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ABSTRACT. We study totally umbilical CR-submanifolds of a Kaehler manifold carrying

a semi-Riemannlan metric. It is shown that for dimension of the totally real

distribution greater than one, these submanifolds are locally decomposable into a

complex and a totally real submanifold of the Kaehler manifold. For dimension equal

to one, we show, in particular, that they are endowed with a normal contact metric

structure if and only if the second fundamental form is parallel.
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I. INTRODUCTION.

The notion of a Cauchy-Riemann (CR)-submanlfold of a Kaehler manifold was

introduced by Bejancu [1,2] and developed later by several researchers. For a

detailed treatment, we refer to Yano and Kon [3]. The study on CR-submanifolds has so

far been confined to a positive definite metric. The objective of this paper is to

study totally umbilical CR-submanifolds of a Kaehler manifold carrying a semi-

Riemannian metric. According to Flaherty’s theorem [4], the Hermitian metric on a

Kaehler manifold cannot have the Lorentzlan signature (which is essential for a space-

time manifold of relativity). This motivates us to consider CR-submanlfolds (whose

metric can have the Lorentzlan signature) of a Kaehler manifold.

2. PRELIMINARIES.

Let M be a submanifold isometrically immersed in a Kaehler manifold M with

a complex structure J, a Hermitlan metric g and the Levi-Civlta connection

We denote by the same g the metric of M and M, which is assumed to be semi-

Riemannian. We also assume that TM is non-degenerate with respect to g. If V is

the Levi-Civita connection induced in M then we have

VxY VxY + B(X,Y) (Gauss Formula) (2.1)

VxV -A + DxV (Weingarten Formula) (2.2)
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for arbitrary vector fields X,Y tangential to M and V normal to M; where B is

the second fundamental form, the shape operator associated to V and D the

normal connection of M. In fact, g(A,Y) g(B(X,Y),V). M is said to be totally

umbilical if B(X,Y) g(X,Y), being the mean curvature vector field of M. In

particular, when B 0, we say that M is totally geodesic.

M is said to be a CR-submanlfold [I] of the Kaehler manifold M if there exists

a dlfferentlable distribution D on M such that (I) D is invarlant by J, i.e.

JD D for each x in M and (II) the complementary orthogonal distribution D
x x

is antl-varlant (totally real), i.e. JD is a subspace of T (M) for each x in
x x

M. A CR-manlfold is called proper if dlmD # 0 and dlmDl # O. Let

JX PX + FX, JV tV + fV (2.3)

be the decompositions of JX and JV into their tangential and normal components

respectively. Following relations hold [3]:

p3 + p O, f3 + f 0 (2.4a)

FP 0, fF 0, tf O, Pt 0 (2.4b)

(VxP)Y AX + yB(X,Y)

(VxF)Y =-B(X,PY) + fB(X,Y) (2.6)

(Vxt)V AfvX PX (2.7)

(Vxf)V -FA B(X,tV) (2.8)

where (VxP)Y Vx(PY) PVxY, (VxF)Y Dx(FY) FVxY
(Vxt)V Vx(tV tDxV (Vxf)V Dx(fV fDxV

PROPOSITION 2.1. Let M be a CR-submanifold of a Kaehler manifold. Then both

the distributions D and D1 are non-degenerate.

PROOF. Let D be degenerate. Then there exists a non-zero vector field X in

D such that g(X,Y) 0 for all Y in D. As D and Dx are complementary and

orthogonal to each other, it follows that g(X,Y) 0 for all Y in TM. This shows

that X 0 because TM is non-degenerate. But X is non-zero. Hence we arrive at

a contradiction. This proves non-degenerateness of D. That Dx is non-degenerate

can be proved likewise.

PROPOSITION 2.2. The mean curvature vector U of a totally umbilical CR-sub-

manifold of a Kaehler manifold belongs to JD1.
PROOF. Consider any X in D and V in the complementary orthogonal subbundle

to JD1 in TMi. Then we have

g(J(VxX),JV) g(VxJX,JV) g(VxJX + g(X,JX)p,JV) O.

g(J(VxX),JV) g(VxX,V) g(VxX + g(X,X),V) g(X,X)g(,V).

Thus we observe that g(X,X)g(,V) 0. By prop. 2.1 it follows that g(,V) 0;

i.e. f 0. Hence belongs to JI>L.
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LEMMA 2.1. (Yano-Kon [3]) Let M be a CR-manlfold of a Kaehler manifold. Then

AFXY AFyX, for any X,Y in Di.
The above lemma holds for both positive definite and indefinite metrics. Let us

denote dim D by q.

3. TOTALLY UMBILICAL CR-SUBMANIFOLDS WITH q > I.

For a positive definite metric, the following is known:

THEOREM 3.1. (Bejancu [5]). Let M be a totally umbilical proper CR-submanifold

of a Kaehler manifold M. If q > I, then M is totally geodesic in M and is

locally a product of the leaves of D and Di, i.e. a CR-product.

