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ABSTRACT. In this paper the concept of a *-mixing process is extended to multivalued

maps from a probability space into closed, bounded convex sets of a Banach space.

The main result, which requires that the Banach space be separable and reflexive, is

a convergence theorem for *-mixing sequences which is analogous to the strong law of

large numbers. The impetus for studying this problem is provided by a model from

information science involving the utilization of feedback data by a decision maker

who is uncertain of his goals. The main result is somewhat similar to a theorem for

real valued processes and is of interest in its own right.
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I. INTRODUCTION.

Our motivation for the present work arises from our efforts to extend a model of

a decision maker using feedback information to decide on an appropriate course of

action. This model has been described by R. Alo, R. Kleyle and A. de Korvin in

[2] and extended to include goal uncertainty on the part of the decision maker by

A. de Korvin and R. Kleyle in [12]. The role of the decision maker in this model is

to select an appropriate course of action from a finite set of possible courses of

action and to use the information obtained from implementing this course of action

to reassess the situation prior to selecting his next course of action. The selec-

tion process is determined by the decision maker’s current estimate of the expected

utility associated with each course of action. The case in which the decision maker

has a well defined utility function for each course of action (goal certainty) is

developed in detail in [2].

Some preliminary results for the case in which the decision maker is unable to

assign an explicit utility function to each course of action (goal uncertainty) are

obtained in [12]. In this paper goal uncertainty is expressed by interval-valued

functions. In the present paper we extend the goal uncertainty case to the situation
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in which the decision maker considers a convex set of possible utility functions.

This leads us to consider multivalued maps from a probability space to subsets of a

Banach function space. The first steps in that direction were taken by A. de Korvin

and R. Kleyle in [13].

The key to the results obtained in [13] is that for each course of action the

convex valued expected utilities form a supermartingale. In the context of multi-

valued maps a supermartingale is a sequence {Fn, H where F is a multivalued
n n

map and H an expanding sequence of -fields such that F is H -measurable and
n n n

E[Fn+I Hn]. F
n

The formal definition for conditional expectations in the present context will be

given in the next section. The above property is a consequence of goal shaping which

is defined in [12] and in [13].

The purpose of the present work is to obtain a convergence result that would

replace the convergence result obtained in [12] for situations in which the goal

shaping condition is removed. Consequently we wish to remove the condition that F
n

is a supermartingale. Another reason for removing the supermartingale condition is

that we do not want to tie the expected utility to the immediate past. A far more

reasonable condition is to assume that the dependence of F on past history becomes
n

weaker as past history becomes more distant. To accomplish this we will assume that

the process satisfies the *-mixing condition which will be defined in the next

section. This condition is called *-mixing because of its analogy to the *-mixing

condition for real valued processes.

At each cycle of an ongoing decision process the decision maker hopes to improve

his estimate of the expected utilities associated with each course of action. It is

reasonable to assume that he will in some sense want to average his estimates of the

sets of utility functions obtained so far. In this paper we define such an average

and show that it satisfies a strong law of large numbers with respect to a metric to

be defined later.

2. BACKGROUND AND PRELIMINARIES.

The main purpose of this section is to define the important concepts necessary for

understanding the results. The most fundamental concept needed is that of Banach-

valued martingales.

Let (,E,P) be a probability space, and let Y be a Banach space. Let X
i

be a

sequence of integrable Y-valued functions and F
i

an expanding sequence of sub -flelds

of E. The sequence (Xi,Fi) is called a martingale if X
i

is Fi-measurable and

E[XI+ Fi] X
i

a.s. (2.1)

For properties of real-valued martingales the reader is referred to [8] and for

the Banach-valued case to [6].

We now focus attention on multivalued functions defined on R whose values are

closed, bounded, convex subsets of Y. Let F and G denote any such maps. We now

define a new map

(F S)() cl{a + b / a e F(), b e G()}

where cl denotes the closure with respect to the norm.
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We set

6(F,G)() Max{sup d(x,G()), sup d(y,F())}
x e F() y e F()

where d(x,G()) inf II x-t II d(x,F()) inf II x-t II.
t e G() t e F()

Of course 6 is just the Hausdorff distance of F() to G(), and when there is no

confusion, we will write 6(F,G). For a finite sequence of maps F
i

In F
i

F $ F
2
$ $ F

n
i=l

and E F
i

denotes the limit, if it exists, of En F
i

in the 6-metric.
i=l i=l

We define the analog of an L distance by

A(F,G) I 6(F,G)dP

[7]..

