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BSTRAG’. Unstable periodic solutions of systems of parabolic equations are

studied. Special attention is given to the existence and stability of solutions.
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|. IHTRDDUTION.

Diffusion systems of partial differential equations are of great importance in

biosciences. In this paper, unstable periodic solutions of systems of the form

u
t

u + F(u,w),
xx

w
t G(u,w), (I.I)

are studied. Equations of this type arise in neurophysiology in the study of nerve

impulses on nerve axon, see [1,2]. Other classes of diffusion equations are also

involved in biology, see for example [3-9].

2. ZISTZNCE OF SOLUTIONS

It is known that for G(u,w) u, if > 0 is sufficiently small, equation

(I.I) has two types of wave solutions, namely, pulse travelling wave solutions and

periodic travelling wave solutions. A travelling wave solution is a solution of

equation (I.I) of the form

[u(x,t), w(x,t)] [(z;c), (x;c)], z x + ct,

hence [(z;c), (z;c)] satisfies the ordinary differential equation

d2T c __+d F (,) 0,
dz

2
dz

dc-+ G(,) 0.

A pulse travelling wave solution is a non-constant solution of (2.1) satisfying

(2.1)
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lim [(z;c), (z;c)] [0,01,

and a periodic travelling wave solution is a periodic solution of (2.1).

In [I0], Evans showed that equation (1.1) has two pulse travelling solutions with

different propagation speeds c and c2. On the existence of periodic travelling

wave solutions, Hastings [II] showed that equation (2.1) with G(u,w) eu has a non-

constant periodic solution if e > 0 is sufficiently small and the speed c is

limited to a certain range. Rinzel and Keller [12] studied the case in which F(u,w)

is a function of u only given by

u for u < a,

F(u,w) u-I for a < u,

where 0 < a <I/2 Under this assumption, equation (2.1) has a non-constant periodic

solution if c is limited in the range c < c < c
2

and the period p(c) is a

smooth function of c. They demonstrated the behavior of the function p(c) under

the two cases when a is not very small and when a is very small. Dai [13] proved

the existence and uniqueness of solutions for a general case and studied stability of

the solution.

3. STABILITY ANALYSIS.

Stability of periodic travelling wave solutions is related to the eigenvalues of

a matrix in the following theorem. Let A(z;%,c) be the matrix

0 0

A(z;I,c) l-Fl [#(z; c) (z;c)] c -F2[#(z;c) (z;c)]

Gl[(z;c), (z;c)] 0 G2[(z;c), (z:c)]

c c

where F. and G. denote the partial derivatives as usual, and let X (z;,c) be a

matrix satisfying the differential equation

d
d--X A X

with the initial condition X (0;l,c) I.

TaEOIM 3.1. Suppose the functions F and G in equation (I.I) staisfy (a)

F(0,0) 0, (b) G(0,0) 0 and (c) the matrix X (p(c);/,c) has an eigenvalue of

modulus I, for some complex number k with Re k > 0, then a periodic travelling

wave solution [#(z;c), (z;c)] is unstable.

PROOF. With the change of variables,

Z X + Ct

t t,

[u(x,t), w(x,t)] [(z,t), (z,t)],
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equation (I.I) becomes

] c + F(],), (3.1)
t zz z

-c + G(,).
t z

The linearized perturbation equation of the above system with respect to the solution

[(z;c), (z;c)] is

t c + F [,] +F
2

[#,]
ZZ Z

t C + G [,] + G
2
[#,]

Z
(3.2)

where #(z;c) and (z;c), since F(0,0) G(0,O) O. Equation (3.2) has a

solution of the form

U(z,t) e Yl (z;A),

W(z,t) e Y2 (z;A),

where (Yl’ Y2 satisfies the following system of linear ordinary differential equations

Ay
d2y dY

2
c d-- + FI [ ’] Yl + F2 [ ’] Y2’

dz

dY2
AY2 c-a + G1 [#’] Yl + G2 [#’] Y2’ (3.3)

where #(z;c) and (z;c). Note that if equation (3.3) has a solution which

is bounded for all z in (-,) for a number A with Re(A) > 0, then equation

(3.2) has a solution [U(z,t), W(z,t)] which grows exponentially, and hence, the

travelling wave solution [#(z;c), (z;c)] is unstable.

