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ABSTRACT. In the present paper, we obtain an asymptotically precise estimate for the

derivative of the difference between the cubic spllne interpolating at the mid points

of a uniform partition and the function interpolated.
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1. INTRODUCTION.

Consider a partition P of [0,I] defined by

P 0=x <x < < x
o n

such that x
i xi_ p for all i Let P3 be the class of all plecewlse polynomial

functions s defined over P such that the restriction s
i

of s over [xi_ xi]
is a polynomial of degree 3 or less for i 1,2 n. The class of periodic cubic

spllnes over P is defined by

S(3,P) {s: s e P3 s e C
2

[0,i], s
(j) (0) s

(j) (,I), j 0,1,2}.

Under certain restrictions on the choice of y, Mehr and Sharma [I] have studied

convergence properties of the interpolant from S(3,P) matching a given function at the

points Yi xi-I + yp (0=<y I), i 1,2, n. However, the interpolation at the

mid points, which corresponds to the choice y 1/2 is not covered in [i]. Assuming

to a nonnegatlve measure dg, where g(x+p) g(x) K (constant), one of the authors

(Dikshit [2], Theorem 2) has proved the following which covers the case y I/2.

THEOREM I. Suppose n is odd and

Ip (6px2 4x
3 p3)dg 0 Ip dg > 0 (I I)

0 0

Then there exists a unique s S(3,P), which satisfies the interpolatory condition:

ixf (f(x) s(x))dg 0, i 1,2 n. (1.2)
xi_

We observe that the case in which g has a single jump of at p/2, (I.I) holds

and the interpolatory condition (1.2) reduces to the condition:

s(ti) f(ti) t
i

(x
i
+ Xi_l)/2, i n. (1.3)
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It may be mentioned that the derivative of a cubic spline interpolator has been

used for smoothing of histograms (see Boneva, Kendall and Stefanov [3] and Schoenberg
4[4]). Considering a function f C and its unique spline interpolant s S(3,P)

n
matching at the knots < xi >i=0 Rosenblatt [5] has obtained asymptotically

precise estimate for s f In the present paper, we obtain a similar precise

estimate for the cubic spline interpolating at the mid points between the successive

knots.

2. ERROR BOUNDS.

Let f C4 and be periodic with period I. Let the number of mesh points of P be

even. In this section, we shall estimate (s f) where s is the cubic spline

satisfying the interpolatory condition (1.3). Let M and F denote the transpose

of [M I, M
2 Mn_l] and [F I, F2, Fn_l] respectively, with M

i
s"(xi)

and

F 12p-2 I n i+j
=+i (-i) jl j j (2.1)

where aj f(tj+l) 2f(tj) + f(tj_l). For convenience, we consider in the rest of

this section, the class S*(3,P) of splines s e S(3,P) for which s" (0) O. Thus it

folows from the proof of Theorem that

C M F (2.2)

where n-I x n-i coefficient matrix C (cij) is given by

2 cij 6i_lj + 22 ij + i+lj
In order to estimate e’, we first determine an upper bound for e"(xi). For this we

notice that the equation (2.2) yields

CE F" (2.3)

where E and F" are the transpose of the matrices [E E
2 En_ I] and

[Fy, F F"n_l] respectively, with m
i

e"(xi) and

F F
i

B. (2 4)
1

where 2 8
i f"(xi_ I) + 22 f"(xi) + f"(Xi+l).

C is of course invertible (see [2], p. 108) and we first obtain the following

preliminary results for determining the elements of C-.
LEMMA 2.1. For given real numbers a and b with b ->a, let Dn(a,b) (dij) be a n x n

matrix with

dij (l-a) 6i-lj + 2 b 6ij + a 6i+lj (2.5)

and 8 (b2 2
a + a Then

2 8 Dn(a,b) (b+g) n+l (b- )n+l (2.6)

Proof of Lemma 2.1. It is easily seen that D (a,b) satisfies the differencen
equation:

D (a,b) 2 b Dn_l(a b) + a(l-a) Dn_2(a,b) 0n

with D_l(a,b) O, Do(a,b) I, Dl(a,b) 2 b. The lemma follows from the
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above difference equation by using the induction hypothesis.

LEMMA 2.2. Suppose b I/2 and Qn( b) is the matrix obtained from D (I/2 b) byn
replacing I/2 by in its first row. Then

-n r2n r2n-2q (2b+r) Qn(a, b) 2 b (I + ar (I (2.7)

where r (-i/2q) -2(b-(b 2
i/4) 1/2).

Proof of Lemma 2.2. It follows from the definition of Qn(a,b) that

2 IQ
n

(e b) 4b IDn_l(I/2 b) -ID (i/2 b) (2 8)
n-2

with IQo(e,b) and IQl(e,b) 2b. The result of Lemma 2.2 follows from (2.8)

by an application of Lemma 2.1.
-ILEMMA 2.3. The coefficient matrix of (2.2) is invertible and if C (Sij), then

8.. can just be approximated asymptotically as n by

2 r
lj-il (22 + r) (2.9)

where 0 < e < i/n j/n < l-e and r 23/- II.

REMARK 2.1. It is interesting to note that the estimate (2.9) is sharper than that

obtained in terms of the infimum of the excess of the positive value of the leading

diagonal elements over the sum of the positive values of other elements in each row.

For, adopting the latter approach we see from (2.2) that II C-I II 0.i whereas (2.9)

together with the fact that

2 lj-il_ 2 (l+r)Z r
i 22+r (l-r) (22+r)

shows that the II C-i II does not exceed 0.084.

