A MONOTONE PATH IN AN EDGE-ORDERED GRAPH

A. BIALOSTOCKI

Department of Mathematics and Applied Statistics
University of Idaho
Moscow, Idaho 83843

and

Y. RODITTY

School of Mathematical Sciences Tel-Aviv University Tel-Aviv, Israel 69978

(Received January 8, 1986 and in revised form September 23, 1986)

ABSTRACT. An edge-ordered graph is an ordered pair (G,f), where G is a graph and f is a bijective function, $f:E(G) \rightarrow \{1,2,\ldots,|E(G)|\}$. A monotone path of length k in (G,f) is a simple path $P_{k+1}:v_1v_2\ldots v_{k+1}$ in G such that either $f(\{v_1,v_{i+1}\}) < f(\{v_{i+1},v_{i+2}\})$ or $f(\{v_i,v_{i+1}\}) > f(\{v_{i+1},v_i\})$ for $i=1,2,\ldots,k-1$.

It is proved that a graph G has the property that (G,f) contains a monotone path of length three for every f iff G contains as a subgraph, an odd cycle of length at least five or one of six listed graphs.

KEY WORDS AND PHRASES. Edge-ordered graph, monotone path.

1980 AMS SUBJECT CLASSIFICATION CODE. 05C55. 05C38.

1. INTRODUCTION.

Graphs in this paper are finite, loopless and have no multiple edges. We denote by G=G(V,E) a graph with E(G) as its edge-set of cardinality e(G) and V(G) as its vertex-set. Let K_n , P_n , C_n be the complete graph, the path and the cycle, on n vertices, respectively. The vertex-chromatic number of G is denoted by $\chi(G)$, and d(v) is the degree of a vertex $v \in V(G)$. By $H \subset G$ we mean that H is a subgraph of G and $H \not\subset G$ is the negation of this fact.

Definitions and Notation

- 1. An edge-ordered graph is an ordered pair (G,f), where G is a graph and f is a bijective function, $f:E(G) \rightarrow \{1,2,3,\ldots,e(G)\}$.
- 2. A monotone path of length k, k \ge 3 in (G,f), denoted by MP_{k+1}, is a simple path $P_{k+1}: v_1v_2...v_{k+1}$ in G such that either

$$f(\{v_{i}, v_{i+1}\}) < f(\{v_{i+1}, v_{i+2}\})$$

or

$$f(\{v_i, v_{i+1}\}) > f(\{v_{i+1}, v_{i+2}\})$$
 for $i = 1, 2, ..., k-1$.

3. We denote by $G \to MP_k$ the fact that (G,f) contains an MP_k for every function f, and let

$$A_k = \{G \mid G \rightarrow MP_k\}, \qquad k \ge 3$$

The following Theorem 1.1 is well known, see [1], [2], [3], for a proof and generalizations:

THEOREM 1.1. For every positive integer k, there is a minimal integer g(k), such that $K_n \in A_k$ for every $n \ge g(k)$.

The main result of this paper is:

THEOREM 1.2. A graph G belongs to A_4 iff G contains either C_{2n+1} , $n \ge 2$, or one of the following graphs:

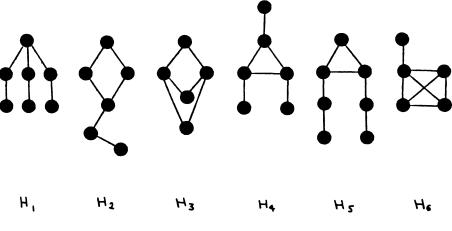


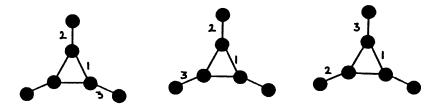
Fig. 1

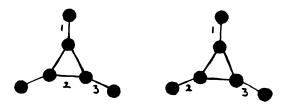
REMARK. Notice that a graph $\mbox{ G }$ belongs to $\mbox{ A}_3$ iff $\mbox{ G }$ contains a path $\mbox{ P}_3$. 2. PROOFS

The following lemmas are essential for the proof of Theorem 1.2.