In this context the notations 6, A and $ were first introduced by Debreu in

Finally we define

IFI 6(F,{0}).

Note that IFi is a non negative function defined on R.
-IA multivalue map F is E-measurable if for any open set B Y, F (B) E E

where

F-I(B) { e R / F() n B # @ }.

It is shown in Himmelberg [II] that D(F) { e R / F() # @} and there exists a

sequence {f of E-measurable functions such thatn

F(m) cl{f (m) for all m e D(F)}.
n

In fact the above property can be used to define measurability for Banach spaces.

For an equivalent definition of measurability the reader is referred to [II], [5],.and

[7]. We define F to be integrable if

I IFI dP <

The space L2wk(Y) will refer to all multivalued maps F: R 2
Y

such that F()

is a weakly compact non empty convex subset of Y and I FI 2
dP <

By a selector of F we mean a function f: R Y such that f() e F() for all

e If F is integrable S F
(F) will denote all F-measurable and integrable

selectors of F. SIF(E) will simply be written as SIF For related kinds of

selectors see Alo, de Korvin and Roberts [I]. Following Aumann [3] we define, for
F E-measurable

I FdP I f dP / f e S IF }.

From now on E(F) will denote the Aumann integral of F.
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We now define the concept of conditional expectation for an integrable, multi-

valued function F. We assume that Y is separable, and the values of F are

weakly compact subsets of Y. Following Hial and Umegakl [I0] (Th. 5.1, p. 169), the

conditional expectation of F relative to a sub o-fleld F of E is defined by

SIE{FIF] (F) cl{ E[flF] / f e S F

The lhs of the above llne indicates that the conditional expectation of F with

respect to F is the set of integrable selectors of this set which are F-measurable.
For notational convenience we denote this set as

Now that the conditional expectation of multivalued functions has been defined,

the concept of a martingale can be extended to these functions by replacing Y-valued

functions X
i

in (2.1) with convex set valued functions Fi. For convergence theorems

pertaining to multlvalued martingales the reader is referred to the work of Hia and

Umegakl [I0] and for multivalued supermartingales to A. de Korvln and R. Kleyle [13].

Let F
i

be a sequence of integrable multivalued functions whose values are weakly

compact subsets of Y where Y is separable. We say that the sequence is *-mixing

if there exists some positive integer N and some function # defined on [N,) such

that is strictly decreasing to 0, and for all n N and m we have

A[E[Fn+m Fm]], E[Fn+m]] (n)E]Fn+ml. (2.2)

A law of large numbers was shown for a somewhat similar real-valued process by Blum

et al [4].

The concept of a *-mixing sequence is central to our result. What (2.2) really

says is that on the average the dependence of Fn+m on F grows weaker as n
m

provided EIFn+ml is reasonably bounded. If the interpretation of Fn+m
is the estimate of the average utility at trial n+m when goal uncertainty is

present, then it is reasonable to expect that the dependence of this average on the

early history of the process (i.e. the history up to trial m) grows weaker as n .
For technical reasons we will need the following o-flelds. Let w be a familyn

of E-measurable selectors of F; then

NGF(Wn) F[Wn(.) / n(’) e

That is, we consider the o-fleld generated by all functions obtained from w by
n

allowing n to be a variable index.

