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ABSTRACT. In a previous article we have obtained a holomorphic extension theorem (edge

of the wedge theorem) concerning holomorphic functions in tubes in n which generalize

the Hardy H
p

functions for the cases 1 < p < 2. In this paper we obtain a similar

holomorphic extension theorem for the cases 2 < p < .
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i. INTRODUCTION.

This paper is a continuation of Carmichael [i]. The definitions of cone C in En
with vertex at the origin (0, 0, ,0) in En, regular cone, and projection of a

cone are all contained in Carmichael [i, p. 417] as are the definitions of the indica-

trix function Uc(t) of the cone C and the number PC which characterizes the nonconvexity

* Enof the cone C. C {t <y,t> > 0 for all y e C} is the dual cone of the cone C;

C is always closed and convex (Vladimirov [2, p. 218]). 0(C) will denote the convex

hull (convex envelope) of a cone C. Following Vladimirov [3, p. 930], we say that a

cone C c En with interior points has an admissible set of vectors if there are vectors

e
k

C, lekl i, k 1,2, ,n, which form a basis for n equivalently we say

that such a set of n vectors in C is admissible for the cone C. Let

( Z2’ Wn be any of the 2
n

n-tuples whose entries are 0 or i. C
n Z

2
n

{y e (-1) yj > O, j i n} is a quadrant in n and there are such

quadrants. We note that any quadrant C is a regular cone in n.
Let denote the space of tempered distributions. The subspace of

ni < p < , is define to be the set of all measurable functions g(-), t e such that

there exists a real number b _> 0 for which ((i + ItlP) -b g(t)) e L
p (Carmichael

[4 p. 83]).
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We now define the norm growth and the space of functions which are of interest

in this paper. Let B denote a proper open subset in n and let n + iB be the

associated tube in n Let 0 < p < and A > 0 Let d(y) denote the distance from

y e B to the complement of B in n. The space S() (Carmichael [4, pp. 80-81]) is

the set of all functions f(z), z x+iy e , which are holomorphic in TB and which

satisfy

lf(x+iy)llLP I f(x+iY)IP dx ]l/p <

< M l+(dCy) )-r) s exp(AI Yl ), y e B,

for some constants r > 0 and s > 0 which can depend on f, p, and A but not on y E B

and for some constant M M(f,p,A,r,s) which can depend on f, p, A, r, and s but not

on y e B. If B C, a cone, then d(y) in (1.1) is the distance from y e C to the

boundary of C. We have defined and studies the functions SAP() in Carmichael [i]

and Carmichael [4-7] and have stated our motivation in studying these functions in

Carmichael [4, p. 81].

In Carmichael [1, Theorem] we proved a holomorphic extension theorem (edge of

the’ wedge theorem) for holomorphic functions in T
C
which satisfy (1.1) for y C

where C is a finite union of open convex cones in n and for the cases 1 < p <_ 2.

We did not consider the cases 2 < p < in Carmichael [1] because at that time we

did not know whether elements of SAP(TC), 2 < p < , had distributional boundary values

for any base C of the tube TC; in fact we did not know anything about the basic

structure of sAP(TC), 2 < p <

In Carmichael [6] we have recently proved that, indeed, elements of SAP(TC),
2 < p < , do have distributional boundary values in the strong topology of ’where C is a polygonal cone or a regular cone. A polygonal cone is a more general

cone than a regular cone (Carmichael [6, section 2]); a polygonal cone is a finite

union of open convex cones which satisfy a certain intersection property and each

of which is the image of the first quadrant C under a nonsingular linear trans-

formation. For our purposes here the main importance of the results in Carmichael

that we now know that elements of sAP(TC), 2 < p < , for regular cones[6] is C do

have distributional boundary values in the strong topology of % and we also use

some technical details from Carmichael [6] here.

