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I. INTRODUCTION.

The multifacility location problem can be defined as finding the location of new

facilities, in a specified space, with respect to several existing facilities so that

the sum of weighted distances between the locations of new facilities, and new and

existing facilities is minimized. Mathematically, problem can be stated as:

n m

X
I ,X2 ,X

n6 En I<_ <k<n_ J=l i=l

where Vjk is a positive weight associated with new facilities J and k, wji is a

positive weight associated with the existing facility i and new facility J, for

all I and J, Xj (Xjl, xj2 ....Xjn)’ is the location of the new facility J to be

determined, Pi (Pil’Pi2"’’’Pln)’ is the location of the existing facility i, and

d(.) is the distance between two points by a given norm.

Problem (I.I) has been treated extensively in the literature. The distance

functions most commonly encountered are the Euclidean and rectilinear distances.

Euclidean distance problem is discussed in II-51. Problem (I.I) involving rectilinear

distance is studied in II,21, 16-91.
When modelling and analyzing the problem of finding the best geographical

locations for a number of new facilities, an analyst has to make several assumptions.

One of these assumptions is concerned with the size of the area covering the

destinations (or the demand points). If the area covering the demand points is
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sufficiently small, then this part of the earth’s surface can be approximated by a

plane. And the problem can be analyzed and solved by using the well known techniques

of location theory. However, the earth’s surface can be described, with

considerable exactness, as a sphere. And plane is a good approximation only for

relatively small areas. When the destination points are widely separated, the area

covering these points can no longer be approximated by a plane and (I.I) is no longer a

suitable model. In this case the destination points and the new facilities are

restricted to be on the sphere IXI 2 R, X 6 E3, where R is the radius of the

earth’s surface. Because of the constraint, solution space becomes nonconvex. And the

shortest travel distance between two points is not the Euclidean distance but the

geodesic (or great circle) distance. Problems concerning location of international

headquarters, distribution/marketing centers, detection station placement, placement of

radio transmitters for long range communication may fall into this category.

In recent years, many papers have dealt with the large region location problems.

Location problems involving points on a sphere are discussed in Ii0-271. A complete

review of the state of art in spherical location can be found in Wesolowsky 125]. The

only attempts to solve multisource location problems on a sphere, of which we are aware

are due to Dhar and Rao [21-22]. They considered the multisource location problem on a

sphere involving geodesic distance, and developed a normalized gradient method.

In this paper, we present a unified approach for the solution of multisource

location problems on a sphere. Three distance measures are considered; Euclidean,

squared Euclidean, and the great circle distance. An algorithm analogous to the

Weiszfeld algorithm [28] for the classical Weber problem is formulated. When the

distance measure is Euclidean or the squared Euclidean distance, it is shown that the

proposed algorithm always converges to a local minimum. Computational results are

presented.

2. PROBLEM FORMULATION.

Let X, and Y be two points on the surface of a sphere (without loss of generality,

we assume a sphere with unit radius, i.e. R i). We consider the following metrics:

(i) Squared Euclidean distance dl(X,y)= llX_yl 2 (2.1)

(2) Euclidean distance d2(X,Y)= IIX-YII (2.2)

(3) Geodesic distance d3(X,Y)= 2arcsin(!YII) (2.3)

Note that the metrics are all of the form d(X,Y) h( llX-l ). Using this general

form the multifacility location problem on a sphere may be stated as follows:

n m

l<._J <k<_n J=l i=l

subJect to

IIXjll 2 i J=l,2,...,n (2.h)

Xj 6 E3, J=l,2 n

The objective function is bounded both from below and above and there exists a maximum

as well as a minimum (Aykin and Babu [26]). Furthermore the solution space is not

convex resulting in a non-convex programming problem.
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3. THE ALGORITHM.