LEMMA 2.1. The graphs H_1 , H_2 , H_3 , H_4 , H_5 , H_6 , and C_{2n+1} where $n \ge 2$ belong to A_4 .

PROOF. The proof is a straightforward verification for each of the graphs. We prove that $H_4 \in A_4$. The proof of the remaining cases is similar. Assume that there is an f such that no MP_4 occurs in (H_4,f) . It turns out that up to isomorphism, the integers 1,2,3 can be assigned to the edges of H_4 in the following 5 ways:





Now, one can see that in each case it is impossible to complete the labeling of the edges such that (H_4,f) does not contain an MP_4 .

The following definition is needed for the next lemma.

DEFINITION. Let $a,b,c_1,c_2,\ldots,c_{m+1},a_1,\ldots,a_{2n}$ be non-negative integers where $m \ge 0$ and $n \ge 2$. The graph $L_1(m,a,b,c_1,c_2,\ldots,c_{m+1})$, $L_2(a,b)$, $L_3(a,b)$, and $R_{2n}(a_1,a_2,\ldots a_{2n})$ are defined in Fig. 2.

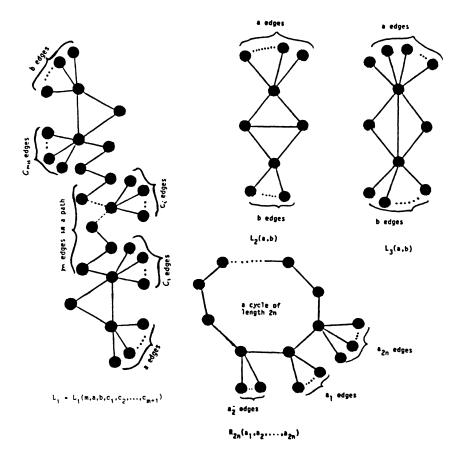


Fig. 2

LEMMA 2.2. (i). For all non-negative integers $a,b,c_1,c_2,\ldots c_{m+1},a_1,\ldots,a_{2n}$ where $m\geq 0$ and $n\geq 2$, the graphs L_1 , $L_2(a,b)$, $L_3(a,b)$, and $R_{2n}(a_1,a_2,\ldots,a_{2n})$ do not belong to A_4 .

(ii). The complete graph K_4 does not belong to A_4 .

PROOF. We set e for e(G). For the proof of (i), a partial labeling of the edges of the graphs in question is presented in Fig. 3. The labeling of the remaining edges is arbitrary. An MP_4 will not occur. A labeling of $E(K_4)$ is also presented in Fig. 3.

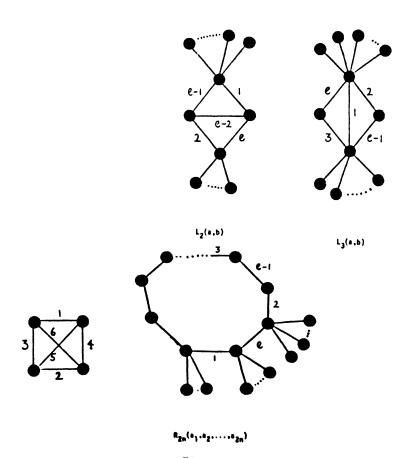
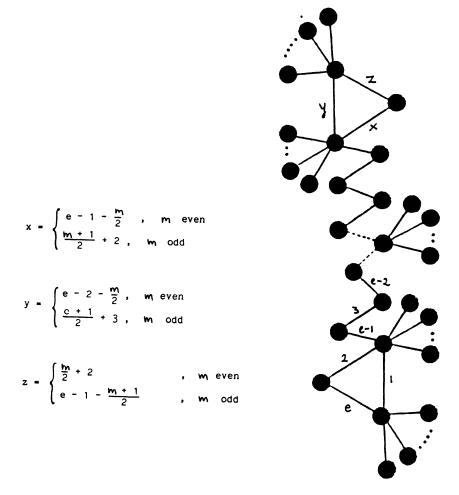


Fig. 3a



$$L_1 = L_1(m,a,b,c_1,c_2,...,c_{m+1})$$

Fig. 3b

PROOF OF THEOREM 1.2. Clearly, every graph G that contains C_{2n+1} , $n \ge 2$, or an H_1 , $i=1,\ldots,6$ belongs to A_4 . To prove the opposite containment let $G \in A_4$. We may assume that G is connected and contains a P_4 , hence $\chi(G) \ge 2$. We consider two cases: $\chi(G) = 2$ and $\chi(G) \ge 3$.

