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ABSTRACT. A study is made of the Lamb plane problem in a thermooelastic micropolar

medium with the effect of stretch. The problem is solved for an arbitrary, normal

load distribution by using the double Fourier transform. The displacement components,

force stress, couple stress, vector first moment and the temperature field are deter-

mined for a half space subjected to an arbitrary normal load. Two special cases of a

horizontal force and a torque which are oscillating with a frequency m have been

investigated. It is shown that results of this analysis reduce to those without

stretch.
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I. INTRODUCTION.
Eringen and Suhubi [1] have developed a general theory of linear and nonlinear

micro-elastic continua. This theory contains the Cosserat continuum and the interme-

diate couple stress theories as special cases. In a subsequent paper [2], Eringen

recapitulated his work and renamed his theory as micropolar elasticity. The

micropolar theory essentially deals with such materials whose constituents are

dumbbell type molecules and are allowed to rotate independently without stretch.

Later on, Eringen [3-4] extended his work to include the effect of axial stretch

during the rotation of molecules and developed theories for both micropolar elastic
solids with stretch and micropolar fluids with stretch. The mechanical model
underlying the theory of micropolar elastic solids with stretch can be envisioned as
an elastic medium composed of a large number of short springs. These springs possess
average inertia and can deform in axial directions.
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Lamb’s problem [5] has been investigated extensively by several researchers in

different elastic media with various kinds of loading. In particular, Nowacki and

Nowacki [6] have studied the Lamb problem in micropolar elastic media. Recently,

Chadha [7] has investigated the same problem in micropolar elastic media, and dis-

cussed wave propagation in a semi-infinite micropolar elastic solid due to loading at

the plane boundary of semi-half space. Acharya and Sengupta [8] have recently studied

Lamb’s problem1 in a thermo-elastic medium under the influence of temperature. They
have examined the longitudinal and transverse thermo-elastic wave propagation in a

micropolar semi-infinite space bounded by a plane in which a normal loading is ap-

plied.

In spite of these studies, no attention is given to Lamb’s problem in

thermo-micropolar elastic half-space with stretch. The main purpose of this paper is

to investigate the problem with the assumption that the heat is radiated from the free

plane boundary surface of the semi-infinite space and the maximum temperature differ-

ence across the surface is always small. The displacement components, force stress,

couple stress, vector first moment and the temperature field are determined for the

half-space subjected to an arbitrary normal load. Two special cases of a horizontal

force and a torque which are harmonic in time have been discussed. The problem is

solved by the double Fourier transform method.

2. THE FORMULATIOI OF THE PROBLEM AND THE BOUNDARY COIDITIONS
We consider a homogeneous micropolar elastic semi-infinite space with stretch

under the influence of temperature. We assume that there is a uniform stretch in the

x-direction only and a loading g(x,t) normal to the free boundary surface z O.
Further, we assume that the micropolar semi-space is free to exchange heat within the

region z > O; and prior to the appearance of any disturbance, both media are every-
where at the constant absolute temperature T

O
We consider the two-dimensional problem so that the displacement and rotation

are independent of the y coordinate. Thus we may write u (u 1, O, u3) and_
(0, m2’ 0). The displacements are related to the displacement potentials

(x, z, t) and (x, z, t) as follows:

Ul= x + B--z u3=--z- B-9-X (2. lab)

so that

where

e v2@ v2 Bul @u3 (2 2ab)I)Z )X

B2 B2 Bu Bu3V 2 ----+ and e -+ (2 3ab)
x2 - z

We follow Eringen [4] and Nowacki [9] to write down the basic field equations in

a thermo-micropolar elastic solid medium with stretch and without body forces and body
moments. These field equations are

@2u
(p+)v2 u + (+I-) grad div u + 2 rot m__ u grad o p B-tt-’ (2.4)

(y+)v2 m + (y+8-) grad div m 4 + 2 rot u J
@t2’