In order to derive an algorithm we first derive necessary conditions for a set of

points to be minimum. Using Lagrange multipliers j, J=l,2 n, the following

Lagrange function is obtained:

n m

l<.J <k<_n J =i i=l

n

/ j(llxl -1) (3.1)

which leads to the necessary conditions

n h’ (I IX-Xkl m h’ (I IX-PI(Xj-)+ wji -P _(Xj-Pi)5 : vj, ll-xl -- 115
j 0 J=l,2 n+ 2 Xj ,...,

"llXjllm-m 0 j=m,,...,, (.)

where jL is the vector of partial derivatives of L(XI,X2,...,Xn) with respect to

xj,yj,zj (x,y,z coordinates of source J). Solution of (3.2) and (3.3) yields

J lxjlxl’ :

2

so that

,J=l,2,... ,n

Xj--Tj (Xl,x2 .....Xn)=

J:l,2 ,n (3.5)

By choosing positive sign in (3.5) and by taking Tj(Xl,X2,...,Xn), J=l,2 .... n, as

iteration functions an algorithm, analogous to Weiszfeld [28] algorithm, is defined as

follows:
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I, J=l,2 .,n. Set t=l,Step i. Designate the starting points by Xj
and

t+l _t+l ..t+l _t+lStep 2. Calculate j ,J=l,2 ..... n by (3.5) using AI ’2
t Xt t+l (t+l t+l t+l t XtXj,. n’ i.e. xj --Tj,AI ’2 "’’’J-I’Xj ’’’’’ n)

Step 3. If

g-j .oo,

set t--t+l and go to step 2.

In the algorithm given above, each source location is updated during the iteration

in the sense that Xt+l t+l t+l ..t+l t .,Xt for all J. Thisj
is a function of x

I ,A2 ,...,Aj_I,Xj,.. n

approach is known as Gauss-Seidel procedure. An alternative, and potentially less

,t+l t t t t Xtefficient procedure, is to compute xj as a function of Xl,X2,...,Xj_l,Xj, n’

Xt..t+l (xt,xt, ’ni.e. Aj --Tj

n h’CJ 15 - ll)Note that if Vjk Xk + wji
#j

the iterative nctions given in (3.) will be undefined.

P
i

0 for some J, then

We call such a set of

vectors an irregular solution.

The algorithm defined by the iteration functions Tj, J=l,2,... ,n, gives a gradient

projection method with precalculated step size. In this respect this algorithm is

analogous to the Weiszfeld scheme 1281. Let Vjf be the vector of partial derivatives
thof f with respect to xj,yj,zj(x,y,z coordinates of J source), then

so that

,J=l,2,... ,n

P
i



MULTIFACILITY LOCATION PROBLEMS ON A SPHERE 587

h,Cllx#_xl) h,IIx-II!x
Vjk + 7_ wj

= Ix-xll vj

Therefore

xj sj fx.x.....x.= IIx- ’li =’""’"

where

’cllS-xll + "o,ox,x,...,x
Ix-il = Ix-ll

,=l,,...,n
1) Squared eliden

In %his ese h(U)=U2 and h’ (U)=2U. en (3. ) eeomes

(3.8)

xj= Tj (Xl,x2 .... ,Xn)=

n m

IVjkXk+ lwjiPi
k=l i=l
#d (s 0)
n m ,J=l 2 ...n

k=l I=I

One usefhAl property of the algorithm proposed is that the objective function vlue

decreases at each iteration. This is proved in the following theorem.

Su pose X {X ,X, ,X } Is a regular solutlon. Let T(X)THEOREM i. i 2 n

TI(X__),T2(X___) ,Tn(X___)} be the in (3.10)then the mapping T(X___) is amapping given

descent mapping; that is f(T(X_)) _< f(X) and f(T(X_)) f(X_) if X T(X_).

PROOF. Let X#= X ,X2,... be the set of the current source locations at

the end of t
th

iteration. Value of the objective function at X__t is f(X,Xtp,...,Xtn).