The purpose of this paper is to prove a holomorphic extension theorem like that

in Carmichael [1, Theorem] for holomorphic functions in a tube TC, where C is a finite

union of open convex cones, which satisfy (1.1) for y C and for the values 2 < p < .
In so doing we complete this holomorphic extension problem for functions that gener-

alize the Hp functions in tubes to the values 2 < p < ; we have already obtained

this type of result for 1 < p < 2 in Carmichael [1] as we have noted above, For the

values 2 < p < , the analysis to obtain our basic restult is somewhat different than

for the cases 1 < p < 2; although there is some overlap in the technical details, We

obtain our general holomorphic extension theorem here by first proving a special case

corresponding to special cones and then use this special case to prove the general case.
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2. HOLOMORPHIC EXTENSION THEOREM.

m
Let C C. where each C. is a regular cone in En. Let f(z) be holomorphic in

j=l J

TC and satisfy (1.1) for y e C and 2 < p < . For any y e Cj, J l, ,m, the

distance from y to the boundary of C is larger than or equal to the distance from y to

the boundary of C. from which we have f(z) e sP(TCJ), j l, ,m, 2 < p < . By

Carmichael [6, Corollary l] for each j l, ,m there is an element Vj e such

that

im

[Vj] e ’, j l, ,m,f(x+iy) (2.)
yaC.

in the strong topology of A with this boundary value being unique and being obtained

Hereindependently of how y O, y e,Cj, j l, ,m.

’
[Vj] means the

Fourier transform which maps one-one and onto (Schwartz 8, Chapter 7 ])

(As usual in the papers Carmichael [1] and Carmichael [h 7], by y , y e C, for a

cone C we mean y , y e C’, for every compact subcone C’ of C.)

Before stating our theorem we first need to make a technical discussion which is

needed for the theorem. Let the open cone C be the union of a finite number of regular
m

cones, C C
j,

as in the preceding paragraph. For each of the regular cones
j=l

C J 1 ,m, consider Cj C for the 2
n

quadrants C in n Let Cjj’ W ,k’

k l, ,rj, be an enumeration of the intersections Cj 0 C which are nonempty;

and for each J l, ,m, r. is a positive integer with 2 as an upper bound. Each

Cj,k, k l, ,rj, j 1 ,m, is an open convex cone that is contained in or is
m r.

a quadrant CW in En. Now put F Cj, k. We have F C and r is the finite
j=l k=l

union of open convex cones each of which is contained in or is a quadrant in n. We

have that 0(F) 0(C) and 1 <_ O C <_ O F < (Vladimirov [2, p. 220]).

We now state our holomorphic extension theorem (edge of the wedge theorem); in

this theorem F is the cone constructed from the cone C as in the preceding paragraph.

THEOREM. Let C be an open cone in En which is the union of a finite number of
m .

regular cones, C Cj, such that (0(C)) contains interior points and has an
j=l

admissible set of vectors. Let f(z), z x+iy, be holomorphic in TC and satisfy

(1.1) for y e C and 2 < p < . Let the boundary values of f(x+iy) in the strong

of .- corresponding to each connected component Cj, J 1 ,m, of Ctopology

given in (2.1) be equal in There is a function F(z) which is holomorphic in

T0’C) and which satisfies F(z) f(z), z e TC where F(z) is of the form

TO(C)F(z) P(z) H(z), z e (2.2)

s2with P(z) being a polynomial in z and H(z) e APF
(T0(C) S

q (T0(C)),
APF

(l/u) + (l/q) l, for all u, 1 < u <_ 2.

For our purposes here we have assumed that the Cj, J i, m, in the

Theorem are regular cones instead of the more general polygonal cones (Carmichael

[6, section 2]) because the hypothesis that (O(C)) contain interior points and an
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admissible set of vectors cannot be true for polygonal cones that are not regular

cones. By comparing the statement of the Theorem with the statement of Carmichael

