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ABSTRACT. We study in this paper the affine Weyl group of type n-l’ [I]. Coxeter [I]
showed that this group is infinite. We see in Bourbaki [2] that n-I is a split

extension of Sn, the symmetric group of degree n, by a group of translations and of

lattice of weights. #n-I is one of the crystallographic Coxeter groups considereda

by Maxwell [3], [4].

We prove the following"

THEOREM ].
n-l’ n >3 is a split extension of

copies of Z.

Sn by the direct product of (n-l)

THEOREM 2. The group 2 is soluble of derived length 3, 3 is soluble of derived

1.ength 4. For n 4, the second derived group An_ coincides with the first n-]
and so n-] is not soluble for n > 4.

THEOREM 3. The center of is trivial for n > 3.n-]
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1. INTRODUCTION.

Consider the presentation

2An_ <Yl, Y2 YnlYi e if <i <n,

if n-l,yiYi+lYi Yi+lYiYi+l

YiYj YjYi if <_i < j-I n and (i,j)# (l,n),

Y lYnY Yny zYn >
where n > 3.

This is an irreducible Coxeter group whose graph is a polygon with n vertices. Using

some geometrical methods Coxeter showed that An_ is infinite [4]. This group is

also a Weyl group [I]. It is the affine Weyl group of .type n-l" We see in Bourbaki

[2] that n-I is a split extension of Sn, the symmetric group of degree n, by a
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group of translations and of a lattice of weights. This group was also considered by

Maxwell [3], [4].
The purpose of this paper is to prove that n-I is a split extension of S n by

a direct product of (n-l) copies of Z. The method depends on presentations of group

extension [5]. We also find that A3 is soluble of derived length 3, 4 is soluble

of derived length 4 and that the second derived group An_ coincides with the first

if n 4 and hence ,n_ is not soluble in this case. We finally show thatn-I
the center of is trivial.n-I
2. THE STRUCTURE OF n-l"

We show in this section that An_ is a split extension of Sn by the direct

product of (n-l) copies of Z. We achieve this by using the method in [5] as fol-

lows. We find an epimorphism e" An_l S n such that the extension

Sn --+I (21).kero n-splits. It will be required to find a presentation for kere. We guess that it will

be isomorphic to A zx(n-l) (given by generators and relations). We then construct

a new short exact sequence (2.3), where A is embedded as normal subgroup of a group E

in ,such a way that A is the kernel of an epimorphism o’. E G.

kere G.. (2.2)

’ ’

A E G (2.3)

Then we use Tietze transformations to identify E with , i.e., to find an isomor-

phism " [ , which makes the right-hand square commute. It then follows that

A kero. A presentation for the symmetric group of degree n >_ 2 is

<X x x
2

Sn n-1 e if <i <n-l,

xixi+ix xi+ixixi+ if <_ n-2,

xixj xjx if < j-I < n-l>.

We define the mapping e. n-I Sn by

e. Yi---+ xi if n-I

Yn---+ xlx2 Xn_2Xn_iXn_2 x2x1.

Then e is an epimorphism. If is the mapping from Sn to n-I defined by

" xi Yi if <n-l,

then is a homomorphism and e ISn.
Thus the extension

S splits.1-- kere n-I T n

We construct the short exact sequence

---+A---+E---+Sn---+ I.
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A presentation of E will be

E <generators of A, generators of

relations of A, relations of S n

action of S on A> [6].n

Let A <a an_ laiak aka if <_ k n-l>

We define the action of S on A as follows"n
xl -Ia a

x -Ia a a

xi { ak+l
a k ak_

a k

if 2<i <n-I

if k+l, k n-l

if k, 2 n-l

otherwise

(2.4)

(2.5)

(2.6)

(2.7)
(2.8)
(2.9)

NOTATION. We let A x2x x
i.

We also denote the relations xyx yxy and

ab ba by (x,y) and [a,b] respectively.

To reduce the relations of E to a manageable form we consider the following

lemma and proposition.

