $\frac{d^n}{dt^n}$ - B has Bohr-Neugebauer property if, for any almost periodic X-valued function f(t) and any bounded (on J) solution of the equation

$$\frac{d^n}{dt^n} u(t) - Bu(t) = f(t) \qquad \text{on } J, \qquad (1.2)$$

u⁽ⁿ⁻¹⁾,...,u', u are all almost periodic.

Our main result is as follows.

THEOREM 1. For a bounded linear operator B with domain D(B) and range R(B) in a Banach space X, let the differential operator $\frac{d^n}{dt^n}$ - B be such that, for any almost periodic X-valued function f(t) and any S^P-bounded solution u: $J \rightarrow D(B)$ of the equation (1.2), $u^{(n-1)}, \ldots, u'$, u are all S¹-almost periodic. If p > 1, then, for any S^P-bounded solution u: $J \rightarrow D(B)$ of the equation

$$\frac{d^{n}}{dt^{n}} u(t) - Bu(t) = g(t) \qquad \text{on } J, \qquad (1.3)$$

u⁽ⁿ⁻¹⁾,...,u',u are all almost periodic.

REMARK 1. Theorem 1 is a generalization of a result of Zaidman [6].

2. PROOF OF THEOREM 1.

By (1.3), we have the representation

$$u^{(n-1)}(t) = u^{(n-1)}(0) + \int_0^t Bu(s)ds + \int_0^t g(s)ds \quad \text{on } J.$$
 (2.1)

If $0 < t_2 - t_1 < 1$ and $p^{-1} + q^{-1} = 1$, then, by the Hölder's inequality,

$$\| \int_{t_{1}}^{t_{2}} Bu(s) ds \| \leq \|\beta\| \cdot \int_{t_{1}}^{t_{2}} \|u(s)\| ds$$

$$\leq \|\beta\| \cdot \left[\int_{t_{1}}^{t_{2}} \|u(s)\|^{p} ds \right]^{p^{-1}} \cdot (t_{2} - t_{1})^{q^{-1}}$$

$$\leq \|\beta\| \cdot \left[\int_{t_{1}}^{t_{1} + 1} \|u(s)\|^{p} \right]^{p^{-1}} \cdot (t_{2} - t_{1})^{q^{-1}}$$

$$\leq \|\beta\| \cdot \|u\|_{s}^{p} \cdot (t_{2} - t_{1})^{q^{-1}}.$$

$$(2.2)$$

Hence $\int_0^t Bu(s) ds$ is uniformly continuous on J. Further, by Theorem 8, p. 79, Amerio-Prouse [1], $\int_0^t g(s) ds$ is uniformly continuous on J. Consequently, $u^{(n-1)}$ is uniformly continuous on J.

Now consider a sequence $\{\rho_k(t)\}_{k=1}^{\infty}$ of non-negative continuous functions on J such that

$$\rho_{\mathbf{k}}(t) = 0 \text{ for } |t| \ge k^{-1}, \int_{-k^{-1}}^{k^{-1}} \rho_{\mathbf{k}}(t) dt = 1.$$
 (2.3)

The convolution between u and ρ_k is defined by

$$(u * \rho_k)(t) = \int_J u(t-s)\rho_k(s)ds = \int_J u(s)\rho_k(t-s)ds.$$
(2.4)

From (1.3), it follows that

$$\frac{d^{n}}{dt^{n}}(u * \rho_{k})(t) - B(u * \rho_{k})(t) = (g * \rho_{k})(t) \text{ on } J. \qquad (2.5)$$