Let xt+I--TII(xt’x ’Xtn) ,ow consider another problem, which is a single

facility location problem with the squared Euclidean distance, and with the

t Xtexisting facilities X2,..., n,Pi,P2,...,Pm(i.e, sources X2,...,Xn are "fixed" at

their current locations).

n m

mlnimze fl(X1 )= I Vlj Ix-xI1 /}- n Ix-
J=2 I=I

/ .....

subJect to

(3.n)

XI E E3
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where

n m

2<_J <k<_n J=2 i=l

Since the sources Xj, J=2,...,n are "fixed" at their current locations gl(Xt’’’’’ n
Xt is

is a constant and therefore does not affect the optimum solution of this problem

Spherical single facility location problem with the squared Euclidean distance was

first formulated and shown to have a unique minimum by Katz and Cooper [lhl. They

formulated this problem as to

m

mnze rX -- Z w.l IX-P
i=l

subJect to

X 6E3

ad showed that the unique optimizing location is

X

m

wiPi

Hence the minimizing location for the problem (3.11) is given by

n m

.t+l
VljXj + WliPi

AI m

t+lNote that (3.15) is equivalent to(3.10)for J:l. Since xI is the minimizing

t/l t /I (X) But fl(Xlsolution to the problem (3 Ii) if "’I # XI then fl(X < fl
Xt) Thus we obtain the following inequality:f(XI,x, n

(3.15)

t t Xtf(x+l,x......Xtn) < f(Xl,X2,..., n

tl t+l
f

t+l t Xt t ,Xt) if and only if Xl orAnd (XI ,X2, .... n
f(X ,X2 .... n

t Xtx -(x,x ..... n
).

+I--T2(" By using the same analogy, wet+l tNow let X Xl ’X2’’" n
formulate another

problem which is again a single facility location problem with the squared Euclidean

t+l t Xtdistance and the existing facilities Xl ,X3,..., n,Pl,...,Pm, i.e. now the sources XI,
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and Xj, J=3,...,n, are "fixed" at their current locations.

t+l 2
minimize f2(X2) v21 l]X2-Xl

subject to

n

t Xt+ W2il IX2-P 12 + g (X+I’X3 .... n
i=l

IIx=l =
X
2 6 E

3

where

IIX -X II
3<_J <k<_n

n

n m

J=3 i=l

m

i=l

589

(3.17)

(3.8)

is a constant. Again this problem has a unique solution.

n m

v2j Xj Vl2Al w2i i
J=3 i=l

2 (3.19)n m

v2jXj vI2A/ + w2i
J=3 i=l

t+lThis is equivalent to (3.10) for J=2. Since A
2 is the minimizing location for the

problem (3.17), we have the following inequality:

(3.20)

t+lvt ,Xt Thusprovided that A
2 A2" But f2 (X2) f +I ,X2 ,X n

.t+l t in) t+l t t Xtf(x+l,x2 ,X3 X < f(X
1"’ ’X2’X3"’’’ n

By combining the inequalities (3.16) and (3.21), we obtain

(3.21)
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f(xt+l .t+l t ,Xt) < f( t t t Xt-I "A2 ’X3"’" n XI’XR’X3"’’’ n
(3.2)

Xt+l&’’t and/or t+l- t
provided that I "i X

2 #X2. By repeating the same steps for Xj,J=3,...,n,
we get

.t+l .t+l ..,Xt+l) < f(X t ,Xtn) (3.23)f(Xl ’x2 n ’X2’’’"

xt+In t t Xtn X+i ’2"t+I ..... Xtn+Iwhereas f(kl+l,xz+l_tt_ ,.-., f(XI,X2,... if and only if

X t Xt }’X2’’" n
or X T(X).

Thus when the metric is the squared Euclidean distance the objective function

value decreases at each iteration, and the algorithm either converges to a minimum or

stops at an irregular solution.

I. Suppose IXI,X2,...,Xnl is a regular solution. If Xj, J=l,2 .... ,n,COROLLARY

is the minimizing location with respect to both the other new facilities and the

destination points then the solution is a minimizing solution to the problem.

PROOF. Proof follows from Theorem i.

Note that the method used above can be easily extended to other location problems.

In order to prove that the algorithm designed for the solution of a multifacillty

location problem is a descent algorithm, it is sufficient to prove the descent mapping

property of the same algorithm for the single facility version of the same problem.