(2.5)
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ao v2@ n =-t--’J (2.6)

where , , , B, y, e, n are material constants, p is the density of the
o o

material, J is the rotational inertia, u (3+2) at, a
t is the coefficient of

linear expansion of the solid, o T-T absolute temperature minus the initial

absolute temperature To
Using the values of u and

_
in equations (2.4)-(2.6) we get

@2 Bo B2UlBe 2 p (2 7)(+) v 2 u I + (},+p-a) T- - - Bt2

Be Bm2 Bo B2u3(u+) v 2 u 3 + (+p-) -+ 2- v p
2-Bt

(2.8)

Bu I Bu3 B2m
2(Y+) v2 m2 4m2 + 2 (Bz B J

Bt2
(2.9)

a v2 no J B2 (2 I0)o 2 Bt2

The temperature field o(x,z,t) satisfies Fourier’s Law of heat conduction,

which in the present case can be written as

B2O B (v2),Kv2o pC + T
O

u - (2.11)

where K is thermal conductivity and C is the specific heat at constant strain.

Using (2.1ab)-(2.3ab) and (2.11) in equations (2.7)-(2.10), we obtain

(v2 B 2 o,

2(v2 I --)o r-{ (v 0,c Bt
(2.13)

(v2 1 B 2- --) P2 0, (2.14)
c2

_1__
2

(v2 Y c --)m2 + s v2* 0, (2.15)

where

2 I___B 2 o, (2.16)

+a K 24 Y+ 2 2
T’

.+2 c c c (2.17abcde)c p c p--C’ --ZF-’ 5 J
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2 4 2 no 2 v
Y I y+’ Y2 --’ p ’ q +-T2--’ (2.18abcd)

o

To 2 (2 19ab)r T’ s y+.

We next eliminate @ or e from equations (2.12)-(2.13), and or m2 from

(2.14)-(2.15) to obtain the following partial differential equations"

(v2 1 32 2 1 2 v2]--t-)(v ---T T - ](’e) O, (2.20)
c 1 c3

(V2 I__ 32 2 1 32 2V21
where 2 qr, 2 ps.

Following Eringen [4] and Nowacki [9] the stress tensor o.. and the couple

stress tensor are given by
j

o.. (;u -v0)a + (-) + uj + 2(u kj k,k ij (ui ,j ,i ,j kji
(2.22)

ji Bo kji ’k + Bmk,k aij + (Y-)j,i + (Y+)mi,j’ (2.23)

Bj So ’j + Bo kji mk,i’ (2.24)

where jki is unit antisymmetric tensor, Bj
i,j,k-1,2,3. These expressions in the present case reduce to the form

’32 32 + v2 0033 2 Bz--- B-z

324, 32, 32,] (V2, 22)

is the vector first moment and

(2.25)

(2.26)

u32 (Y+) @T- Bo (2.27)

B3 eo + Bo 3---" (2.28)

3. BOUNDARY CONDITIONS.
In view of the normal loading of magnitude g(x,t) applied on z O, the

boundary conditions are given by

33 g(x,t), 31 O, 32 O, B3 O, at z O. (3.1abcd)

In view of the assumption that the temperature difference across the free surface

is always small, the linearized form of the radiation condition is valid on the

boundary z 0 so that
30 + he 0 on z 0 (3 2)3Z

Further, if we assume that the loading function g(x,t) is bounded and finite on

z O, then @, , e, m2 and vanish at infinity.
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4. SOLUTION OF THE PROBLEM.
We solve the above equations (2.16), (2.20) and (2.21) by using the double

Fourier transform defined as follows:

i(kx+qt) (4.1)f(k,z,n) -# _(f_f f(x,z,t) e dxdt,

where the inverse transform is given by

f(x,z,t) (kx+nt)2"--=f-=I(R) (k,z,n) e- dkdn. (4.2)

Thus the equations reduce to the form

d2 d2 o,

d 2 ) az )(-) o ( )( ( ,
d2(z-Z- 1 o, (.1

where
2

c I c 3

(4.6)

(4.7)

c2 c4

n2 2 n2 2 2(- )(-- )
c2 c4

(4.9)

n2k 2 + Yz2 c5

(4.10)

In view of the boundary conditions at infinity, the bounded solutions of (4.3)-
(4.5) assume the fom

->,1 z ->,2 z
$ Ae + Be (4.11)

-Xl z -2z
(4.12)Ale + Ble

-X3z -X4zCe + De (4.13)

where

-X3z -X4z2 Cle + Dle (4.14)

-X5zE e (4.15)

A1 iA, B 1 2B, C 1 3C, D 1 4D, (4.16abcd)
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and

( + n____ k2), for j-I 2

J: 2
(}, + n____ k2), for j=3 4

It is assumed that Re(},j) > O, j=1,2,3,4,5.