Using Floquet’s theory, we can show that equation (3.3) has a bounded non-trivial

solution if and only if one of the eigenvalues of X( p( c) A ,c) is a modulus I. Equa-

tion (3.3) can be rewritten as

d- \dz A-El [0’] Yl + c -a F2 ’ Y2’

c dY2
d- GI [’] Yl + (G2[#’] -A) Y2’

and so can be represented by the matrix differential equation

d
d---v A(z;A,c) __v,
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where

v
dz I
JY2

and the matrix A is as defined before. Now, since the coefficient matrix A (z;k,c)

is a p(c)-periodic function of z, Floquet’s theory yields that equation (3.3) has a

bounded non-trivial solution if and oaly if one of the eigenvalues of the matrix

X(p(c) ;k ,c) defined before is of modulus I. The proof is now complete.

In the following lemma, it is shown that under the special case 0, one

eigenvalue of X(p(c);0,c) is unity and the product of the other two eigenvalues is

greater than one.

L 3.1. Suppose (a) G2(u,w) _> 0 for all u and w and (b) k 0, let

.(l,c), i I, 2, 3, denote the eigenvalues of X (p(c);k,c), then one eigenvalue,
l

say

i(0,c) I,

and 2(0’c)3(0,c) > I.

PROOF. Differentiation of equation (2.1) leads to

dO d

d d) d0 d,c-z (- G [0,] z + G2 [0,] -z (3.4)

where O O(z;c) and (z;c). Therefore the vector

dO

satisfies the matrix equation

d
d-- Wz A (z;0,c) Wz,

that is,
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We know that (see for example, Sanchez)

w (z;c) X(z;0,c) w (O;c)
Z Z

and since w (z;c) is a p(c) periodic function of z, it follows that
Z

w (O;c) w (p(c);c) X (p(c);0,c) w (0;c).
Z Z Z

Thus there is an eigenvalue, say

(3.5)

I (O,c) I.

Further, by Jacobi’s formula,

det {X(z;k,c)} {det X(O;%,c)} exp f tr {A(;l,c)} d$
0

z G
2 # , -(I) exp (c+

C
0

In particular,

det {X(p(c);0,c)} exp [c p(c)] exp
Pj(c) G2[#,]

C
0

>

d

since c > O, p(c) > 0 and G
2 (u,w) _> 0 for all u,w.

But det {X (p(c);O,c)} I (0,c) 2 (0,c) 3 (0 ,c) and

I (0,c) I, hence 2 (0,c) 3 (0,c) > I.

Note that under the assumptions of Lemma 3.1, either [2 (%,c)[ > or

[123 (k,c[ > for k sufficiently small. In the next theorem, we will see that if

L(c) is decreasing, i.e. L’(c) < 0, then B1 (l,c) is increasing at O, i.e.

a-- l(X ,e) IX=0 > 0.

TIiEORKM 3.2. Suppose (a) p’(c) < 0, then - Vl (x’c) X=0 > 0, and hence if (b)

the assumptions in Lemma 3.1 also hold, then I (l,c) > for sufficiently small.

PROOF: We claim that the following equality

(), ,c) [k=O -p’ (c)Tf- a

actually holds.
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Recall the vector w (z;c), namely,

which satisfies the periodicity

w (p(c);c) w (0;c).

Differentiation of the above equation with respect to c leads to

w (p(c);c) p’(c) + w (p(c);c) w (0;c). (3.6)
Z C C

Let _v _v [Yl (z;%,c), Y2 (z;%,c)] be a solution of equation (3.3) satisfying

the initial condition

v (0;%,c) w (0;c) + k w (0;c), (3.7)
Z C

where _v (z;k,c) is the vector defined before. We have observed before that [dz (z;c),

-d] (z;c), which satisfies equation (3.4), is a solution of equation (3.3) under %=0.

In view of the condition (3.7) and by uniqueness of solutions, we have

v (z;0,c) w (z;c). (3.)
Z

Differentiation of equation (3.3) with respect to leads to

Yl d2 d Yl Y2
Yl + % - 2

c - + FI[,] + F
2 [,] ---,

dz

Y2 d YP
Y2 + k -- -c- (-) + G

Y2[’] + G2 [’] k---" (3.9)