LEMMA I. In the group S n the following identities hold"

(i) AkX xi+iAk if 2 <_ k

(ii) &kXi Ak_ if k

(iii) &kXi &k+l if k+l

(iv) AkX xiAk if k+l

(v) AkA X3... Xi+iAk if 2 <_ k

2
Ai(vi) Ai X3 Xi -I

PROOF. (i) AkX x2x xi_ixixi+ XkX
x 2 xi_ixixi+ix x k

x 2 xi_ixi+ixixi+ xk

Xi+l&k
(ii) to (iv) obvious.

(v) and (vi) application of (i).

PROPOSITION I. In the group E, relations (2.4) to (2.9) become the following-

(i) Relation (2.5) is equivalent to (alXl) 2
e.

A
(ii) Relation (2.7) is equivalent to a a 2 <_ <_ n-l.

(iii) Relation (2.6) is equivalent to (alxl,x2).

(iv) Relation (2.8) follows from (ii).

(v) Relation (2.9) is equivalent to [a,xi] for 3 <_i <_n-l.

(vi) Relation (2.4) is equivalent to (x2al) 2 (alx2) 2.
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PROOF. (i) Obvious

(ii) Easy by induction on i.

(iii) Using part (ii) relation (2.6) becomes

XlAilaIAiX aIAilaiA
Using relation (2.9) it reduces to (alx l, x2).

(iv) Obvious by using part (ii).

(v) Using part (ii) relation (2.9) becomes

-I -I
AkXiAk al azAkXiA k k, # k+l.

If > k+l, then by Lemma (iv) we get

[x i, a] for 3 < n-l.

If k then by Lemma (i), we get

[xi+I, a l] for 2 <_ <n-l.

Therefore relation (2.9) is equivalent to [a l, x i] for

3<i<n-l.

(vi) Using part (ii) relation (2.4) becomes

-IAkAilaiAiAk a azka aliA l<i k _<_ n-lo

Using Lemma (v) and relation (2.9), we get

(x2al) 2 (alx2) 2.

THEOREM I. The group E is isomorphic to n-I and so n-
of Sn by A where n 3.

PROOF. In Proposition I, we let alx b. Then E has the following generators"

xl, x2 Xn_l, b. Relations of E are"

Relations of Sn,

b2=e,

(b, x2)

[bx I, x i] for 3 <_ <_ n-I

(xbx) (bxx).
We change relation (2.13) to the form

(b, XlX2Xl).

We change relation (2.12) to [b, x i] for 3 <_ n-I

-!We let c an iban_ I. Then c2 e.

Using relation (2.11) and Lemma (i), we get (c, x).

-!Xn-I CXn-I An IbAn-I

(2.o)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

is a split extension
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Using Lemma (ii) and (v) and (2.15)
-2

CXn_iC n_IbAn_
Using Lemma (vi) -_ _

CXn_lC an 2bn_2 Xn_lCXn_ 1.

Therefore (c, Xn_l )"

Using Lemma (i) and (2.15) we get

[c, x i] for 2 <_ n-l.

Thus E has the following presentation

E <x Xn_ c Ix 2 e for < <n-l,

C2 =e,

(x i, xi+I) for <_i <n-2

[x i, x k] for k-I n-l,

(Xn_ I, c), (x I, c),

[x i, c] for 2 <n-l>.

Let c xn. Then it is clear that E is the same as n-I
REMARK I. We notice the special cases 0 $2 Z2.

i S3-

2 a(3, 3, 3) the triangle group (3, 3, 3) [6].

REMARK 2. We used the Reidemeister-Schreier process to find A kere for n=3, 4.

From the computations involved we found the action of Sn on A. For n >_ 5, we

guessed that A Zx(n-l) and the action is a generalization for the case when n =3,4.

We then proved this guess by the method in [6].

and the theorem is proved.

3. THE DERIVED SERIES OF n-l"

We prove in this section the following theorem"

THEOREM 2. The group 3 is soluble of derived length 3, 4 is soluble of derived
~ii

length 4. For n 4, the second derived group An_ coincides with the first An_
and so n-I is not soluble for n > 4.

Io prove the theorem we consider the derived series of An_ I. We notice that

n-l <ylly>. Hence {e, yl} is a transversal for An_ in n-l" Using the
A’n-l
Reidemeister-Shreir process we find the following presentation for ’n-l#’ <b b bn_ Ib] b 2. b if < < n-2n-I z, 2 n-I

-I(bibi+I) e if <_ <_n-2,

(bibl)2 e if <_ <j-I < n-l>.
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We now consider the following cases"

A2
i) If n 3, <bl, b21b b2 [bl, b2] e>.