That the above theorem holds also for an indefinite metric, can be proved as follows.

PROOF. By lemma 2.1, we have XY AFyX for all X,Y in Di. As t lles

in Di, for any X in I>i we have xt tX. Since M is totally umbilical

we have B(S,Y) g(X,Y) and X g(,V)X. Hence we obtain

g(t,X)t g(t,t)X (3.1)

for all X in D. Since q > I, it follows, on contraction of (3.1) at X with

respect to an orthonormal base of Di, that g(t,t) 0. Thus we get t 0.

Now, by prop. 2.2 we also have f 0. Consequently J 0 and hence 0.

M therefore reduces to a totally geodesic submanifold. Obviously we have VP 0.

Thus according to Chen’s theorem [6], "A CR-submanifold is a CR-product iff VP 0"

it follows that M is a CR-product. This completes the proof.

REMARK I. If we take dim D dim D 2 so that dim M 4 and assume that the

f-structure p3 +p 0 on M is globally framed, then there exists a local basis

{i,2,3,4 for M such that PI 2’ P2 -I’ P3 P4 0. One can verify

that g is Lorentzian with signature + + + Subject to the hypothesis of theorem

3.1, M serves as a model of a class of decomposable space-times in general relativ-

ity. For a recent study on such space-times we refer to [7].

4. TOTALLY UMBILICAL CR-SUBMANIFOLDS WITH q I.

Chen proved the following theorem:

THEOREM 4.1. (Chen [8]). Let M be a totally umbilical CR-submanifold of a

Kaehler manifold M. Then

(i) M is totally geodesic, or

(ii) q I, or

(iii) M is totally real.

Note that if M were a proper CR-submanifold in the above theorem, then the possibil-

ity (iii) would be ruled out. Also note that (i) and (ii) are not mutually exclusive.

The case (ii) has been investigated by Chen [8], in the context of a locally Hermitian

symmetric space M and dim M 5. In the following theorem we study the case

by relaxing these conditions and assuming M to be proper.

THEOREM 4.2. Let M be a proper totally umbilical CR-submanlfold of a Kaehler

manifold M with q I. Suppose the mean curvature vector is non-vanishing over

M. Then the following statements are equivalent:

(I) M has a normal contact metric (Sasakian) structure [3].

(2) has a non-zero constant norm.

(3) is parallel in the normal bundle.
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(4) second fundamental form of M is parsllel.

PROOF. As # 0 and lies in JD by prop. 2.2, it follows that t # 0

and lles in Di. Now since q I, any vector field in D is a scalar multiple of

t. For any X tangent to M we can show, using (2.7), that

g(,)p2x g(t,X)t g(t,t)X

Operating P on this gives

g(,t) g(t,t) (4.1)

Hence we get

g(t,t)(p2x + X) g(t,X)t (4.2)

In this case too, equation (3.1) holds, which shows (q I) that g(t,t) # 0 and

hence g(,) # 0. Equation (4.2) becomes

p2X -X + [g(t,t)]-Ig(t,X)t (4.3)

As the distribution Di is non-degenerate we can, without any loss of generality,
2

assume g(t,t) a where a is a real-valued function on M. Under the setting

-a-2t and n as the dual of , equatln (4.3) takes the form

p2X -X + (X) (4.4)

It follows that P 0, hOP 0, rank (P) dimM- and

g(PX,PY) g(X,Y) (X)(Y) (4.5)

With the help of (2.5), (2.7) and (4.3) we derive

(VxP)Y a {g(,Y)X- g(X,Y)} (4.6)

VX a PX (4.7)

Equations (4.4)-(4.7) show that M has a normal contact metric structure iff.
2

a g(,) is a non-zero constant. This proves the equivalence of (I) to (2). By

virtue of the equality

tD
X 2 X in a t

the statement (2) is equivalent to tDx 0. By differenting the result f 0

(obtained earlier), using (2.8) and operating f2 on the derived equation we get

f(Dx) 0. Thus (2) is equivalent to DX 0, i.e. the statement (3). The state-

ment (4) means

Dx(B(Y,Z)) B(VxY,Z + B(Y,VxZ).
Substitution B(X,Y) g(X,Y) in the above shows that (4) is equivalent to (3).

This completes the proof.

REMARK 2. Let us compare theorem 4.2 with the following theorem of Chen [8]:

"Let M be a totally umbilical CR-submanifold of a locally Hermitlan symmetric space

M. If dim M 5 and q I, then

(a) is parallel

(b) if M is not totally geodesic, M is locally isometric to a sphere of radius

I/a and rank M dim M + I. Moreover, M is a totally umbilical hypersurface of a
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flat, totally geodesic submanlfold of M."

We observe that theorem 4.2 is consistent with the above mentioned theorem. In fact,

the conclusion (b) of the theorem shows that M is Sasaklan, which is the statement

(I) of theorem 4.2. Also the conclusion (a) is the statement (3) of theorem 4.2.
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