[i, Theorem] we see that these two results have the same type of conclusion; this is

what we desired. We thus have been able to extend the result Carmichael [1, Theorem]

to the cases 2 < p < .
We will prove the Theorem by first proving a special case of it corresponding to

the cones C., j l, ,m, being contained in quadrants. After proving this special

case we will then use it to give a proof of the Theorem. We now present the desired

special case of the Theorem.
m

LEMMA. Let C be an open cone in En of the form C C. where each

J=l

C, j l, ,m, is an open convex cone that is contained in or is any of the 2
n

quadrants C in En and let (0(C)) contain interior points and have an admissible

set of vectors. Let f(z), z x+iy, be holomorphic in T
C

and satisfy (1.1) for

y e C and 2 < p < . Let the boundary values of f(x+iy) in the strong topology of

’ corresponding to each connected Cj, of C in (2.1)component J l, givenm,

be equal in There is a function F(z) which is holomorphic in T
O(C)

and which

satisfies F(z) f(z), z e TC, where F(z) has the form given in (2.2) with P(z) being
2 (T0(C) S (T0(C)), (l/u) + (l/q) i, for all u,a polynomial in z and H(z) SA0c

1 < u < 2.

PROOF. An open convex cone that is contained in or is any of the 2
n

quadrants

C in En is a regular cone. Recall the discussion in the first paragraph of section

2. By this discussion we have f(z) e S(TCJ), j l, ,m, 2 < p < , and we have

the existence of elements Vje ,-’’ j l, ,m, such that (2.1) holds. In addition,

by the proof of Carmichael [6, Lemma i] these elements Vj e have supp (Vj)

___
{t: Ucj(t) ! A} and

C.
f(z) =< Vj, exp(2gi<z,t>)>, z e T 0, J i, ,m. (2.3)

By hypothesis the boundary values in (2.1) satisfy

[v] [v] =... [vm]
in --’. Since the Fourier transform is a topological isomorphism of ’ onto

we then have

V
I

V
2
..... Vm

in we denote the common value in (2.) by V, and V e Since the support of

each Vj is contained in {t: Ucj(t) < A}, j 1 ,m, then by exactly the same proof

as in Carmichael [i, equation (2.h) on p. h19 through equation (2.6) on p. h20] we ob-

tain that supp(V)

___
{t: Uo(c) (t) < ADC}; and

+ N(; ADc) (Vladimirov [3, Lemma i, p. 936]) with(t: Uo(c)(t) < Ac} (O(C))*

N(; AQc) being the closure of the open ball in n centered at the origin 5 in n with

radius ADC. The dual cone (O(C)) is closed and convex; and by hypothesis in this

theorem, (0(C)) contains interior points and has an admissible set of vectors. Any

element of has finite order; we denote the order of V e by m0. By

Vladimirov [3, Theorem I, p. 930] we have
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n
V H <e

k’
gradient>me +2 G(t) (2.5)

k=l

where {ek}nk=l is an admissible set of vectors for the cone (O(C))*, G(t) is a

n ek} k=in and thecontinuous function of t which is unique corresponding to

order so of V e , supp(G)

___
{t: Uo(c)(t) < ADC} (O(C)) + N(5;Oc), and

IG(t)I < K (i + Itl) 3me + 1
t e (2.6)

where the constant K is independent of t e n. (In Vladimirov [3, Theorem i, p. 930]

the term "acute" in our present situation means that ((O(C)) O(C) (Vladimirov

[2, p. 218]) should have non-empty interior (Vladimirov [3, p. 930]) which is cer-

ntainly the case in this Theorem. Since G(t) is continuous on then supp(G)
{t" Uo(c)(t) <Apc} as a function (Schwartz [8, Chapter l, sections 1 and 3]).
(This fact is also obtained in the proof of Vladimirov [3, Theorem i], and the

containment supp(G) {t: Uo(c)(t) < ADc} gives the support of G(t) as a function

Enhere as well as a distribution.) Choose a function k(t) e C t e such that

nfor any n-tuple a of nonnegative integers Dak(t)I _< Me, t e where Me is a

constant which depends only on ; and for E > 0, k(t) 1 for t on an neighbor-

hood of {t: Uo(c)(t) < AC} and k(t) 0 for t e En but not on a 2g neighborhood

of {t: Uo(c)(t) < AOC} (Carmichael [i, p. 420] and [4, p. 94]). For z e T
O(C)

we

have (k(t) exp(2wi<z,t>)) as a function of t g n. Recalling that supp(V)
(t: uO(c) (t) <Ac we put