Under % O, and replacing [YI’ Y2 by [YI’ Y2 ]’ equation (3.9) by equality

(3.8) becomes

d
2 .Yl. d .Yl. aYl aY2d (z;c) -) Cz ---) + VI[0,] + F2[O ] -,dz dz2

d Y2. Yl Y2d* (z;c) c + GI[*,*I + G2[* *] (3 lO)d- t--) ---,

Yi Yi
where - ---(z;O,c) now. On the other hand, differentiating equation (2.1) with

respect to c, we get
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d2
c

d# d

_
c

3z c + FI[#’@] + F2[ ] c 0
dz

2

d d [# , 3
dz

c + G1 + G2[#’] c 0, (3.1)

where # (z;c)

b-7 (z;c), cc (z;c)]

,
,3Yl 3Y2

and (z;c). Therefore both --X-- (z-0;c), --- (z;0,c)] and

satisfy the same differential equation. In addition, differentia-

tion of the initial condition (3.7) yields

vx (0;X,c) w
c (0;c),

in particular,

vx (0;0 c) w (0;c)
C

and hence the equality

vl (z;0,c) w (z;c), 0 < z < p(c).
C

The equalities (3.8) and (3.12) together give

(3.12)

,
v (z;,c) w

Z
(z;c) + , w (z;c) + O(X2), (3.13)

C

0 < z < p(c), as O.

*Knowing _v (z;k,c) X (z;k,c) v_* (O;k,c), by equation (3.13) for z p(c) and

also z O, we get

w "ptc);c) + k w
Z C

(p(c);c) + 0 (),2)

X (p(c);l,c) [wz (o;e) + I We (0;e)]. (3.14)

Substitution of the equation (3.6) containing p’(c) into the left hand side of equation

(3.14) and periodicity lead to

X (p(c);X,c) [w
z

(O;c) + X We (O;c)]

[I -I p’(c)][w
z (O;c) + X Wc (0;c)] + 0 (X2).

Hence the eigenvalue l(X,c) satisfies

,(X,c) -p’(c).
,=0

The proof is now complete.
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On the other hand, under certain conditions, two eigenvalues have modulus less

than one and one has modulus greater than one.

THEORFa 3.3. Suppose (a) F
2 (u,w) is a non-zero constant and (b) G! (u,w) and

G
2 (u,w) are constant, then for sufficiently large, two eigenvalues of X (p(c);k,c)

have modulus < and one has modulus > I.

PROOF: Decompose the matrix A(z;,c) as follows

A (z;k,c) B (k,c) + E (z;c)

0 0 0 0 0

X c -F
2

+ -F l[(z;c), (z;c)] 0

G 0 G2-X 0 0

Let s. (k,c) i 2 3 be the eigenvalues of B (k,c) and qi the corresponding

eigenvectors. The characteristic equation of B(l,c) is

3 G2-I 2 X-G2 F2GI
-s + (-----+c)s + (2k-G2)s + X (----) c

0.

It follows that as

sl(X,c) =- + 0(1)

s2(l,c) /[ + 0(1) (3.15)

s3(x,c) + o(1).

The vectors qi (X’c) are

qi(k,c) s. i 1,2,3,

s2. c s. -1

-F2

and let Q(X,c) be the non-singular matrix

(3.16)

then

Q(,,c) ql(,,c), q2(),,c), q3(),,c)],

Sl(X,c) o

Q-1BQ 0 s2(),,v)
0 0

0

0

s3(, ,c
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Now consider the matrix

-IY(z;l,c) Q X(z;,c) Q

which has the same eigenvalues as X(z;l,c), in particular with z p(c), and satisfies

the differential equation

dz
Y(z;%,c) Q A(z;l,c) Q Y(z;,c)

-I -I[Q B(%,c)Q + Q E(z;c)Q] Y(z;%,c),

d
since z X (z;l,c) A (z;k,c) X (z;k,c).

-IBQBut Q is the diagonal matrix from before and it can be shown easily using (3.15)

and (3.16) that all elements of Q-IEQ are o(I) as , therefore the

eigenvalues of Y( p( c) l ,c) and hence of X(p(c) ;l ,c) approach

exp [si(l,c) p(c)], i 1,2,3 as .
It follows from (3.15) that as % , two eigenvalues of X( p( c) k ,c) have modulus

< and one has modulus > I.

To summarize, under the assumptions of both Theorem (3.2) and Theorem (3.3), at

least two eigenvalues of X( p( c) % ,c) have modulus > as % 0+, and two eigen-

values of X( p( c) k ,c) have modulus < as ==. Hence one of the eigenvalues

must have modulus for some > 0 and under Theorem (3.1), the travelling wave

solution (#(z;c), (z;c)) is unstable.
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