(4.17ab)

Applying the Fourier transform (4.1) to (3.1abcd)-(3.2) and using (2.25)-(2.28),
it turns out that

2_ dz dz
d22{ + ikd--- + x( k2--T o- -g (k,n), (4.18)

u{k2 + d2 2ik d___} +
,d2 k2-22) 0

dz-- dz td- (4.19)

dm2(Y+) z + iBok O, (4.20)

de 1
So - iBok m2 O, (4.21)

+hO=O,
where (k,n) is the double Fourier transform of g(x,t).

Substitution of (4.11) (4.15) into (4.18) (4.22) yields

(4.22)

qlA + q2B + q3c + q4D (k,n), (4.23)

plA + p2B + p3C + p4D O, (4.24)

r3C + r4D + r5E O, (4.25)

t3C + t4D + t5E O, (4.26)

S lA + s2B O, (4.27)

where

qj [},j2(X + 2) k2>, -j),

L-2i ukxj,

j 1’211j 3,4
(4.28ab)

pj I-2i k},j,

,(k2 + 2.) + (},2._ k 2 2j)J J

j 1’211j 3,4

(4.29ab)
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sj (Xj -h) j, J 1,2,

(4.304b)

(4.31)

tj li6ok j, j 3,4,][3oXj j 5.

Solving equations (4.23)-(4.27) for A,B,C,D and E we obtain

A
1

a2 a3
A - (k,n), B - (k,n), C - (k,n).

(4.32ab)

(4.33abc)

where

a4 a5
D -- (k,n), E - (k,n),

A ml(P3m5 q3m4 m2(P4m5 q4m4 ),

(4.344b)

(4.35)

AI s2(P3ml P4m2 )’ A2 sl(P4m2- P3ml )’ (4.36ab)

and
3 mlm4’ A4 -m2m4’ A5 m3m4’

mI (r4t5 r5t4), m2 (r3t5 r5t3), m3 (r3t4 r4t3),

(4.37abc)

(4.38abc)

m4 :(slP2 s2Pl), m5 (slq2 s2ql). (4.39ab)

Using the Fourier inverse transformation (4.2) in (4.11) (4.15) we obtain

1
-x z -x2z i(kx + nt)dkdn

27 _I _f (Ae 1 + Be )e- (4.40)

O _f -; (IAe-XlZ
-x2z+ 2Be )e-i(kx

+ nt)dkdn, (4.41)

-x3z -X4Z)e-i(kx + nt)dkdn (4 42)
27 _I _I (C e + D e

-x3z -x4z i(kx + nt)
2 =- _ooI=_I (a3C e + 44D e )e- dkdn, (4.43)

-x5z -i(kx + nt)dkdn (4.44)i==’2- I= E e e

Thus, using (4.40)-(4.44) we can obtain the displacement components, force stress,

couple stress tensor, vector first moments, and the temperature field in the integral

form

*
u I _I_(R).r Ul(Z,k,n) (k,n)e-i(kx + nt)dkdn, (4.45)

1 * i(kx + ntu 3 _,I _(R)I u3(z,k,n) (k,n)e- )dkdn, (4.46)

* i(kx + nt)
m2 2-- _I

_
m2(z,k,n) (k,n)e- dkdn, (4.47)
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* i(kx + nt)
033 2--, - _=.r o33 (z,k,n) (k,n)e- dkdn,