TO(C)F(z) <V, exp(2i<z,t>)> <V,k(t) exp(2i<z,t>)>, z e (2.7)

From (2.5) and supp(G) {t- Uo(c) (t) <APc as a function we have (Vladimirov

[3, (3.1), p. 931])

F(z) <ek, _2iz>me+2 H(z), z e (2.8)
1

where

H(z)
{t: uO!C)(t) < AOc}

G(t) exp(2i<z,t>) dt, z e TO(C). (2.9)

n n ’Since O(t) is continuous on and satisfies (2.6) for all t e we have G(t) e
u

for all u, 1 < u < , as can easily be seen by choosing b 3me+ 3 in the definition

$i (section 1). Combining this fact with the support of G(t) as a function,of

which is supp(G) {t: Uo(c)(t) < AOC} and Carmichael [h, Theorem 6.1, p. 98] yield

(exp(-21<y,t>) G(t))e Lu, y e O(C), 1 <_ u < =, (2.10)

and

lexp(-2<y,t>) G(t) llLu <M (i + (d(y))-r)s exp(2Acly ), y e O(C), 1 < u < ,
(.)

for constants r r(G,u,A) > 0, s s(G,u,A) >_ 0, and M M(G,u,A,r,s) > 0 which are

independent of y e O(C); and we emphasize that (2.10) and (2.11) hold for all u,

i < u < . Now (2.10), (2.11), and Carmichael [4, Theorem 5.1, p. 97] combine to

prove that H(z) in (2.9) satisfies H(z) e Sq (TO(C)), (i/u) + (l/q) i, for all
Ac
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u, i < u < 2; and in particular H(z) e S
2 (TO(C)). Since H(z) is holomorphic in
A0C

TO(C) then so is F(z), which is defined in (2.7), because of (2.8) and (2.8) is the

desired representation (2.2) of F(z) in the statement of the Lemma where the poly-

nomial P(z) is
n

P(z) H <ek, -2iz>m+2
k=l

and H(z) e S
2 (TO(C) Sq (TO(C)), (i/u) + (i/q) i, i < u < 2, is given in
A0C A0C

(2.9). From (2.h), the fact that supp(V)

___
{t: Uo(c)(t) < AOC} in ’, and the

definition of (t) preceding (2.7), we can write (2.3) as

f(z) <V, k(t) exp(2i<z,t>)>

<V, exp(2i<z,t>)>, z e Tcj, J i, ,m.

These identities and (2.7) prove that F(z) is the desired holomorphic extension of

f(z) to T0(C) and F(z) f(z), z e TC. The proof of the Lemma is complete.

We can obtain a holomorphic extension result like that in the Lemma without the

assumption that (O(C)) contains interior points and has an admissible set of vectors.

But we loose the detailed information concerning the holomorphic extension function as

we see in the following corollary to the Lemma.
m

COROLLARY i. Let C = C
j
where each C

j, j I, ,m, i an open convex cone

J=l
that is contained in or is any of the 2

n
quadrants C in En; and let f(z),z x+iy, be

holomorphic in T
C
and satisfy (I.i) for y e C and 2 < p < Let the boundary values

of f(x+iy) in the strong topology of corresponding to each Cj, J i, ,m,

given in (2.1) be equal in There is a function F(z) which is holomorphic in

TCTO(C) and which satisfies F(z) f(z), z e

PROOF. Proceeding as in the proof of the Lemma, obtain (2.4) and call V the

common value. By the proof of the Lemma, supp(V) __(t: Uo(c)(t) !Oc}. Define

TO(C)F(z), z e as in (2.7). By the necessity of Vladimirov [2, Theorem 2, p. 239],

TCF(z) is holomorphic in TO(C); and F(z) f(z), z e because of (2.3), (2.4), and

the definition (2.7) of F(z) as in the Lemma.