Again by Hölder's inequality,

$$\begin{aligned} \|(\mathbf{u}^{*}\boldsymbol{\rho}_{k}) (\mathbf{t})\| &= \|\int_{-1}^{1} \mathbf{u}(\mathbf{t} - \mathbf{s})\boldsymbol{\rho}_{k}(\mathbf{s}) \, d\mathbf{s} \| \\ &\leq \left[\int_{-1}^{1} \|\mathbf{u}(\mathbf{t} - \mathbf{s})\|^{p} \, d\mathbf{s} \right]^{p-1} \int_{-1}^{1} \left[\hat{\boldsymbol{\rho}}_{k}(\mathbf{s}) \right]^{q} \, d\mathbf{s} \right]^{q-1} \\ &= c_{\boldsymbol{\rho}_{k}} \left[\int_{t-1}^{t+1} \|\mathbf{u}(\sigma)\|^{p} \, d\sigma \right]^{p} \\ &\leq 2 c_{\boldsymbol{\rho}_{k}} \|\mathbf{u}\|_{S}^{p} \text{ for all } \mathbf{t} \in J \text{ and } \mathbf{k} = 1, 2, \dots . \end{aligned}$$

$$(2.6)$$
Similarly, the S¹-almost periodicity of g(t) implies the almost periodicity of

 $(g^* \rho_k)$ (t) for all k = 1, 2, ...

Consequently, it follows from our assumption on the operator $\frac{d^n}{dt^n}$ - B that $(u * \rho_k)^{(n-1)}(t), \ldots, (u * \rho_k)'(t), (u * \rho_k)(t)$ are all S¹-almost periodic from J to X for all $k \ge 1$.

Further, since $u^{(n-1)}$ (t) is uniformly continuous on J, given $\varepsilon > 0$, there

exists $\delta > o$ such that

$$\|u^{(n-1)}(t_1) - u^{(n-1)}(t_2)\| \le \varepsilon \text{ for } |t_1 - t_2| \le \delta.$$
 (2.7)

Consequently, we have, for
$$|t_1 - t_2| \le \delta$$
,
 $\| (u^{(n-1)} * \rho_k) (t_1) - (u^{(n-1)} * \rho_k) (t_2) \|$
 $\le \int_{-k}^{k-1} \| u^{(n-1)} (t_1 - s) - u^{(n-1)} (t_2 - s) \| \rho_k$ (s) ds
 $\le \varepsilon \int_{-k}^{k-1} \rho_k$ (s) ds = ε , by (2.3). (2.8)
Hence, $(u * c_1)^{(n-1)} (t_1 - s) - (u^{(n-1)} * c_2) (t_1)$ is uniformly continuous on L. So, by

Hence $(u * \rho_k)^{(n-1)}$ $(t) = (u^{(n-1)} * \rho_k)$ (t) is uniformly continuous on J. So, by Theorem 7, p. 78, Amerio-Prouse [1], $(u^{(n-1)} * \rho_k)$ (t) is almost periodic.

Furthermore, by the uniform continuity of $u^{(n-1)}$ (t) on J, the sequence of convolutions $(u^{(n-1)} * \rho_k)$ (t) converges to $u^{(n-1)}$ (t) as $k \neq \infty$, uniformly on J. Hence $u^{(n-1)}$ (t) is almost periodic from J to X, and so is bounded on J. Therefore $u^{(n-2)}$ (t) is uniformly continuous on J. Consequently, $(u^{(n-2)} * \rho_k)$ (t) is almost periodic and $(u^{(n-2)} * \rho_k)$ (t) $\neq u^{(n-2)}$ (t) as $k \neq \infty$, uniformly on J. Hence $u^{(n-2)}$ (t) is almost periodic.

Thus we conclude successively that $u^{(n-1)}, \ldots, u', u$ are all almost periodic from J to X, which completes the proof of the theorem.

REMARK 2. The conclusion of Theorem 1 remains valid for any S^1 -bounded and uniformly continuous solution of the equation (1.3).

PROOF. By the Lemma of Rao [5], such a solution is bounded on J. Consequently, by the representation (2.1), $u^{(n-1)}$ is uniformly continuous on J.

REMARK 3. If B = 0, then Theorem 1 holds for $p \ge 1$.