If F
t

is a family of measurable multlvalued maps, Gt(Wn,t) will be used to

denote G
F (w

n
t).

t k
By the o-fleld generated by F

t Ft2 Ftk we mean o[ U G
t (Wn,tl)]. Given

i=l i
a sequence FI, F

2 of E-measurable multivalued maps, we will replace E by

E o E U U Gi(wn i) ].
i--I

3. RESULTS.

From now on Y is a separable, reflexive Banach space and F denotes a *-mixingn
sequence with F e L

2
n wk(Y). We replace E by the larger o-fleld E as defined in

the previous section. We start by listing a result on martlngales known to be true for
the real valued case [9].
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LEMMA I. Let fi be a sequence of Y-valued random variables such that

S En f is a martingale relative to the expanding sequence of o-fields F Let
n i n

i=l
b be an increasing sequence of positive reals such that limb . Then if
n n

E b
i -2m[llfill2 Fi_l] < ,

i=l

it follows that lim Sn/bn 0 (a.s.).

PROOF The proof is essentially the same as for the real case. For details the

reader is referred to [9], Theorem 2.18, pp. 35-36.

We now obtain an important inequality. Let FI, F2, F be any finite
q

sequence of integrable multivalued functions whose values are weakly compact subsets

of a separable Banach space Y, and let H H2, H denote an arbitrary
q

sequence of expanding o-fields in E’.

LEMMA 2. For every > O, there exists a sequence fl’ f2’ f such that
q

fi is an integrable selector of Fi, and such that for each i, fi is Hi-measurable,
and

A( .q Fi,
-Eq E[FilHi_l]) f II Eq(f

i m[filHi_l])II dP +
i=l i=l i=l

PROOF. Let RI {m/Sup d(s, Eq Fi) Sup d(t,. q E[FilHi_I])}, and let
s i=l t i=l

2 1" Here s ranges over .Eq E[Fi]Hi_I], and t ranges over .Eq Fi. Since
i=l i=l

.Eq E[FilHi_ I] is a measurable multivalued function, it has a sequence of selectors
i=l

{v such that
m

cl {Vm() "Eq m[FilHi-i () a.s.
i=l

The sequence {Vm is E-measurable. Now there exists functions Vm(.)(’),
which we continue to denote by vm, such that

Thus

.Eq Fi) --> Sup d(s, .l
q Fi) ed(Vm’

i=l s i=l

.Iq Fi)dP + eI 6( r. q Fi, .Eq E[FilHi_I])dP < I d(vm,
I i=1 i=1 i i--1

By Theorem 5.1 of [I0] there exists H
i

measurable functions gmi which are

selectors of F
i

such that the right hand side of the above inequality is dominated

by

I II v Eq m[gmilHi_l II de + d(Eq m[gmilHi_l ],.Eq Fi)de +
i

m
i=l i i=l i=l

and where, moreover,

Hence

i=l

(. Eq Fi,
Eq E[FilHi_I])dP -< I II Eq (E[gmilHi_ I] gmill dP + 2 .

i= i= i=
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Now if m 2’ since .Eq F
i

is E-measurable, we can pick a sequence Um(.)(’),
i=l

which we denote by of selectors of .Eq F
i

such thatUm
i=l

d(Um, .Eq E[FilHi_I]) > sup d(t, .Eq E[Fi[Hi_I])
i=l t i=l

Hence

I 6(.Eq Fi, .Eq E[Fi[Hi_l])dP =< I d(um, .Eq E[Fi[Hi_l]dP +
2 i=l i=l 2 i=l

< Y II Eq E[ ])II dP + E(Umi Uml Hi-
n2 i=l

where Uml are Hi-measurable selectors of Fi.

Thus the lemma is proved by picking fl gml on I’ and fl Uml on 2"
We are now ready to prove the main result.

THEOREM. Let F be a *-mixing sequence with F L2wk(Y) where Y is a
n n

separable and reflexive Banach space. Assume

(1) E b
-2 EIFn 12 <

n
n=l

(ll) sup b
-I En mlFi <

n
n i=l

where b is a sequence of positive constants increasing to infinity. Then
n

A(b -I .En Fi b
-I En E(FI)) O.

n n
i=l i=l

PROOF. By the *-mixing property, there exists N such that the *-mixing

inequality (2.2) holds for n >= N and m >= I. Given E > 0, pick no N large

enough so that (n0) < Thus since Y is reflexive for all positive integers

and j we have by theorem 5.4 of [I0],

A ),) E ))(E(Fin0+j Fn0+J F
(i_l)n0+j (Fino+j (3.1)

where
(i-l)no+J

A{E[E(Fino+j. F(i-1)no+J G(i_l)no+j],E[E(Fino+J G(i_l)no+J
is the o-fieid generated by F1 F2 F(i_l)n0+j and

(i_l)n0+j
is generated by Fn0+J, F2no+j F(i_l)n0+J.

