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ABSTRACT. By a simple application of Green’s integral theorem, amplitude of the

radiated waves at infinity due to a line source in the presence of a fixed vertical

plane barrier completely submerged in deep water is obtained.
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i. INTRODUCTION.

In the linearized theory of water waves under the assumption of irrotational

motion the velocity potential due to a harmonically oscillating line source present

in deep water was given by Thorne [i] in course of a systematic survey of different

types of singularities present in the water. The radiation of waves due to this llne

source is in general affected by an obstacle present in the water. However, when the

obstacle is in the form of a submerged long horizontal circular cylinder the radiated

waves are uneffected (cf. Evans [2]). When the obstacle is in the form of a fixed

vertical plate partially immersed in deep water, the complex amplitudes of the

radiated waves at infinity were obtained by Evans [3] after using the Green’s integral

theorem in the fluid region to the velocity potential appropriate to the problem and

the known potential function for the corresponding scattering problem due to a

normally incident wave train given by Ursell [4].

In the present note we consider the problem of radiation of waves due to a line

source in the presence of a submerged fixed vertical plane barrier. This is compli-

mentary to the problem of the immersed barrier considered earlier by Evans [3].

The velocity potential for the corresponding scattering problem due to a normally

incident wave train was obtained by many authors employing different techniques, the

earliest by Dean [5] and the latest by Goswanl [6]. Here we apply the Green’s

integral theorem in the fluid region using the known potential function for the

corresponding scattering problem as given by Goswaml [6] to obtain the complex

amplitudes of the radiated waves at infinity.

2. STATEMENT AND FORMULATION OF THE PROBLEM.

We consider an infinitely long plane vertical barrier submerged in deep water and
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use a co-ordinate system in which the y-axis is taken vertically downwards, the mean

free surface (FS) is the plane y 0 and the position of the barrier is given by

x O, a < y < . Let a harmonically oscillating line source of unit strength and of

circular frequency m be present at the point (,n), > O. It is assumed that the

fluid is incompressible, inviscid and the motion is irrotational so that a velocity

potential exists. As the motion is produced by the harmonically oscillating line

source it can be described by Re{(x,y) exp (-imt)} whence, assuming the linearized

theory of water waves, (x,y) satisfies

V2 0 in the fluid region except at (,n), (2.1)

K + y 0 on y 0 (2.2)

where K m2/g, g being the gravity. (2.1) is the equation of continuity and (2.2)

is thelinearized FS condition. Also, near the edge of the barrier at (0,a), IVI
has an integrable singularity which is usually expressed as

{x2 + (y-a)2} I/2 IVI 0 as (x,y) (0,a) (2.3)

(2.3) is the so-called edge condition to be satisfied near the edge of a submerged

barrier. As Ixl =, will represent outgoing waves the amplitudes of which (as

x + and x -=) are required to be found out.

Let G(x,y;,) denote the potential due to the line source of unit strength

situated as (,) in the absence of the submerged barrier. Then G satisfies the

Laplace’s equation in the region y 0 except at (,n), the FS condition (2.2),

the condition that it behaves as an outgoing wave as Ix-l , and G, IVGI 0

as y =. It is known from [i] that

G(x,y;,) -2 f (k cos kn -K sin k)(k cos ky -K sin ky)

o k(k2 + K2)

x exp(-klx- l)dk- 2i exp {-K(y+n) + iKlx-l}. (2.4)

Now the potential function can be expressed as

(2.5)

where (x,y) can be regarded as the correction to G due to the presence of the

barrier. Since the barrier is fixed

so that

x 0 on x 0, a < y <

Let

_
G(O,y;,n) f(y) say, on x O, a < y <x x

B-+ (,n) exp (iKlx Ky) as x +_

(2.6)

(2.7)



PLANE VERTICAL SUBMERGED BARRIER IN SURFACE WATER WAVES 817

B
+/-

where are the complex amplitudes of the radiated waves at positive and negative

infinity respectively and are to be determined. Thus satisfies (2.1), (2.2),

(2.6). Because of (2.6), # is odd in x. Again, far away from the barrier and also

from the source, the waves travel away from the barrier so that

# +A exp(iKIx y) as x (2.8)

where A is the complex amplitude (unknown) of the scattered field. In addition

lvl 0 as y . (2.9)

Also, because of (2.3), since [VG is not singular near (0,a),

{x2+ (y-a)2} I/2 IVI 0 as (x,y) (0,a). (2.10)

3. SOLUTION OF THE PROBLEM.

Let (x,y) denote the velocity potential for the corresponding scattering

problem or more specifically, it is the potential due to a progressive wave

exp(iKx-Ky) incident upon the barrier from negative infinity. The explicit form for

(x,y) is given by Goswami [6] (also it is apparent from [4]) as

(x,y) r J (ka)