2) Euclidean Distance

In this case h(U)=U and h’(U)=l. (3.5) then becomes

Xj Tj(XI,X2,...,Xn)

n
VkXk

m
wjiPi

k=l i=l

VjkXk +

m
wjfPi7

k=l i=l

j=l,2 n (3.2h)

The iteration functions given in (3.24) are not defined at all the points in the

solution space. In particular, if either new facilities J and k have the same location

or new facility J and existing facility i have the same location then the objective

function f(XI,X2,...,Xn) is not differentiable and, therefore, the iteration functions

(3.24) are not defined. In order to resolve this difficulty, the Hyperbolic

Approximation Procedure of Eyster et al 12] is used as follows:

d(X,Y)=[ llX YII + m/a (3.5)

where is, a small positive constant.

We now prove that the iteration functions (3.24) define a descent mapping in the

following theorem.

THOREM 2. Suppose X IX ,X ,X I is a regular solution, Xj# X
k

for J# k,

Let T(X)- T. (X),T^(X), the given inand Xj#Pi for all J, i. __-
+/--- -- ...,Tn(X)} be mapping

(3.2h), then the mapping T(X) is a descent mapping.
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I,X2,...,X be the set of the current source locations,

and
t+l (X+I .t+l ..t+l t XtXj --Tj ,A2 ,...,Aj_I,Xj,.., n)., J=l,2,...,n. Now consider the following

problem.

J-1
minimize fj(Xj) I

k=l

subject to

llx ll
Xj f E3

n m

xt+lvJk llXJ k II + I vJk llXJ-Xtkll+ I wJ
k=J+l i=l

+ gj(x+l yt+l t+l t Xt’"2 .....J-l’Xj+l ..... n

(3.26)

where

(3.27)

is a constant. Note that this problem is a single facility location problem with

t+l t+l ..t+l t xt "P2’ ’Pro’the existing facilities aI ,a2 ’" ’AJ-1 ’Xj+l ’" n Pl for

J=l,2,...,n.

Problem (3.13) involving Euclidean distance has been studied by Katz and Cooper

llh]. They proposed a descent algorithm with the following iterative function.

m
wiPi

X (3.28)

This iterative function can be used iteratively to solve (3.26) as follows.

Since (3.28) defines a descent mapping, we have

(3.29)
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t) (3.30)fj(X+I) < fj(Xj
.t+l t But (Xj) f ’A2 ’" ’AJ-I J+l n

if j # Xj fj (xt+l .ot+l "t+l,xj Xt ...Xt) (3.30) then becomes

.t+l ot+l ..,xt+l t+l t ,Xt)f(Al ’2 J-I’Xj ’Xj+l"’" n

..t+l .t+l .t+l t,xt .,Xt)< f(AI ,A2 ,...,xj_I,xj J+l"" n
(3.31)

By repeating the same steps for Xj, J=l,2,...,n, we get

f(Xtl+l vt+l xt+l t t Xt’A2 n
< f(Xl’X2 ..... n

whereas f(X+I xt+l xt+l X t Xt +I ..t+l Xtn+l} t tn}’"2 n
f( ’X2 ..... n if ’2 ..... ,X2 .....X

i.e. x T(X).

Thus when the metric is the Euclidean distance, the objective function value

decreases at each iteration, and the algorithm either converges to a local minimum, or

stops at an irregular solution, or when Xj Xk, J#k, or Xj Pi’ for any J,i.

3) Geodesic Distance

In this case h(U)=2 arcsln (U/2), U dlX-YII= 12(1-XY)] 1/2, and

(3.5) then becomes

,J=l,2... ,n (3.33)

An iterative scheme for determining minimizing source locations Xj ,J=l,2,... ,n, is

now defined by taking (3.33) as iterative functions and using them in the algorithm

outlined before.