Proof of Lemma 2.3. Taking 2b ii and a I/2 in Qn(a,b) observe that the

coefficient matrix C satisifes the following difference equation

4 ICI 44 IQn_2 (1/2,11/2) I- IQn_3 (I/2,11/2) I. (2.10)

Thus, it follows from Lemma 2.2 that

-n+2 2n-6 2(ll+r) q ICI (ll+r/2) 2
r (llr + i/2) (2.11)

-iIn order to estimate C (0ij) we obtain the elements 0ij from the cofactors

of the transpose matrix. Thus, for 0 < i j n-2 or i j 0 (confer Ahlberg, et

al. [6], pp. 35-38)

ICI O (qr) j-i
ij Qi(I/2,11/2) Qn_2_j(I/2,11/2) and for 0 < j < n-2,

ICI Ooj (qr)J Qn-2-j (I/2,11/2).

Thus using the result of Lemma 2.2 and (2.10), we observe that for 0 < i j n-2,

(ll+r) (l-r2n)sij r
j-i (l-r2i+2) (l-r2n-2j-2),

n-2-i i+2(ll+r/2) (l-r2n)Sin_2 r (l-r
2

for 0 i -< n-2

rj 2n-2-2j(ll+r/2) (l-r2n)8oj (l-r for 0 < j < n-2

n-2
and (ll+r/2) 2 (l-r2n)8on_2 r (ll+r)
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From the above expressions for 8.. the result of Lemma 2.3 follows directly.

Since C is invertible, it follows from the proof of Theorem or more precisely

from (2.3), that there exists a unique spline s S*(3,P) satisfying the interpolatory

condition (1.3).

THEOREM 2.1. Let s S* (3,P) be the spline interpolant of a periodic function

f satisfying (1.3). Let f(4) exist and be a nonnegative monotonic continuous func-

tion, then for any fixed point x such that 0 < x <

s’(x) f’(x) f(4) (x) [((ti+ x) 4 (t
i

-x)4)/p p((xi+l-X)
2

2
13.92p /4] /24 + o(p3) (2.12)+ 10.08(xi_x + 12.92(x_xi_l)2 2)

as n +=.

Proof of Theorem 2. I. We first proceed to obtain the derivative s" of the mid

point spline interpolant s e S*(3,P) of f. Considering the interval [Xi_l,Xi], we

observe that, since s" is quadratic in the interval [Xi_l,Xi]
2 2

2p s’(x) =-Mi_l(Xi-X) + Mix-xi_I) + 2pC
i

(2.13)

C
2

where the constants C ’s are to be determined by the requirement that s e [0,I].

Thus,

M
i

p Ci+ C
i

(2.14)

and we have

3 3
6 p s(x) Mi_l(Xi-X) + Mi(x-xi_l) + 3pCi(2x-xi-xi_l) + 6pbi. (2.15)

Again using the continuity requirement, we get

p (C
i
+ Ci+I) 2 (bi+ -bi) (2.16)

Using (2.14) (2.16) and the interpolatory condition (1.3), we have

48ps" (x) Mi_l[p2-24(xi-x) 23 + 24M
i [(x-xi_l)2 p ]2 _p2Mi+l

+ 48 [f(ti+I) f(ti)3
Thus replacing M

i
by e" (xi) in (2.17), we see that

2 2_p248 p s’(x) [p2-24(xi-x) ] e" (xi_ I) + 24 (x-xi_ I) ]e"(xi)

2e,,p (xi+I) + Ri(f)
2 f,, 2 f,,where Ri(f) [p2 24(xi_x) (xi_ I) + 24 [(x-xi_l)2-p2] f"(xi) p (xi+I)

(2.17)

(2.18)

+ 48 [f(ti+I) f(ti)]

Fbr convenience, we denote by uj appropriate points of (xj_2,xj+I) which are not

necessarily the same at each occurence. Thus by Taylor’s Theorem, we have

Ri(f)/48p f’(x) + f(4)(ui) [{(ti+l-X)4-(ti-x)4} /p- p {(Xi+l-X)
2 2}+ 24(xi-x) (Xi_l-X) /4] /24 + o(p3) (2.19)
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i n i+jr. )(-1) ( + jNow writing 2B
i J E--I j=i+l -i

), we have

n i+j2F’.’ = Z (-i) (24p-2j Bj Bj_ I)1
j=i+l

so that by Ta1or’s Theorem, we have

i n i+j (4) 2).F,, p2 (_ Z + Y. (-I) f (u.) + o(p
i j=l

j=i+l

-I
Recalling the equation (2.3) and noticing that C (Sij) we have

(e" (xi)) l + l (eiR F
R

IR-i m IR-il m

(2.20)

(T I) + (T2),
say, where m is a sufficiently large positive integer. We shall estimate T and T

2
separately. Suppose that x is a fixed given point in (0, I) and let x [nx] /n

where nx denotes the largest integer not greater than nx. Then it is clear that

as n i =- xn and n-i - (l-x)n. Now using the monotonicity of f(4) and applying

Abel’s Lemma to the inner sums, we have for some positive constant K

(TI)I mI(0-29)
m 2

p (2.21)

by virtue of Lemma 2.3.

Next we see that for the vales of R occuring in T2

x
R

x 0(p) (2.22)

Thus, using the hypothesis that f(4) is continuous and applying the result of Lemma 2.3,

we have

2 R n
j+Rf (4) 2).l(T2)-(2/(22+r)) Z rIR-ilp (-jl + l )(-I) (x) o(p

R-il < m j=R+I

Combining the estimates of (TI) and (T2) and noticing that m is arbitrary, we

complete the proof of Theorem 2.1 in view of (2.18).
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