Using the Lemma we can now give a proof of the Theorem.
m r

PROOF OF THE THEOREM. From the cone C construct the cone F C
j,k

as

J=l k=l
in the second paragraph of this section. We have that each Cj,k, k i, ,rj,
J i, ,m, is an open convex cone that is contained in or is a quadrant C in En.
Further we have F __-C C, O(F) O(C) and 1 _< 0C _< 0F < . Since the distance from

y e C
j,k

to the boundary of Cj,K. is less than or equal to the distance from y to the

boundary of C, we have f(z) e S(TCj’k), k i, rj, J i, ,m. By hypothesis

the m boundary values given in (2.1) of f(x+iy) corresponding to each connected compo-

nent Cj, J I, ,m, of C are equal in we denote the common value of the

boundary values as [V] e for some V e Since each boundary value

[Vj] [V], j 1 m, is obtained uniquely and independently of how y 5,
y e C

j, then we have

y+ f(x+iy) [Vj] [V], k 1 rj, J i, m, (2.12)

yeCj ,k
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in Since we have O(F) O(C), than (O(F)) (O(C)) contains interior points and

has an admissible set of vectors by the hypothesis on (O(C)) In addition f(z) is

holomorphic in TF and satisfies (i.i) for y e F and 2 < p < from the hypothesis

on f(z) in this Theorem corresponding to the cone C and the facts that F C and the

distance from y e F to the boundary of F is less than or equal to the distance from

y to the boundary of C. Thus by these facts, (2.12), and the Lemma, we have the

existence of a function F(z) which is holomorphic in T0(r) T
0(C)

and which satisfies

F(z) f(z), z g where F(z) is of the form

To(r) TO(C)F(z) P(z) H(z), z

with P(z) being a polynomial in z and H(z) g S
2 (TO(C) S

q (TO(C)), (l/u) +
AOI., AOr

(l/q) i, for all u, i < u < 2. Now consider each Cj, j i, ,m; we have that

cj
both f(z) and F(z) are holomorphic in T i, ,m. For each J I, ,m, we

TCj,k @ TCj k TCJfurther have that f(z) F(z), z e with It thus follows

k=l k=l
cj

(Vladimirov [2, p. 39]) that f(z) F(z), z e T j i, ,m; hence f(z) F(z),

z T
C

The proof of the Theorem is complete

We have the following corollary to the Theorem which is similar to the Corollary

i of the Lemma. The proof of the following corollary is obtained by the construction

of the proof of the Theorem and the use of Corollary i in place of the use of the

Lemma. We leave the obvious details to the reader.

m
COROLLARY 2. Let C C where each Cj is a regular cone in n and let f(z),

J=l J

z x+iy, be holomorphic in T
C
and satisfy (i.i) for y C and 2 < p < . Let the

boundary values of f(x+iy) in the strong topology of corresponding to each Cj,
in (2.1) be equal in There is a function F(z) which isJ l, ,m, given

holomorphic in T
0(C)

and which satisfies F(-z) f(z), z TC.
An additional fact concerning the holomorphic extension function F(z) in the

Theorem can be observed as we now note. From the proof of the Theorem and the con-

struction of the Lemma we have that the analytic extension function F(z) in the

Theorem has the form

To(r TO( CF(z) <V, exp(2i<z,t>)> <V, l(t) exp(2i<z,t>)>, z e

%with V e and supp(V) {t Uo(r (t) <_ &or} {t: Uo(c) (t) <_ &or}. We thus

have
im

(x+i) [[v]
y0(c)

in the strong topology of by the boundary value proof in Carmichael [4,

Corollary 4.1, p. 93]. Thus F(x+iy) has the same boundary value on the

distinguished boundary 1n + +/- of T
O(C)

as the original function f(x+iy) does

Cj
from each connected component T j l, ,m, of T

C
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