Note that the iterative functions (3.33), and the partial derivatives of the

objective function f(XI,X2 .... ,Xn) are not defined when Xj= for J#k, or Xj=Pi for any

J,i, or when two new facilities J and k, or new facility J and existing facility i have

the coordinates of a point and its antipode (X and Y on a unit sphere are antipodal

points if d3(X,Y)=fT ). In order to resolve this difficulty, we used the Hyperbolic

Approximation Procedure of Eyster et al [21.
We have not succeeded in proving that the algorithm with (3.33) as the iteration

functions is a descent algorithm. However, above in Theorems I, and 2, we proved that

the algorithms with (3.i0) and (3.24) as the iteration functions are descent

algorithms. In an analogous manner, one may prove that the algorithm proposed is a

descent algorithm.
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4. AN EXAMPLE PROBLEM.

This problem is concerned with the location of three distribution centers. The

products are to be distributed to I0 European and Asian cities by air. The names and

the location coordinates of the cities, and the weights are shown in Tables I, and 2.

We solved this problem using the proposed algorithm with = i0
-12

and /

0.00001 starting from XI=(0.,0.,I.)’, X2=(0.,0.,I.)’, and X3=(0.,0.,I.)’. The results

are presented in Table 3. Additionally this problem was run I0 times with random

starting points and the algorithm always converged to a unique solution. Although the

difference between the optimal objective fUnction values, calculated using geodesic

distances, is small, the distance between the optimum source locations is significant.

wji

i
2
3

5
6
7
8
9

I0

i City Latitude Longitude = I 2 3

Berlin 52.517 13.h17 0.52 0.78 0.I0
New Delhi 28.617 77.217 0.09 0.23 0.14
London 51.513 0.097 0.83 0.97 0.53
Moskow 55.750 37.567 0.12 0.38 0.37
Paris 48.833 2.333 0.97 0.47 0.47
Peking 39.600 116.400 0.69 0.71 0.26
Seoul 37.567 127.000 0.17 0.71 0.77
Tehran 35.667 51.417 0.39 0.85 0.27
Tokyo 35.683 139.750 0.57 0.69 0.58
Victoria 22.333 IIh.167 0.32 0.49 0.88

TABLE I. Weights and Locations of Existing Facilities

Vjk J

1

k= I 2 3

0.0 0.15 0.25
0.15 0.0 0.25
0.25 0.25 0.0

TABLE 2. Weights, Vjk

Measure Stops at (Latitude, Longitude) 0bJ.Fn.Val. No. of Iter.

Squared
Euclidean

Euclidean

Geodesic

(59.042,62.591), (55.580,73.663), (52.207,90.548)

(53.017,13.911), (54.736,52.394), (4O.655,114.890)

56.745,37.356 ), 54.521,59.743 ), (45.620,104.939

571.434 5

569.608 102

565.164 61

TABLE 3. Computational Results



594 T. AYKIN AND A.J.G. BABU

REFERENCES

I. DREZNER, Z. and WESOLOWSKY, G.O. A Trajectory Method for the Optimization of the
Multi-Facility Location Problem with lp Distances, Management Science 24
(1978), 238-261.

2. EYSTER,J.W., WHITE, J.A. and WIERWILLE, W.W. On Solving Multifacility Location
Problems Using a Hyperboloid Approximation Procedure, AIIE Trans. 5 (1973),
1-6.

3. FRANCIS, R.L. and CABOT, A.V. Properties of a Multifacility Location Problem
Involving EUclidean Distance, Nay. Res. Logist. Q. 19 (1972), 335-353.

VERGIN, R.C. and ROGERS, J.D. An Algorithm and Computational Procedure for
Locating Economic Facilities, M.anaement Science 13 (1967), 240-254.

5. LOVE, R.F. Locating Facilities in Three-Dimensional Space by Convex Programming,
Nay. Res. Logist. Q. 16 (1969), 503-516.

6. CABOT,A.V., FRANCIS, R.L. and STARY, M.A. A Network Flow Solution to a Rectilinear
Distance Facility Location Problem, AIIE Trans. 2__ (1970), 132-1hl.

7. FRANCIS, R.L. On the Location of Multiple New Facilities with Respect to Existing
Facilities, J. of Industrial Engineering 15 (196), 106-107.

