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ABSTRACT. We show that any quartic extension of a local field of odd residue

characteristic must contain an intermediate field. A consequence of this is that

local fields of odd residue characteristic do not have extensions with Galois

group Ah or Sh Counterexamples are given for even residue characteristic.
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i. INTRODUCTION.

In Section 2, a simple application of local class field theory proves the

existence of intermediate fields for quartic extensions of local fields with

odd residue characteristic. This immediately implies the non-existence of

Galois extensions of type Ah or Sh over such fields.

In Section 3, examples are given of Ah and Sh extensions of fields with

even residue characteristic, and of a quartic extension with no intermediate

field.

In Section h, the results of Section 2 are used to show that the splitting

field of an irreducible quartic polynomial over a local field must have degree

or 8, provided the residue characteristic is odd. The implications of the

results of Section 2 and Section 3 for the theory of endoscopic groups are also

discussed.

I wish to thank Noriko Yui for helpful conversations about this work.

2. EXISTENCE OF INTERMEDIATE EXTENSIONS.

Let F be a non-archimedean local field. Let o o
F

and P PF
respectively, be the ring of integers of F and its prime ideal.

THEOREM 2.1. Suppose the residue characteristic of F is odd, and E/F

is a quartic extension (i.e. [E:F] 4). Then there must be an inter-

mediate field K i.e. E o K F [E:K] [K:F] 2
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PROOF: If E/F is unramified, the result is obvious. If the ramifica-

tion index of E/F is e 2 then we must have f 2 and, by Corollary

4 to Theorem 7 of chapter I, Section h of Weil [1], there is an unramified

quadratic intermediate field.

N6w suppose e h so f 1 Any unit in E is of the form u+p

and P PE The norm of such an element is u + p’ withwith u e o
F

P’ e PE 0 F PF So by Hensel’s Lemma the only units contained in the image

of NE/F are fourth powers. In particular, NE/F is not surjective, so

Corollary 1 to Theorem h of chapter XII, Section 3 of Well [1] proves the

theorem.

Translating this into the corresponding result on Galois groups, we

obtain the following equivalent formulation

THEOREM 2.2. If F has odd residue characteristic, there cannot be a

Galois extension E/F whose Galois group is isomorphic to Ah or Sh

PROOF: Ah contains subgroups of index h (the cyclic group generated

by any 3-cycle), none of which is properly contained in any proper subgroup

(such a proper subgroup, if it existed, would be of order 6 and index 2,

hence normal, hence would contain all 3-cycles, of which there are 8).

An Sh-extension of F would be an Ah-extension of a quadratic exten-

sion of F

3. COUNTEREXAMPLE FOR RESIDUE CHARACTERISTIC 2.

Let F 2 and consider the Eisenstein polynomial (X) Xh-2x-2 eF[X].

Let E be the splitting field of (X) we shall show that Gal(E/F) Sh
and Gal(E/K) Ah where K 2() In the process we shall find a

quartic extension L/F with no intermediate field.

Let e be a root of (X) and let L F(a)

LEMMA 3.1. The norm NL/F is surjective.

PROOF: Notice that N(+l) =.(-1) I N(e-1) $(i) -3 Also the

characteristic polynomial of 3 is 3(X) X
h 6X3 + 12X

2 8X- 8 so

N(a3+l) 3(-1) 19 If N NL/F were not surJective, its image would

be contained in the image of the norm map from some ramified quadratic

extension of F Such an image contains exactly two of the four cosets of

oX modulo (oX) 2
We have Just shown NL/F contains the three cosets con-

taining l, -3, and 19.

In particular (by Corollary 1 to Theorem h of chapter XII, Section 3 of

Well [1]), L/F is a quartic extension with no intermediate field.