CASE 1. Let $\chi(G) = 2$. If G is a tree, let $P_t: x_1x_2....x_t$ be its longest path. If t = 4, then G is double star yielding $G \notin A_4$, a contradiction. Hence, $t \geq 5$. Note that the maximality of P_t implies that there is no vertex-disjoint path to P_t , say P_n , where $n \geq 3$, with initial vertex x_2 or x_{t-1} . If for a certain i, $3 \leq i \leq t-2$ there is a vertex-disjoint path to P_t , say P_m , where $m \geq 3$, whose initial vertex is x_1 , then $H_1 \subseteq G$, and we are through. Otherwise, G can be embedded

in a graph $R_{2n}(a_1,a_2,\ldots,a_{2n})$ for a certain n and non-negative integers a_1,a_2,\ldots,a_{2n} and in view of Lemma 2.2, G $\not\in$ A₄, a contradiction. Thus we may assume that G is not a tree.

Let C_{2t} be the shortest cycle in G. Assume first t=2, i.e., C_{2t} is a 4-cycle. One can see that if $H_2 \not\subset G$ and $H_3 \not\subset G$ then $G=R_4(a_1,a_2,a_3,a_4)$ for some non-negative integers a_1,a_2,a_3,a_4 and hence by Lemma 2.2, $G \not\in A_4$, a contradiction. Thus we may assume that $t \ge 3$. Similarly in view of the minimality of C_{2t} it follows that if $H_1 \not\subset G$ then $G=R_{2t}(a_1,a_2,\ldots,a_{2t})$ for some non-negative integers a_1,a_2,\ldots,a_{2t} implying that $G \not\in A_4$, a contradiction. Hence, the proof of Case 1 is completed.

- CASE 2. Let $\chi(G) \ge 3$. Hence G contains an odd cycle C_{2n+1} . If $n \ge 2$ then we are through. So we may assume that G contains only triangles. Let C_3 be any triangle in G with a vertex-set $\{x,y,z\}$. Consider two cases:
- (1) Let d(x), d(y), $d(z) \ge 3$. It follows that either $H_4 \subseteq G$ and we are through, or $K_4 \subseteq G$ or $L_2(0,1) \subseteq G$. By Lemma 2.2, $G \ne K_4$, hence $K_4 \subseteq G$ implies that $H_6 \subseteq G$. Again Lemma 2.2, $G \ne L_2(a,b)$ for all non-negative integers a and b. Hence $L_2(0,1) \subseteq G$ implies that one of the graphs H_2 , H_4 , or H_6 is contained in G. This completes the proof of case (i).
- (ii) Assume that at least one of the vertices x,y,z is of degree 2. By Lemma 2.2, G is not a subgraph of L_1 or $L_2(0,b)$ or $L_3(a,b)$ for any non-negative integers a, b, and c; hence G must contain one of the graphs H_1 , H_2 , H_3 , or H_5 . This completes the proof of case (ii) and of the theorem.

REFERENCES

- 1. BIALOSTOCKI, A. An Analog of the Erdös-Szekeres Theorem. Submitted.
- CALDERBANK, A.R., CHUNG, F.R.K. and STURTEVANT, D.G. Increasing Sequences with Nonzero Block Sums and Increasing Paths in Edge-Ordered Graphs, <u>Discrete</u> Math 50(1984), 15-28.
- 3. CHVÁTAL, V. and KOMLÓS, J. Some Combinatorial Theorems on Monotonicity, Canad.

 Math. Bull. 14(1971), 151-157.