8. WESOLOWSKY, G.O. and LOVE,R.F. The Optimal Location of New Facilities Using
Rectangular Distances, Operations Research 19 (1971), 12h-130.

9. WESOLOWSKY, G.0. and LOVE, R.F. A Nonlinear Approximation Method for Solving
Generalized Rectangular Distance Weber Problem, Management Science i__8 (1972)
56-63.

I0. ZAMB0, J. Optimum Location of Mining Facilities, Akademiai Kiado, Budapest, 1968.

Ii. WENDELL, R.E. Some Aspects in the Theory, of Location, Ph.D. Dissertation, North-
western Unlversity, Evanston, Illlnois, 1971.

12. KATZ, I.N. and COOPER, L. Optimum Location on a Sphere, Paper Presented at the
Joint ORSA/TIMS National Meeting, Chicago, 1975.

13. KATZ, I.N. and COOPER, L. Optimum Location on a Sphere, Paper Presented at the
Joint ORSA/TIMS National Meeting, Philadelphia, 1976.

14. KATZ, I.N. and COOPER, L. Optimum Location on a Sphere, Comput. and Math. with
Appl. 6 (1980), 175-196.

15. DREZNER, Z. and WESOLOWSKY, G.O. Facility Location on a Sphere, J. Opl. Res. Soc.
29 (1978), 997-100.

16. DREZNER, Z. and WESOLOWSKY, G.O. Minimax and Maximin Facility Location Problems
on a Sphere, Nay. Res. Logist. Q. 30 (1983), 305-312.

17. LITWHILER, D.W. and ALY, A.A. Large Region Location Problems, Computers and

Operations Research 6_ (1979), 1-12.

18. DREZNER, Z. On Location Dominance on Spherical Surface, Operations Research 29
(I981 ), 1218-1219.

19. DREZNER, Z. A Solution of the Weber Location Problem on a Sphere, J. Opl. Res.
Soc. 36 (1985), 333-33h.



MULTIFACILITY LOCATION PROBLEMS ON A SPHERE 595

20. DHAR, U.R. and RAO, J.R. A Comparative Study of Three Norms for Facility Location
Problem on Spherical Surface, New Zeland Journal of Operations Research 8_
(1980), 173-183.

21. DHAR, U.R. and RAO, J.R. On Solving Multi-Source Location Problem on a Sphere,
Scientific Management on Transportatio.n Systems, (Ed. N.K. Jaiswal and B.K.
BenerJi), North Holland Publishing Co., Amsterdam, 1980.

22. DHAR, U.R. and RAO, J.R. Domain Approximation Method for Solving Multifacility
Location Problems on a Sphere, J. Opl. Res. Soc. 33 (1982), 639-645.

23. DHAR, U.R. and RAO, J.R. An Efficient Algorithm for Solving Area-Constrained
Location Problems on a Sphere, Opsearch 19 (1982), 23-32.

24. DREZNER, Z. Constrained Location Problems in the Plane and on a Sphere, AIIE
Trans. 15 (1983), 300-304.

25. WESOLOWSKY, G.O. Location Problems on a Sphere, Reg. Sci. Urban Econ. 12 (1983),
h95-5o8.

26. AYKIN, T. and BABU, A.J.G. The Weber Problem on a Surface, Paper Presented at the
Joint ORSA/TIMS National Meeting, Orlando, 1983.

27. AYKIN, T. and BABU, A.J.G. Constrained Large Region Location Problems I:
Single Facility Location, Paper Presented at the Joint ORSA/TIMS National
Meeting, San Francisco, 1984.

28. WEISZFELD, E. Surle Point Pour Lequel La Somme des Distances de n Points Donnes
est Minimum, Tohoku Math. J. 43 (1937), 335-386.

29. BAZARAA, M.S. and SHETTY, C.M. Nonlinear Pror.amming: Theory and Algorithms,
John Wiley and Sons, Inc., New York, 1979.

30. KHITROV, B.F. On the Application of Various Curves to the Solution of Geodesic
Problems on an Ellipsoid, Geodesy, Mapping, and Photogrammetry I_ (1973),
97-101.


