MODIFIED WHYBURN SEMIGROUPS

BETH BOREL REYNOLDS and VICTOR SCHNEIDER

University of Southwestern Louisiana Lafayette, Louisiana 70504

(Received September 29, 1986 and in revised form November 20, 1986)

ABSTRACT. Let f: $X \rightarrow Y$ be a continuous semigroup homomorphism. Conditions are given which will ensure that the semigroup $X \cup Y$ is a topological semigroup, when the modified Whyburn topology is placed on $X \cup Y$.

KEYS WORDS AND PHRASES. Whyburn construction, topological semigroup. 1980 AMS SUBJECT CLASSIFICATION CODE. 54A10, 22A15.

1. INTRODUCTION.

Let (X, m_1) and (Y, m_2) be semigroups and let f: X + Y be a semigroup homomorphism. An associative multiplication m may be defined on the disjoint union of X and Y as follows: m is m_1 on X, m_2 on Y and $m_2(f(x), y)$ if $x \in X$ and $y \in Y$. If we assume that X and Y are Hausdorff semigroups and that f is continuous, then m is continuous in the disjoint union (or direct sum) topology. Let $(X \cup Y, m)$ denote this Hausdorff semigroup.

Let Z denote the disjoint union of X and Y with Whyburn's unified topology [1]; i.e., V is open in Z iff $V \cap X$ and $V \cap Y$ are open in X and Y, respectively, and for any compact K in $V \cap Y$, $f^{-1}(K) - V$ is compact. If X is locally compact, then Z is Hausdorff, and if Y is also locally compact, so is Z. If f is a compact map, then Z and X \mathfrak{e} Y are the same. If X and Y are locally compact, Hausdorff semigroups, (Z,m) is a locally compact Hausdorff semigroup provided m₁ is a compact map [2].

In this paper we consider the modified Whyburn topology which is coarser than the disjoint union topology, but finer than the Whyburn topology and ask what conditions will insure that m will be continuous.

2. MAIN RESULTS.

Let W denote the disjoint union of X and Y with the modified Whyburn topology; V is open in W iff V \cap X and V \cap Y are open in X and Y, respectively, and $f^{-1}(y) - V$ is compact for every y in V \cap Y. The following notions and facts are due to Stallings [3]. A subset A of X is fiber compact relative to f: X \rightarrow Y iff A is closed in X and A \cap $f^{-1}(x)$ is compact for every y \in Y, and X is locally fiber compact iff every point in X has a neighborhood with a fiber compact closure. Fiber compact, unpresent the state of X are closed in W and W is Hausdorff if X is locally fiber compact. If Y is first countable, then Z and W are the same iff f is closed.

The proof given in [2] that m is a continuous operation on Z did not use the assumption that $m_1^{-1}(K)$ is compact for every compact K in X, but used an equivalent condition instead. The appropriate generalization of that condition for W is:

CONDITION 1. For every fiber compact K_1 in X, there is a fiber compact K_2 in X such that for all x, y \in X, if $m_1(x,y) \in K_1$, then $x \in K_2$ and $y \in K_2$.

This condition is equivalent to: $\overline{p_1(m_1^{-1}(K))}$, i = 1,2, are fiber compact for each fiber compact K in X, where p_1 and p_2 are the projections on X × X.

THEOREM 1. If X is locally fiber compact, Y is regular and m_1 satisfies Condition 1, then m is continuous and hence W is a Hausdorff semigroup.

PROOF. The argument is similar to the one given for Z. We will show continuity at a point (x,y) where $x \in X$ and $y \in Y$. Let $w = m(x,y) = m_2(f(x),y)$. Let V be an open set in W containing w. Since Y is regular, there is a Y-open set U containing y such that $\overline{U} \subset Y \cap V$. Since m_2 is continuous, there are Y-open neighborhoods U_1 and U_2 of r(x) and y, respectively, such that $m_2(U_1 \times U_2) \subset U \subset V$. Then $V_1 = f^{-1}(U_1) \cup U_1$, i = 1, 2, are W-open neighborhoods of x and y, respectively. Since $f^{-1}(\overline{U}) - V$ is fiber compact, Condition 1 guarantees the existence of a fiber compact K in X such that if $m_1(x,y)$ are in $f^{-1}(\overline{U}) - V$, then x and y are in K. Since K is fiber compact, K is closed in W and so $K \times K$ is closed in W \times W. Hence $V_1 \times V_2 - K \times K$ is an open set containing (x,y) and a calculation shows that m maps $V_1 \times V_2 - K \times K$ into V.

Let X = (0,1] × [0,1], Y = [0,1] and f: X + Y by f(x,y) = y. If X and Y have the usual multiplications, then Z is $[0,1] \times [0,1]$ with the usual multiplication. However, the multiplication is not continuous on W since $\{(\frac{1}{n},1)\} + 1$ and $\{(1,1-\frac{1}{n})\} + (1,1)$ in W but $\{(\frac{1}{n},1-\frac{1}{n})\}$ does not converge since it is a fiber compact set in X and hence closed in W.

If the multiplication on X is changed to be the usual multiplication in the first factor and the zero multiplication in the second and if Y is given the zero multiplication, then the conditions of Theorem 1 are satisfied. Since f is not a closed map, W is not the same as Z. Hence W is a Hausdorff semigroup topologically different from $[0,1] \times [0,1]$.

These examples illustrate how difficult it is to have m continuous on W. In fact, we have:

THEOREM 2. Suppose X is connected and for each y in Y, $f^{-1}(y)$ is not compact. If (W,m) is a first countable, Hausdorff semigroup, then Y has the zero multiplication.

PROOF. Let t,y $\in Y$ and let $z = m_2(t,y)$. Let $A = \{x \in X | m(x,y) = z\}$. Since $f^{-1}(t) \subset A$, $A \neq \phi$. Also A is closed in X since m(A,y) = z implies that $m(\overline{A},y) = z$. Since $f^{-1}(y)$ is not compact, y is a limit point of $f^{-1}(y)$ in W and so there is a sequence $\{y_i\}$ in $f^{-1}(y)$ converging to y in W. Let $x \in A$ and $\{V_i\}$ be a countable neighborhood basis at x. If we assume that no V_i is contained in A, we can find a sequence $\{x_i\}$ which converges to x such that

206

 $m(x_iy) \neq z$. Hence $m_1(x_i, y_i)$ is not in $f^{-1}(z)$ for all i, but $\{m_1(x_i, y_i)\}$ converges to z. Thus the set $B = \{m_1(x_i, y_i)\}$ is closed in X. For any $w \in Y$, $f^{-1}(w) \cap B$ is finite because otherwise B will have a convergent subsequence in the compact set $\{w\} \cup f^{-1}(w)$. This means that B is fiber compact and W - B is a neighborhood of z which contradicts the fact that $\{m_1(x_i, y_i)\}$ converges to z. Thus A is open and must equal X since X is connected. All of this yields $m_2(Y,y) = z$. Let t',y' $\in Y$ and let z' = $m_2(t',y')$. The argument above will give that $m_2(t',Y) = z'$. Hence z = z' and Y has the zero multiplication.

REFERENCES

- WHYBURN, G.T. "A Unified Space for Mappings", <u>Trans. Amer. Math. Soc.</u> <u>74</u>(1953), 344-350.
- SCHNEIDER, V.P. "Compactifications for Some Semigroups Using the Whyburn Construction", <u>Semigroup Forum</u> <u>13</u>(1976/77), 135-142.
- STALLINGS, Y.O. "A Characterization of Closed Maps Using the Whyburn Construction", <u>Internat. J. Math. and Math. Sci. 8</u> (1985), 201-203.