By theorem 5.2 of [i0] the right hand side of (3.1) is dominated by

)]}

A[E(FIn0+j F(i_l)n0+J), E(Fin0+j)] -< (n0) E Fin0+j (3.2)

The last inequality is a consequence of the *-mixing inequality. Now

A(bn .zn Fi, bn-I .zn E(Fi))
i=l i=l

A(bn
-I .Eno F

i
b

-i .Eno E(FI)) + A(b
-I .Eq-I .Eno-I

i=
n

i=
n

i=l j=l Fino+j
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b
-I .lq-i .lno-I E(Fin0+J ))

n
i= j=l

+ A(b
-i .Er F b

-I .lr E(F )) (3.3)
n

j=l qn0+J’ n
j=l qn0+J

where for any n nO n qn0 + r where q and r are positive integers such that

0 r no I. The inequality (3.3) holds because

A(A B, C $ D) A(A,C) + A(B,D).

(See p. 162 of [I0])

The first term of the right hand side in (3.3) can be written as

b-I A(.7.n0 Fi .zn0 E(Fi))n
i=l i=l

and goes to zero when n since nO is fixed and bn It remains to show

that the second and third term of the right hand side of (3.3) goes to zero as

n . We give the proof for the second term, the third term is handled similarly.

By the triangular inequality the second term is dominated by

-I q-i n0-1 -i
q-i no-iA (b

n
Z Z Fin0+ b Z Z

i=l j=l
n

i=l j=l E(Fin0+ G(i-l)no+j
q-I n0-1 q-i no-i+ A(D -I

.l .E E(Fin0+ G(i_l)n0+j) b
-I .E .Z

n
i=l j=l

n
i=l j=l"

E (Fino+j

n0-1 q-i q-i
E b

-I
A(.E Fin0+j,=i

n
i=l i=l E[Fin0+j G(i-l)no+J])

-I n0-1 q-i
+ b (n0) E E EIFin0+Jl (3.4)n

j=l i=l

The last inequaltiy follows from (3.1) and (3.2).

The second term on the right hand side of (3.4) can be made arbitrarily small by

the *-mixing condition and condition (il) of the theorem. It remains to show that the

first term on the right hand side of (3.4) goes to 0 as r (and therefore q) goes to

infinity.

By Lemma 2, this term is dominated by

no-i -i
q-i

Z b f II Z (fin0+ E[fin0+J G(i_l)n0+J])ll de + 2 e
j=l

n
i=l

where fin
0 + j

is a Gin0+j-measurable integrable selector of Fino+j. Furthermore,

it is easy to show that

q-i
Z (fin0+j E[fin0+J G(i_l)no+J]Sq-i

i=l

is a martingale with respect to {G(q_l)no+j} q ->

Condition (i) of the theorem implies that the hypothesis of Lemma holds, so that



16 A. de KORVIN and R. KLEYLE

for each fixed no and j,

q-I
b-i II 7. (f
n

i=l in0+J E[fin0+ G
(i-l)n0+J

])li 0 a.s. (3.5)

The left hand side of (3.5) is dominated by

q-I
b

-I [I 7. (fin0+j E[fln0+J G(i_l)no+J])llq-i
i=

-I q-I
-i

q-I

Fin0+ Fin0+jbq_l i=iI + bq_ i=17. IE[ G(i-l)n0+J
Since the map Fin0+j E[Fin0+J G(i_l)n0+J] is non-expanslve, (see Th. 5.2 of

[I0]), it follows that the right hand side of the above inequality has L norm less

than or equal to

Thus

-i
q-I

2b Z E Fin0+Jl.q-I
i=

q-l

bn-I f II i=IZ (fin0+j E[fin0+J G(i_l)n0+J])ll dP 0

by condition (ii) and the dominated convergence theorem. This completes the proof of

the theorem.
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