3. NOTES.

(i) Suppose X is a separable Hilbert space, and consider the differential equation

$$\frac{d^{n}}{dt^{n}} u(t) - Bu(t) = f(t) \quad \text{on } J, \qquad (3.1)$$

where $f: J \rightarrow X$ is an almost periodic function, and $B: X \rightarrow X$ is a completely continuous normal operator. Then, if u is a bounded solution of $(3.1), u^{(n)}$ is almost periodic (as shown in the proof of Theorem 1 of Cooke [3]). Therefore, by the Corollary to Lemma 5 of Cooke [3], $u^{(n-1)}, \ldots, u', u$ are all almost periodic. That is, the operator $\frac{d^n}{dt^n}$ - B has Bohr-Neugebauer property.

Now assume that u is an S^p-bounded solution $(1 of the equation <math>(3.1)_{\circ}$. If we replace g by f in the proof of our Theorem 1, then, by the Bohr-Neugebauer property of the operator $\frac{d^n}{dt^n} - B$, it follows that $u^{(n-1)}, \ldots, u', u$ are all almost periodic. Hence the operator $\frac{d^n}{dt^n} - B$ satisfies the assumption of Theorem 1 for p > 1.

(ii) Finally, suppose X is a reflexive space and B = 0. Given an almost periodic X-valued function f(t), assume u(t) is a bounded solution of the differential equation

$$\frac{d^{n}}{dt^{n}} u(t) = f(t) \quad \text{on J.}$$
(3.2)

Then it follows from Lemma 2 of Cooke [3] that $u^{(n-1)}, \ldots, u'$ are all bounded on J. Hence we conclude successively that $u^{(n-1)}, \ldots, u', u$ are all almost periodic (see Amerio-Prouse [1], p. 55 and Authors' Remark on p. 82). Therefore the operator $\frac{d^n}{dt^n}$ has Bohr-Neugebauer property.

Now, given an S^1 -almost periodic continuous X-valued function g(t), suppose u(t) is an S^p -bounded solution $(1 \le p < \infty)$ of the differential equation

$$\frac{d^n}{dt^n} u(t) = g(t) \quad \text{on } J. \tag{3.3}$$

From (3.3), it follows that

$$\frac{d^{n}}{dt^{n}}(u * \rho_{k})(t) = (g * \rho_{k})(t) \quad \text{on } J, \qquad (3.4)$$

where $\{\rho_k(t)\}_{k=1}^{\infty}$ is the sequence defined in the proof of our Theorem 1. Then $(u * \rho_k)(t)$ is bounded on J and $(g * \rho_k)(t)$ is almost periodic from J to X. So, by the Bohr-Neugebauer property of the operator $\frac{d^n}{dt^n}$, $(u * \rho_k)^{(n-1)}(t), \ldots, (u * \rho_k)'(t)$, $(u * \rho_k)$ (t) are all almost periodic.

By (3.3), it follows from Theorem 8, p. 79, Amerio-Prouse [1] that $u^{(n-1)}(t)$ is uniformly continuous on J. Consequently, we conclude successively that $u^{(n+1)}(t), \ldots, u'(t), u(t)$ are all almost periodic. Hence the operator $\frac{d^n}{dt^n}$ satisfies the assumption of Theorem 1 for $p \ge 1$.

4. CONSEQUENCES OF THEOREM 1.

Let L(X,X) be the Banach space of all bounded linear operators on X into itself, with the uniform operator topology. As consequences of our Theorem 1, we demonstrate the following results.

THEOREM 2. In a reflexive space X, suppose $f : J \rightarrow X$ is an S^{p} -almost periodic continuous function $(1 \le p < \infty)$, and $B : J \rightarrow L(X,X)$ is almost periodic with respect to the norm of L(X,X). If $u : J \rightarrow X$ is any S^{p} -almost periodic solution of the differential equation

$$\frac{d^n}{dt^n} u(t) = B(t)u(t) + f(t) \quad \text{on } J, \tag{4.1}$$

then $u^{(n-1)}, \ldots, u', u$ are all almost periodic from J to X.