* -i(kx + nt)
31 2--- - _I o31 (z,k,n) (k,n)e dkdn,

2 _I _I 32(z,k,n) (k,n)e i(kx + nt)dkdn

___1 * i(kx + nt
3 27 -I - B3 (z’k’n) (k,n)e- )dkdn,

* i(kx + ntc) 2---=I 7_ f o (z,k,n) (k,n)e- )dkdn,
where - z -2z -3z
u (z,k,n) Lik (Ale + A2e + 3A3e + 4A4e

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

-4z ], (4.53)

[ -Iz -2z -}’3z -4z ]u 3 (z,k,n) =- ,IAIe + ,2A2e ik(A3e + A4e (4.54)

[ -X3z -X4z ]’2 (z,k,n) 3A3e + 4A4e (4.55)

" [ -XlZ
o33 (z,k,n) =- {(>, + 2), k2, l}Ale

-2z
+ {( + 2) k2 2}a2e (4.56)

-,3z -},4z
-2i uk (,3A3e + },4A4e )],

[ -Xl z -2z
o31(z,k,n) 2ik(XlA1e + X2A2 e

-},3z+ {,(k 2 + ,) + (x(, k2 2(x3)}a3e (4.57)

-x4z+ {(k2 + ,)+ (x(,- k2 2c4)}A4e ],

-3z -x4z -x5z* [(y+)(X33A3e + 4X4A4e -iBokA5e ] (4 58)32(z,k,n)

-x3z -x4z -X5zI [iok (3A3e + 4A4e + 3oX5A5eB3 (z,k,n) ] (4.59)

-iz -X2zF l
L Iie 22e ] (4 60)(z,k,n)

5. PARTICULAR CASES:
(i) We consider a time periodic concentrated force acting at the origin in the

direction of x-axis so that the loading function assumes the fom

g(x,t) F(x) e-it, (5.1)
where F is the magnitude of the force, 6(x) is the Dirac function of distribution and

m is the frequency.

The double Fourier transform of g(x,t) is
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imtei(kx+nt(k,) _/ _F6(x)e- )dxdt,

F I ei(n-m)tdt

F6(n-m).

Thus from (4.45)-(4.60) with (5.2), we obtain

(5.2)

* -ikxF e it I [u l(z,k,n)]n= e dk,Ul (2)
(5.3)

* ikxF e it I [u3(z,k,n)]n= e- dk,u3 TTT
(5.4)

F imt * -ikXdk2 e- f [m2(z k,n)] e
(2) n=

(5.5)

*F e-imt_.i- [o33(z,k,n)]n=m e-ikXdk,c33 v
(5.6)

F e-imt I * e-ikXdk[o31(z,k,n)] n=m31 (5.7)

F e it
i

* ik[,32(z,k,n)]n=m e- Xdk,"32 (5.8)

I F e imt_l- [B(z,k,n)]n=m e- kXdk (5 9B 3 e
(2’’)

e F e-it I [0"( ikXdz,k,n)] n= e- k. (5.10)

If we neglect the stretch effect, we recover the corresponding expressions for the

displacements, stresses, and the temperature field in the for
F e-it e-ikXdk (5 11)_=I [Ml(z,k,n)]n=mu

F e -imt _(R)i= [M2(z,k,n)]n= e-ikXdk, (5.12)u3 /TTT

F e-it I [M3(z,k,n)]n:m e-ikXdk, (5.13)m2

o3 3
F e-imt I [M3(z,k,n)]n=m e-ikXdk, (5.14)

-itF e
i [M3(z,k,n)]n=m e-ikXdk,o31 (5.15)

F e- mt
f e-i kXdk[Mz(z,k n)]n=m32 (--)--

(5.16)

-imt
e-ikXdk0

F e
i [M3(z, k n)]n=m (5.17)
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where

. -iz
Ml(z,k,n) [ik(Ale

M2(z,k,n) I-T [ial e

, -2z) , -3z , -4z
+ A2e + >,3A3e + ),4A4e 3,

, -,2z . -3z . -X4z+ 22 e k A3 e + A4 e )],

M3(z,k,n) 1._ [3A’3 -X3Z ,* -X4Ze + aa e ]