A2
Using the Reidemeister-Schreier process we find that A z z.

Therefore 2 is soluble of derived length 3.

ii) If n 4
A3 <bllb e>. We use the Reidemeister-Schreier process
A

to find the following presentation for 4
A4 <x,y z tlx 2 y2 z 2 t 2 [x,z] [y,t] e

xytz xtzy e>o

<x,y z t lx 2 y2 z 2 t 2 [x,y] [x z] [x t]

" [y,x] [y,t] [z,t] e>.

We use the Reidemeister-Schreier process to find that A" z z. Therefore

4 is soluble at derived length 4.

iii) If n > 4 An-I is trivial So the second derived group " coincidesn-I
A"

with first derived group An_ I. Hence An_ is not soluble for n 4.

4. THE CENTER OF n-l"

We prove in this section that the center of An_ is trivial for n 3.

LEMMA 2. The identity of A is the only element fixed by Sn-
PROOF. We let w be an element of A. We can write w in the fore

ml m2 m xannI_, where mj E Z for !j n-l. Let w w for !i !n-l.a a 2

We therefore get the equation

[ mi m2 m xi mIm2 mn-I (4 I)a a2 ann,I_ a a2 an_
for n-l.

Using the action of Sn on A [in Section 2] equation (4.1) for implies

2m2+...+ mn_
a :e.

Since A is free abel ian this equation gives

O. (4.2)2m + m 2 + + mn_
Using the action of Sn on A, equation (4.1) for 2 <i <n-I implies

m -mi_ m -mi_
ai_ a

Since A is free abelian this gives

(4.3)m mi_ 0 for 2 <i <n- I.

From (4.2) and (4.3) we get ml m2 mn_ O. Therefore w e as required.
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THEOREM 3. The center of n-I
PROOF. We know that

is trivial for n > 3.

---+A---+/n_l --+Sn I.

We let x Z(n_ I) so x as where a A and s Sn. We let x als be a

typical element of n-l" Hence xx xlx implies asazs alssas. Applying the

epimorphism we get e(s)e(sl) e(s)e(s) and so e(s) E Z(Sn) ={e}. Hence

s kere A n S n s e. Therefore x a coutes elementwise with Sn. Using

Lemma 3, a e and so Z(n_ I) {e}.

REMARK 3. From Remark we notice that Z(o) Z and Z() Z(S 3) {e}.

n-IREMARK 4. We notice that A Sn from Theorem I. Since S and S4 are soluble

of length 3 and 4 respectively, we get that 2 and 3 are soluble of length 3 and

4 respectively. Sn is not soluble for n > 4 and A is soluble, it follows that

n-I is not soluble for n 4.

REMARK 5. One way to view n-I is as a subgroup of the wreath product Z S n de-

fined as follows" Let Zxn be the free abelian group with base Po Pn-I on

which Sn acts by pemuting the basis, x (i-I, i), exchanges Pi-I and Pi
k

and fixes the others. The subgroup {P0 j=okn O} H is Sn-invariant,
and has basis {ai Pi Pll n-I and An_ is just this split extension

of Sn by H. Therefore n-I is the subgroup of the natural wreath product of

Z S Sn consisting of those elements in which the component from the base group has

exponent sum zero.

REMARK 6. The motivation behind studying this group n-I was to get some infomation

about the circular braid group n [7]. We see that n-I is the Coxeter group cor-

responding to,he Ain group Bn. Consider the diagram

$ Zx(n-l)IYF

111
nn-I

U B Sn n n

8ere gn s Artqn’s brad rou [6], n the unermuted brad rou, a free

of countably nfnte rank [7] and Zx( 1) as described n ths aer. non
Zx(n-1) dd not hel us to descrqbe the structure of gn hch as described n a

dfferent ay [7]. e are stql] unable t fnd the rous X and

CNOkgg[N[NI" ould ]ke to thank r. avd k. dohnson for hs helpful sugges-

tions. also thank the nversty f Petro]aum and Mnerals for suort et for

conductn research.
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