PROOF. Since B(t) is almost periodic from J to L(X,X), and u(t) is S^{P} -almost periodic from J to X, we can show that B(t)u(t) is S^{P} -almost periodic from J to X (see Rao [4]). Hence B(t)u(t) + f(t) is S^{P} -almost periodic from J to X. If we write

$$v(t) = B(t)u(t) + f(t)$$
 on J, (4.2)

then (4.1) becomes

$$\frac{d^{n}}{dt^{n}} u(t) = v(t) \quad \text{on } J.$$
(4.3)

By our Note (ii), the operator $\frac{d^n}{dt^n}$ satisfies the assumption of our Theorem 1 for $p \ge 1$. Since u is S^p -almost periodic, it is S^p -bounded on J. So, by Theorem 1, $u^{(n-1)}, \ldots, u', u$ are all almost periodic.

THEOREM 3. In a reflexive space X, suppose f : J + X is an S^{p} -almost periodic continuous function $(1 \le p < \infty)$, and B : X + X is a completely continuous linear operator. If u : J + X is a weakly almost periodic (strong) solution of the differential equation

$$\frac{d^{n}}{dt^{n}} u(t) = Bu(t) + f(t) \quad \text{on } J, \qquad (4.4)$$

then $u^{(n-1)}, \ldots, u', u$ are all almost periodic.

PROOF. Since B is a bounded linear operator, Bu is also weakly almost periodic. Further, B being a completely continuous operator, the range of Bu is relatively compact. Hence, by Theorem 10, p. 45, Amerio-Prouse [1], Bu is almost periodic. Consequently, Bu + f is S^{P} -almost periodic. Now, if we write

$$w(t) = Bu(t) + f(t)$$
 on J, (4.5)

then (4.4) becomes

$$\frac{d^n}{dt^n} u(t) = w(t) \quad \text{on J.}$$
(4.6)

Since u is weakly almost periodic, it is bounded on J. Therefore, by Theorem 1, $u^{(n-1)}, \ldots, u', u$ are all almost periodic.

REMARK 4. Suppose X is a Hilbert space and B (L(X,X) with $B \ge 0$. Consider the differential equation

$$\frac{d^2}{dt^2} u(t) - Bu(t) = f(t) ext{ on } J, ext{ (4.7)}$$

where $f: J \rightarrow X$ is an almost periodic function. Then any bounded solution $u: J \rightarrow X$ of the equation (4.7) is almost periodic (see Zaidman [7]). By (4.7), u'(t) is uniformly continuous on J. Hence, by Theorem 6, p. 6, Amerio-Prouse [1], u'(t) is almost periodic. Therefore the operator $\frac{d^2}{dt^2}$ - B has Bohr-Neugebauer property, and so satisfies the assumption of Theorem 1 for p > 1.

REFERENCES

- 1. AMERIO, L. and PROUSE, G. <u>Almost Periodic Functions and Functional Equations</u>, Van Nostrand Reinhold Company (1971).
- BOCHNER, S. and NEUMANN, J.V. On Compact Solutions of Operational-differential Equations 1, <u>Ann. of Math.</u>, <u>36</u> (1935), 255-291.
- 3. COOKE, R. Almost periodicity of Bounded and Compact Solutions of Differential Equations, <u>Duke Math. J.</u>, <u>36</u> (1969), 273-276.
- 4. RAO, A.S. On the Stepanov-almost periodic solution of an abstract differential equation, <u>Indiana Univ. Math. J.</u>, 23 (1973), 205-208.
- RAO, A.S. On the Stepanov-bounded primitive of a Stepanov-almost periodic function, <u>Istit. Lombardo Accad. Sci. Lett. Rend. A.</u>, <u>109</u> (1975), 65-68.
- 6. ZAIDMAN, S. A remark on Differential Operators with Bohr-Neugebauer property, Istit. Lombardo Accad. Sci. Lett. Rend. A., 105 (1971), 708-712.
- 7. ZAIDMAN, S. Soluzioni quasi-periodiche per alcune equazioni differenziali in spazi Hilbertiani, <u>Ric. Mat.</u>, <u>13</u> (1964), 118-134.