Factoring the polynomial (X) over L we see that (X) (X-G)(X)

where (X) X3 + aX
2

+ 2X + (3-2)

PROPOSITION 3.2. (X) is irreducible over L

PROOF: If all roots of (X) were in L then L E would be

Galois, in contradiction of Lemma 3.1. The only other way for (X) to be

reducible would be for exactly one root, ’ say, to be in L In this case,
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F((’ would be a quartic extension of F contained in L hence F(a’

F() L

Let e GaI(E/F) be such that (c) ’ Then g(F()) F(’) and

a’ F(a) implies that g(a’) g F(’) F(c) L Since g(a’) ’ g(’)

must equal the only other conjugate of ’ in L i.e. g(’) Hence

the fixed field L contains + ’ and ’ so (X-a)(X-(’)

X
2 (a+’)X + a’ Lg[x] which shows that is quadratic over L

e

So [L’Lg] [L:F] 2 This also contradicts Lemma 3.1.

So E is the splitting field of T(X) over L and GaI(E/L) is

either A
3

or S
3

Now T(X) X3 + X
2

+ 2X + 3 2 X ’3 + (2/3)2X + (20/27)c3 2

where X’ X + 2/3 Hence the discriminant of W(X) is

27((20/27)C3-2)2-4((2/3)(2) 3 4.27 + (368/27)c6-803 4.9.3 mod*(l+4PL)
Since 4.9(i+4PL (LX) 2 the discriminant of (X) is a square in

L if and only if 3 is.

LEMMA 3.3. The element 3 is not a square in L

PROOF: If 3 were a square, truncation of its square root would give

’an element of the form x i +as+b(2+ca3
with a b and c each

equal to 0 or 1 and so that 3 x
2 4pL A trivial computation shows

that this is impossible.

Accordingly GaI(E/L) S
3

GaI(E/F) S4 and GaI(E/K) A4
where K F(/)

4. APPLICATIONS.

i. The splitting field of a quartic polynomial over a local field is

severely constrained by the results of Section 2.

THEOREM 4.1. Let F be a local field with odd residue characteristic.

Let f(X) e FIx] be an irreducible polynomial with deg f(X) 4 Let E

be the splitting field of f(X) over F Then [E:F] 4 or 8

PROOF: GaI(E/F) is a subgroup of S4 But by Theorem 2.2 it cannot

be S4 or A4 Since 4 [E:F] the only possibilities are 4 or 8

The polynomial @(X) of Section 3 gives a counterexample to this

result when the residue characteristic is 2 Theorem 4.1 is clearly

equivalent to Theorem 2.2 (and henc to Theorem 2.1).

2. If F is a local field, let G SL(h,F) and let T be an

elliptic torus in G To T is associated a quartic extension E/F so

that the centralizer of T in GL(4,F) is isomorphic to Ex and T it-

: { , (x) }self is isomorphic to E
1 NE/F

The theory of endoscopic groups (cf. Langlands [2], Shelstad [3])

associates to G and T some other groups, among which the most interesting

are constructed as follows: let E K m F and let

G’ {g GL(2,K) NK/F(detg) l} In G’ it is possible to find an
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elliptic torus T’ associated to the quadratic extension E/K and there is

an isomorphism between T and T’ The hope is to simplify calculations

with orbital integrals over the G-conjugacy class of t T by comparing them

with orbital integrals over the G’-conjugacy class of the corresponding

t’ T’

The example of Section B shows that this approach will not apply for

certain tori when the residue characteristic is 2 happily, for these tori

the ordinary orbital integrals are invariant under stable conjugacy, so the

problem does not arise. The results of Sections 2 encourage optimism in the

case of odd residue characteristic.

REFERENCES

I. WELL, A. Basic Number Theory, 3rd Edition, Springer-Verlag (New York,
Heidelberg, Berlin) 197h.

2. LANGLANDS, R.P. Les D@buts d’une Formule des Traces Stable, Publ. Math.
de l’Universit@ Paris VII (1983) 188p.

3. SHELSTAD, D. Orbital integrals and a family of groups attached to a real
reductive group, Ann. Scient. Ec. Norm. Sup. 1_2 (1979), 1-31.