A(Ka) L lo(Ka) exp(iKx-kY) -i f
o

o K2 + k2

and

x (k cos ky K sin ky) exp(ikx)dk J for x 0 (3.1)

(x,y) exp(iKx-Ky) A(Ka) i Ko(Ka) exp (-iKx-Ky)

J (ka) 7
i f o

(k cos ky-K sin ky) exp(kx)dkJ for x < 0 (3.2)
o K2 + k2

where A(Ka) I (Ka) i K (Ka) (3.3)
o o

I K being the modified Bessel functions of order zero.
o o

We now apply the Green’s integral theorem to the harmonic functions , within the

region bounded by the lines, y= 0, Ix X; x X, 0 y Y; y Y, 0 < x X;

x 0+, a y S Y; x 0-, a y Y; y Y, -X x < 0; x -X, 0 y Y. Let

C be the contour consisting of these lines, then we have

f ( n n ds 0 (3.4)
C

where n is the outward normal to the line element ds. Conditions (2.2) and (2.9)

ensure that there is no contribution to (3.4) from the FS or from the line y Y,

Ixl X, as Y =. In addition, because both and describe outgoing waves as

x +, there is no contribution from x X, 0 y Y as X =. The only

contribution arises from the line integral around the barrier and from the incoming

wave in (x,y). Combining with the outgoing wave from (x,y) for x -X,

0 y Y as X,Y , we obtain

A i f g(y) f(y) dy (3.5)
o
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where

g(y) (0+,y) (0-,y) a y <

denotes the jump in across the barrier so that from (3.1) and (3.2)

2i [ J (ka)
g(Y) A(Ka) [

Ko(Ka) exp(-Ky) /
o

o K2 + k2
(k cos ky K sin ky)dkJ.

To simplify g(y) we note that

K g(y) + g’(y) .i of Jo(ka) sin ky dk

2i
A

0 0 y-<- a

(y2-a2)-I/2 y a

Thus

g(y)

0 0 < y a

Y exp(kv)exp(-Ky) / y a
a (v2_a2) I/2

dv

since g(a) 0.

Now
2i exp (Ky) h(y)f g(y) f(y) dy - f

a a (y2_a2) 1/2

where
Y

h(y) f f(u) exp (-Ku) du

Thus

where

2 f s(y)A
a (y2_a2) i/2 dy

a

s() exp (Ky) / f(u) exp (-Ku) du

(3.6)

(3.7)

But by (2.4) and (2.6) we obtain

sin ky(k cos kn K sin kn)
s(y) 2 sgn f K2 + k2

o

exp (iK II Kn Ky)]
exp(-kl$ I) dk

(3.8)

and (3.9) it follows that as x +=

Substitution into (3.6) gives, after simplification

2 [ Jo(ka)(k cos kn K sin kD)
A sgn [ exp(-k II dk

o K2 + k2

m (Ka) exp (iml$ K)I (3.9)o

This gives the complex amplitude of the scattered field. Now from (2.5), (2.4), (2.8)
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(x,y;,) G +
o

F2i
exp(iKx-Ky) | A exp(-iK-K)-iK (Ka) sgn exp(iKll-K)A L o

J (ka)(k cos k K sin kn) ]
+ i sgn f o

exp(-k ll)dk
o K2 + k2

(3.10)

as x +, and while as x -,

2iA exp(-iKx-Ky) [A exp(iK -Kn)+iKo(Ka) sgn exp(iK[ K)

J (ka)(k cos k K sin kn) ]
+ i sgn $ f o exp(_kll)dkj

o K2 + k2
(3.11)

Thus from (2.7), (3.1), (3.2), (3.10) and (3.11) we obtain

B+ (,n) =-2i exp(-iK K) + A -2i

B (,n) -2i exp(iK K) A -2hi (-,n)
(3.12)

An immediate consequence is

B+ (,n) + B- (,n) 4i exp(-K) cos K (3.13)

For high frequency waves (Ka =) A 0 so that

B
-+

(,n) -2i exp( $ iK-

which shows that there is no effect of the barrier on the radiated waves from the

source. This is to be expected as in this case the waves are confined within a thin

layer below the FS so that the presence of the barrier is not felt by the waves for

sufficiently large wave number.

Again when the source is directly above the barrier, so that 0, < a, then

(0,) exp(-K)

J (Ka)(k cos kn K sin
o

as f dk K (Ka) exp(-Kn), n < a
o K2 + k2 o

and we obtain from (3.12)

B+ (0,) B- (0,n) -2i exp(-Kn)

and the barrier has no effect on the source.

When K is an odd multiple of /2 we conclude from (3.12) that "the wave

amplitudes on either infinity are same, the surface elevations being exactly 180 out

of phase with each other". Similar conclusion was also arrived at by Evans [3] while

considering the immersed barrier problem.
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