. -X2z2 k 2M4(z,k,n) I-T [{+2), ,al}al e

+ {(, + 2)}, k2 va2} A
2 e

. ->,3z . -4z
2ik(},3A3e + 4A4 e )],

(5.19)

(5.2o)

(5.21)

-1z
M5(z,k,n) I-T [2ik(XlA e

, -2z
+ >,2Z2 e

-3z
+ {(k2+ 1 + a(},- k 2- 2m3)}A3e

* -X4z+ {p(k2+ x + (X- k 2 24)}4e ], (5.22)

. -3z , -L4zM6(z,k,n I__ [(y + )(,33 a3 e + 4 a4A4eA
)], (5.23)

, iz , -2z
Ml(Z,k,n) I--T [ sia e + 2A2 e ], (5.24)

and

A*= (P3r4 P4r3)(s2ql slq2) (q3r4 q4r3)(s2Pl slP2), (5.25)

A s2(P3r4- P4r3 ),

2 s 1(p3r4 P4r3 ), (5.27)

3 r4 (slp2 s2Pl )’ (5.28)

4 r3(slP2 s2Pl) (5.29)

These results agree with those obtained by Acharya and Sengupta [8].
(ii) In this case we consider a torque with its axis parallel to the z-axis so that

g(x,t) car. be written as

g(x,t) G[(x-a)-(x+a)]e-it (5.30)
where G is the magnitude of the force.

The double Fourier transformation of (5.30) gives

G I itd(k,q) I’[ 6 (x-a)-6 (x+a) ]ei (kx+nt)e xdt

2i ,/ G sin (ka)6(n-m). (5.31)
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Then from (4.45) (4,60) with (5.31), we obtain

tof * -ikxdu iG 2)e-i [Ul(Z,k,n ]n=mSin(ka)e k, (5.32)

* sin(ka)e-ikXdk (5 33)u 3
ig /(-2-7-)e-it I [u3(z,k n) ]n=

.
m iG v)e-it_.I [m2(z,k,n) ]n:Sin(ka)e-ikXdk, (5.34)

033 iG vT7-)e-it I *[o33(z,k,n) ] n=msin(ka)e-ikXdk, (5.35)

*
o31 iG 2)e-imt_.I [o31(z,k,n) ]n:msin(ka)e-ikXdk, (5.36)

u32 iG 2v)e-imtl [2(z k n) ]n:msin(ka)e-ikXdk
83

iG WT7-)e-imt i [83 (z,k,n)]n:m3
* sin(ka)e-ikXdk

(5.37)

(5.38)

E) iG /(-e imt i [0" (z,k,n)]n=msin(ka)e-ikXdk (5 39)

In the absence of the stretch effect, we obtain the corresponding expressions for the

displacements, stresses and the temperature field in the form

u iG /-)e-it_l [Ml(Z,k,n)]n=Sin(ka)e-ikXdk, (5.40)

u 3 iG /T7-)e-imt I" ik[M2(z,k,n ]n=msin(ka)e- Xdk, (5.41)

m2 iG /(-2--)e-imt I [M3(z,k n) ]n:msin(ka)e-ikXdk (5.42)

o33 iG (2/)e-it_.l [M4(z,k,n) ]n=mSin(ka)e-ikXdk, (5.43)

si n(ka)e-i kXdk (5.44)o31 iG 2)e-imt ,I" [M5(z,k n) In=m
32 iG )e-imt_,I" [M6(z,k,n)]n:msin(ka)e-ikXdk, (5.45)

0 iG (2/)e-imt_-I [M7(z k,n) ] n:msin(ka)e-ikXdk (5 .46)

These results also agree with the corresponding results without stretch.

6. CONCLUS ION.
The displacement field, force stress, couple stress, temperature field and vector

first moment have been obtained. It is noted that the displacement field, force

stress, couple stress and temperature field involve the parameters so, (o and no of

the micropolar elastic media with stretch. In addition to the displacements, force

stress, couple stress, and temperature field, vector first moment 8j has been deter-

mined which vanishes in the case of thermo-micropolar elasticity. Some numerical

calculation for specific models of physical interest will be carried out and will be

communicated in a subsequent paper.
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